第二章数字图像处理基础

合集下载

2-第2章-图像处理基础(第二版)课件

2-第2章-图像处理基础(第二版)课件

1,0)
f (M 1,1)
f (0, N 1)
f (1, N 1)
f (M 1, N 1)
(2.7)
二、数字图像的表示
其中:
每个(x,y)对应数字图像中的一个基本单元,称
其为图像元素(picture element),简称为像素
(pixel);且一般取M、N和灰度级L为2的整次幂,
即:
M=2m
在景物大小不变的情况下,采样的空间分辨率 越高,获得的图像阵列M×N就越大;反之,采样的 空间分辨率越低,获得的图像阵列M×N就越小。
在空间分辨率不变的情况下,图像阵列M×N越 大,图像的尺寸就越大;反之,图像阵列M×N越小, 图像的尺寸就越小。
一、空间分辨率和灰度级分辨率
2、灰度分辨率
灰度级分辨率是指在灰度级别中可分辨的最小变 化,通常把灰度级级数 L 称为图像的灰度级分辨率。
对于消色光图像(有些文献称其为单色光图像),
f(x,y)表示图像在坐标点(x,y)的灰度值l,且:
l=f(x,y)
(2.5)
这种只有灰度属性没有彩色属性的图像称为灰
度图像。
由式(2.4),显然有:
Lmin≤l≤Lmxa
(2.6)
区间[Lmn的值为0,Lmax=L-1。这样
1 0 0 I 0 0 1
1 1 0
注意:黑白图像一定是2值图像,但2值图像不一定 是0-黑和1-白两种值。
二、数字图像的表示
4、不同类别数字图像的表示
2)灰度图像(式(2.11) 中当k=8时) 是指图像中每个像素的信息是一个量化了的灰 度级的值,没有彩色信息。
0 150 200 I 120 50 180
◆人眼对从亮突变到暗环境的适应能力称为暗适应性。 ◆人眼对亮度变化跟踪滞后的性质称为视觉惰性(或短

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理第章资料讲解

数字图像处理第章资料讲解

第二章 数字图像处理基础
典型数字摄像机
第二章 数字图像处理基础
五. 胶片扫描
? 胶片扫描的概念 ? 常用胶片扫描设备 ? 胶片扫描仪的性能指标
第二章 数字图像处理基础
1. 胶片扫描的概念
? 胶片扫描在图像数字化过程中占有重要地位。 ? 胶片扫描是对来自胶片上的信息进行数字化的
过程,使这些信息能由计算机读取、处理和应 用。 ? 胶片是指投影仪、普通相机或胶片记录仪中使 用的包括胶片、幻灯片、底片等在内的各种感 光材料,它们能生成图像或影像。
分辨率 320x240
第二章 数字图像处理基础
分辨率 160x120
第二章 数字图像处理基础
分辨率 80x60
第二章 数字图像处理基础
第二章 数字图像处理基础
图象尺寸: 127*176 分辨率:(a)127*176 (b)63*88 (c)31*44 (d)15*22
第二章 数字图像处理基础
第二章 数字图像处理基础
? 图像采样 ?采样处理:将xy平面分配到一个网格上。
xy平面
(a,b)
第二章 数字图像处理基础
第二章 数字图像处理基础
与采样相关的概念(分辨率)
分辨率
传感器摄像的精确度。通常指要精确测量和再 现一定尺寸的图像所必需的像素个数。 单位:像素 *像素
第二章 数字图像处理基础
度正比于图像亮度的实际精确程度,图像数字 化设备的线性度是一个重要的性能指标,非线 性的数字化器会影响后续处理的有效性。
第二章 数字图像处理基础
图像数字化器的类型
主要包括 :
? 数码相机 ? 胶片扫描仪
第二章 数字图像处理基础
二. 图像数字化器的组成

第2章数字图像处理基础

第2章数字图像处理基础

DWORD
biSize;
LONG
biWidth;
LONG
biHeight;
WORD
biPlanes;
WORD
biBitCount;
DWORD
biCompression;
DWORD
biSizeImage;
LONG
biXPelsPerMeter;
LONG
biYPelsPerMeter;
DWORD
biClrUsed;
} BITMAPFILEHEADER;
这个结构的长度是固定的,为14个字节(WORD为无符号16位二 进制整数,DWORD为无符号32位二进制整数)。
第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:
typedef struct tagBITMAPINFOHEADER{
R、 G、 B 值。下面就2色、 16色、256 色和真彩色位图分别介绍。
对于2色位图,用1位就可以表示该像素的颜色(一般0表示 黑, 1表示白),所以一个字节可以表示8个像素。
对于16色位图,用4位可以表示一个像素的颜色,所以一个 字节可以表示2个像素。
对于256色位图,一个字节刚好可以表示1个像素。
下面两点请读者注意:
(1) 每一行的字节数必须是4的整数倍,如果不是,则需 要补齐。这在前面介绍biSizeImage时已经提到过。
(2) BMP文件的数据存放是从下到上,从左到右的。也 就是说, 从文件中最先读到的是图像最下面一行的左边第一个 像素, 然后是左边第二个像素, 接下来是倒数第二行左边第 一个像素, 左边第二个像素。依次类推, 最后得到的是最上 面一行的最右边的一个像素。
2.3.1 BMP图像文件格式

第2章 数字图像处理基础

第2章 数字图像处理基础
分辨率越高,画面就越精细,同样的屏幕区域内能显示的 信息也越多
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间 分辨率 (kōngjiān)
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间 分辨率 (kōngjiān)
共八十一页
图像 的质量 • 2.1
损失的方法,但很多图最终是供人观看的。事实上,具有相 同客观保真度的不同图像,在人的视觉中可能产生不同的在 视觉效果。这种情况下,用主观的方法来测量图像的质量更 为合适。一种常用的方法是对1组(不少(bù shǎo)于20人)观察 者显示图像,并将他们对该图像的评分取平均,用来评价一 幅图像的主观质量。
PSNR的在衡量(héng liáng)不同压缩器时的作 用
(PSNR值29.87时的效果(xiàoguǒ))
共八十一页
PSNR的局限性
PSNR数值都是27.123,但是单从数值上,我们并不能判断
(pànduàn)哪一幅更好。
共八十一页
图像 的质量 • 2.1
(tú xiànɡ)
尽管客观保真度准则提供了一种简单、方便的评估信息
共八十一页
图像 的质量 • 2.1
(tú xiànɡ)
• 3. 对比度:图像(tú xiànɡ)最高和最低灰度级间的灰度 差。
共八十一页
• 2.1 图像 的质量 (tú xiànɡ)
• 3. 空间分辨率Байду номын сангаас图像(tú xiànɡ)空间中可分辨的最小细 节
空间分辨率的度量(dùliàng)——DPI(dot per inch) DPI:每英寸内像素点数目。
共八十一页
2、CMY颜色(yánsè)模式

2数字图像处理基础

2数字图像处理基础

在进行采样时,采样点间隔的选取是一个非常重要的问题, 它决定
了采样后图像的质量,即忠实于原图像的程度。采样间隔的大小选取要 依据原图像中包含的细微浓淡变化来决定。一般, 图像中细节越多,采
样间隔应越小。根据一维采样定理,若一维信号g(t)的最大频率为ω, 以
T≤1/2ω为间隔进行采样,则能够根据采样结果g(iT) (i=…, -1, 0, 1, …)完 全恢复g(t), 即

g (t )
式中
i

g (iT )s(t iT )
sin( 2t ) s (t ) 2t
图像数字化——采样
采样列 像素 采样行 行间隔
采样间隔
采样示意图
图像数字化——量化
模拟图像经过采样后,在时间和空间上离散化为像素。
但采样所得的像素值(即灰度值)仍是连续量。把采样后所得 的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量 化。图 2-3 ( a )说明了量化过程。若连续灰度值用 z来表示, 对于满足zi≤z≤zi+1的z值,都量化为整数qi。qi称为像素的灰度值, z与qi的差称为量化误差。一般,像素值量化后用一个字节8 bit 来表示。如图2-3(b)所示,把由黑—灰—白的连续变化的灰度 值, 量化为0~255共256级灰度值,灰度值的范围为0~255,
f (0,0) f (0,1) f (0, n 1) g (1,0) f (1,1) f (1, n 1) (2-1) g (i , j ) f (m 1,0) f (m 1,1) f ( m 1, n 1)
图2-4 (a)原始图像(256×256);(b)采样图像1(128×128);(c) 采样图像2(64×64); (d)采样图像3(32×32); (e)采样图像4(16×16);(f) 采样图像5(8×8)

第二章数字图像处理基础

第二章数字图像处理基础
数字图像处理
第二章 数字图像处理基础
视觉感知要素 图像感知和获取 图像取样和量化 象素间的一些基本关系 线性和非线性操作
2.1 视觉感知要素
眼睛的构造: (人眼包含有三层膜)
眼角膜与巩膜外壳 脉络膜 (前面睫状体 虹膜 晶状体) 视网膜 (视网膜表面的分离光
接收器提供图案视觉, 分为锥状体、杆状体)
感觉的亮度区域不是简单的取决于强度,还与周围的背景有关
2.1 视觉感知要素
视觉错觉
光幻觉是人视觉系 统所特有的,迄今 还没有清楚的解释。 由于以上各种特殊 现象,在进行图像 处理时,应该采取 一些特殊的补偿措 施。
图和背景反转的图形
在错觉 中,眼 睛填上 了不存 在的信 息或错 误地感 知物体 的几何 特点。
2.1 视觉感知要素
辨别光强度变化的能力
典型实验
韦伯比
可辨别增I C量/的I 50%IC
图2.5 用于描述亮度辨别特性的基本实验
图2.6 作为强度函数的典型韦伯比
当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间变化,一 般观察者可以辨别12到24级不同强度的变化.
低照明级别,亮度辨别(杆状体)较差;高照明级别,亮度辨别(锥状体)较好。
几何错觉图形
2.2 光和电磁波谱
电磁波谱可以用波长( )、频率( )或能量来描述
c 光速
E hv
h 普朗克常量
为波长, 为频率, E为电磁波能量
光速c 2.998 108 m/s 普朗克常数 h=6.626068 ×10-34 m2 kg / s
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
D8距离:D8(p,q)=max(|x-s|,|y-t|) (距离小于等于r的像素形成中心在(x,y)的方形)

数字图像处理与分析 第2章 图像处理基础知识

数字图像处理与分析 第2章 图像处理基础知识
1.灰度图像
可由黑白照片数字化得到,或从彩色图像进行去色处 理得到(256灰度级)
整理ppt
21
2.2.1 图像模式
2.二值图像
灰度图像经过二值化处理后的结果,两个灰度级,只 需用1bit表示。
整理ppt
22
2.2.1 图像模式
3.彩色图像
彩色图像的数据不仅包含亮度信息,还要包含颜色信息。 彩色的表示方法是多样化的。
三基色模型:RGB(Red / Green / Blue,红绿蓝) RGB三基色可以混合成任意颜色。
整理ppt
23
2.2.2 彩色空间
1)RGB彩色空间:面向硬件设备的彩色模型
三基色原理三基色指可以用来 调配出其它颜色的红、绿、蓝 三种颜色。
彩色图像可由红、绿、蓝 三基色图像叠加而成。
整理ppt
二者紧密相关,同时完成。 fx ,y 采 样空 间 离 散 的 像 素 矩 阵 fx ,y 量 化对 信 号 的 幅 度 进 行 离 散 分 层 的 过 程
整理ppt
14
2.1.2 数字化原理
M、N——图像尺寸
G——每个像素所具有的离散灰度级数(不同灰度值的个数)
M=2m
N 2n
G 2k
N N点采样,每点灰度级G级,G 2k,占k位。 存一幅图像所需的位数(bit)
1. 一维数组方式: M 行×N 列
N列 M行
2.多波段图像数据结合结构
1)按各个波段存储
红绿蓝
整理ppt
29
2.2.3 图像存储的数据结构
2.多波段图像数据结合结构
2)按扫描行存储
红 绿蓝 …
第1行
3)按各个像素存储
红绿蓝

第二章数字图像处理基础

第二章数字图像处理基础

2.2 数字图像的类型
静态图像可分为矢量图和位图(栅格图像)。
2.2.1 矢量图 (1)矢量图的表示方法 是用一系列绘图指令来表示一幅图。这种方法的本质 是用数学(更准确地说是几何学)公式描述一幅图像。
(2) 矢量图的优点: A、它的文件数据量很小; B、图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
倒数第二行 第一列像素 的颜色值.
倒数第二行 第二列像素 的颜色值.
………………………………….
文件说明 位图文件头
文件信息头 位图数据
BMP图像文件格式
属性
所占字节数
起始字节
说明
bfType bfSize bf1 bf2 bfOffBits
2
1
文件类型(“BM”)
4
3
文件大小
2
7
保留
2
9
保留
4
11
3.G=2g,g表示存储图像灰度级数所需的比特位数(bit)。
如:灰度级数G=256,8比特量化,(0-255) >或=6比特的量化,可以满足视觉效果; 8比特量化
4.均匀量化和非均匀量化 一般使用均匀量化
256个灰度级的图像 64个灰度级的图像 16个灰度级的图像
2.量化
255
Zi+1
254

位图文件头,共占14个字节
1
3
BM
7
11
文件类型 文件大小 2个字节 4个字节
保留 4个字节
位图第一个像素 的偏移量,4个字节
位图信息头,共占40个字节
15
19
23
27
位图信息头长度(40)

数字图像处理基础

数字图像处理基础
如前所述,采样和量化是数字化一幅图像的两个基本过程。 即把图像划分为若干图像元素(像素)并给出它们的地址(采样); 度量每一像素的灰度, 并把连续的度量结果量化为整数(量 化);最后将这些整数结果写入存储设备。为完成这些功能, 图像数字化设备必须包含以下五个部分:
第二章 数字图像处理基础
(1) 采样孔(Sampling aperture): 使数字化设备能够单独地观 测特定的图像元素而不受图像其他部分的影响。
第二章 数字图像处理基础
图2-4 (a)原始图像(256×256);(b)采样图像1(128×128);(c) 采样图像2(64×64);
(d)采样图像3(32×32); (e)采样图像4(16×16);(f) 采样图像5(8×8)
第二章 数字图像处理基础
图2-5 (a) 原始图像(256色); (b) 量化图像1(64色); (c) 量化图像2(32色);
• 1994年3月1日,柯达公司发布第一台公认的专业数码相机——DCS420。 它基于尼康F90S机身设计,使用了240万像素的CCD,售价达到8000美元 的天价!随后,以索尼公司为代表的各厂商纷纷推出各自的数码产品, 使相机产业实现了数字化的跨越式发展。
• 2019年8月,中国推出了第一款数码相机——海鸥DC33,有效像素30万, 具有640×480的分辨率和24位色的色彩还原能力。
第二章 数字图像处理基础
• 在十七、十八世纪的欧洲,许 多画家用暗箱柜来帮助他们绘 制风光、建筑甚至肖像。一个 典型的暗箱非常像现代的单镜 头反光照相机。光线由镜头进 入,在箱内经过一块镜子的反 射,在上面的磨砂玻璃上呈现 左右颠倒的实像。画家就是把 一张很薄的纸铺在磨砂屏上, 描下图形,以求达到最真实的 透视效果。

数字图像处理第二章课件ppt课件

数字图像处理第二章课件ppt课件

f(0,1) f(0,N1)
f(x,y)
f(1,0)
f(1,1)
f(1,N1)
f(M1,0) f(M1,0)
f(M1,N1)
F(x,y)在[0,L-1]有L个灰阶, 通常取L为2的k次幂
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
街区'City-Block'距离L1:
等距为4角星
D 4(p,q)xsyt
棋盘'chessboard'距离L : D 8(p,q)ma x x s,y (t)
等距为矩形
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
对像素p(x,y), q(s,t)和z(v,w), 距离函数D应满足: ① D(p,q)>=0 (D(p,q)=0, iff p=q) ② D(p,q)=D(q,p), and ③ D(p,z)<=D(p,q)+D(q,z)
例如用LM范数表示的通用Minkowski距离:
2.5 Some Basic Relationships Between Pixels 2.5.1 Neighbors of a Pixel
4邻接:
p
8邻接: p
m邻接(混合邻接):邻点q与当前像素(点)p存在4邻接前景邻点;

q是p的对角邻点并且p和q没有公共的前景4邻点。
m邻接是8邻接的修订,它消除了应用8邻接可能引起的模糊性 ,如图2.26b(4或8邻接共存)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 数字图像处理基础
采样列 像素 采样行 行间隔
采样间隔
图2-2 采样示意图
第二章 数字图像处理基础 2.1.2 量化 模拟图像经过采样后,在时间和空间上离散化为像素。但采
样所得的像素值(即灰度值)仍是连续量。把采样后所得的各像
素的灰度值从模拟量到离散量的转换称为图像灰度的量化。图23 ( a )说明了量化过程。若连续灰度值用 z 来表示,对于满足 zi≤z≤zi+1 的 z 值,都量化为整数 qi 。 qi 称为像素的灰度值, z 与 qi 的 差称为量化误差。一般,像素值量化后用一个字节8 bit来表示。
三角形点阵、正六角形点阵取样。如图2-1所示。
(3) 以上是用f (i, j)的数值来表示(i, j)位置点上灰度级值的大
小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用f (i, j, λ)表示,其中λ是波长。
如果图像是运动的,还应是时间t的函数,即可表示为f (i, j, λ, t)。
化的级数,既影响数字图像的质量,也影响到该数字图像数据
量的大小。假定图像取M×N个样点,每个像素量化后的灰度二 进制位数为Q,一般Q总是取为2的整数幂,即Q=2k, 则存储一幅 数字图像所需的二进制位数b为
b = M N Q
字节数B为
(2-2)
Q B = M N ( Byte) 8
(2-3)
(1) 对缓变的图像, 应该细量化, 粗采样, 以避免假轮廓。
(2) 对细节丰富的图像, 应细采样, 粗量化, 以避免模糊 (混叠)。 对于彩色图像,是按照颜色成分——红(R)、绿(G)、蓝 (B)分别采样和量化的。若各种颜色成分均按8 bit量化,即每 种颜色量级别是256, 则可以处理256×256×256=16 777 216种 颜色。
第二章 数字图像处理基础 对一幅图像采样时,若每行(即横向)像素为 M 个,每列 (即纵向)像素为N个,则图像大小为M×N个像素。 在进行采样时,采样点间隔的选取是一个非常重要的问题, 它决定了采样后图像的质量,即忠实于原图像的程度。采样间 隔的大小选取要依据原图像中包含的细微浓淡变化来决定。一 般, 图像中细节越多,采样间隔应越小。
第二章 数字图像处理基础
(a)
(b)
图2-1 采样网格 (a) 正方形网格; (b) 正六角形网格
第二章 数字图像处理基础
2.1.1 采样
图像在空间上的离散化称为采样。也就是用空间上部分点的 灰度值代表图像,这些点称为采样点。由于图像是一种二维分布 的信息,为了对它进行采样操作,需要先将二维信号变为一维信 号,再对一维信号完成采样。 具体做法是: 1 、先沿垂直方向按一定间隔从上到下顺序地沿水平方向直 线扫描,取出各水平线上灰度值的一维扫描。 2、对一维扫描线信号按一定间隔采样得到离散信号。
第二章 数字图像处理基础
2.1.4 图像数字化设备
将模拟图像数字化成为数字图像,需要某种图像数字化设
备。常见的数字化设备有数字相机、扫描仪、数字化仪等。
1. 图像数字化设备的组成
如前所述,采样和量化是数字化一幅图像的两个基本过程。
即把图像划分为若干图像元素(像素)并给出它们的地址(采样);
度量每一像素的灰度, 并把连续的度量结果量化为整数(量
第二章 数字图像处理基础 2.2.1 位图 1. 线画稿 线画稿只有黑白两种颜色,这种形式通常也称为“黑白艺 术”、 “位图艺术”、 “一位元艺术”。用扫描仪扫描图像, 当设置成LineArt格式时, 扫描仪以一位颜色模式来看待图像。 若样点颜色为黑,则扫描仪将相应的像素位元置为0, 否则置为
1。线画稿适合于由黑白两色构成而没有灰度阴影的图像。图2-6
第二章 数字图像处理基础 位图是通过许多像素点表示一幅图像,每个像素具有颜色 属性和位置属性。位图可以从传统的相片、幻灯片上制作出来 或使用数字相机得到, 也可以利用Windows的画笔(Painbrush)用 颜色点填充网格单元来创建位图。位图又可以分成如下四种: 线画稿 (LineArt) 、灰度图像 (GrayScale) 、索引颜色图像 (Index Color)和真彩色图像(True Color)。
第二章 数字图像处理基础 对一幅图像,当量化级数 Q 一定时,采样点数 M×N 对图像 质量有着显著的影响。如图 2-4 所示,采样点数越多,图像质量
越好; 当采样点数减少时,图上的块状效应就逐渐明显。同理,
当图像的采样点数一定时,采用不同量化级数的图像质量也不一 样。如图2-5 所示,量化级数越多,图像质量越好,当量化级数
都不会影响到图像中的其他对象。
第二章 数字图像处理基础 公式化表示图像使得矢量图有两个优点: 一、它的文件数据量很小; 二、图像质量与分辨率无关,这意味着无论将图像放大或缩小 了多少次,图像总是以显示设备允许的最大清晰度显示。
矢量图有一个明显的缺点,就是不易制作色调丰富或色彩变化太多的图像,而且绘出 来的图像不是很逼真,同时也不易在不同的软件间交换文件。
化);最后将这些整数结果写入存储设备。为完成这些功能, 图像数字化设备必须包含以下五个部分:
第二章 数字图像处理基础 (1) 采样孔(Sampling aperture): 使数字化设备能够单独地观 测特定的图像元素而不受图像其他部分的影响。 (2) 图像扫描机构: 使采样孔按照预先确定的方式在图像上
移动,从而按顺序观测每一个像素。
(3) 光传感器: 通过采样检测图像的每一像素的亮度, 通 常采用CCD阵列。 (4) 量化器:将传感器输出的连续量转化为整数值。典型的 量化器是A/D转换电路,它产生一个与输入电压或电流成比例的
数值。
(5) 输出存储装置:将量化器产生的灰度值按适当格式存储
起来,以用于计算机后续处理。
矩阵中的每一个元素称为像元、像素或图像元素。而f (i, j)代 表(i, j)点的灰度值,即亮度值。以上数字化有以下几点说明: (1)由于f (i, j)代表该点图像的光强度,而光是能量的一种行 式,故f (i, j)必须大于零,且为有限值,即: 0<f (i, j)<∞。
第二章 数字图像处理基础 (2) 数字化采样一般是按正方形点阵取样的, 除此之外还有
第二章 数字图像处理基础
在发射时,哈勃空间望远镜携带的仪器如下: · 广域和行星照相机(WF/PC)(CCD) · 戈达德高解析摄谱仪(GHRS) · 高速光度计(HSP)) · 暗天体照相机(FOC) · 暗天体摄谱仪(FOS)
第二章 数字图像处理基础
我们日常生活中见到的图像一般是连续形式的模拟图 像,所以数字图像处理的一个先决条件就是将连续图像离 散化,转换为数字图像。 数字化是由模拟照片到数字图像的过程。图像的数字 化包括采样和量化两个过程。 设连续图像f(x, y)经数字化后,可以用一个离散量组成 的矩阵g (i, j)(即二维数组)来表示。
第二章 数字图像处理基础
第二章 数字图像处理基础
2.1 图像数字化技术 2.2 数字图像类型 2.3 图像文件格式 2.4 色度学基础与颜色模型
第二章 数字图像处理基础
2.1 图像数字化技术
图像处理的方法有模拟式和数字式两种。 模拟图像处理--实时光学(实时,速度快)但只是有限 处理).如:望远镜、显微镜、哈哈镜、透镜、胶片合成照相、 凸透镜--实时FFT变换 数字图像处理:数字图像处理技术是随着计算机处理速度 和数据量增加发展起来的。
第二章 数字图像处理基础
图2-5 (a) 原始图像(256色); (b) 量化图像1(64色); (c) 量化图像2(32色); (d) 量化图像3(16色); (e) 量化图像4(4色); (f) 量化图像5(2色)
第二章 数字图像处理基础 一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
如图2-3(b)所示,把由黑—灰—白的连续变化的灰度值, 量化
为0~255共256级灰度值,灰度值的范围为0~255,表示亮度从 深到浅, 对应图像中的颜色为从黑到白。
第二章 数字图像处理基础
2 55 2 54 qi+ 1 qi- 1
… …
Zi +灰度标度 (a) 量化值 (整数值) 灰度量化 (b)
第二章 数字图像处理基础
f (0,0) ..f (0, n - 1) f (0,1) f (1,0) ..f (1, n - 1) f (1,1) (2-1) g (i , j ) = .. .. .. f ( m - 1,0) f ( m - 1,1) ..f ( m - 1, n - 1)
第二章 数字图像处理基础 4) 噪声 数字化设备的噪声水平也是一个重要的性能参数。例如, 数字化一幅灰度值恒定的图像,虽然输入亮度是一个常量,但 是数字化设备中固有的噪声却会使图像的灰度发生变化。因此 数字化设备所产生的噪声是图像质量下降的根源之一,应当使 噪声小于图像内的反差点(即对比度)。
第二章 数字图像处理基础
图2-3 量化示意图 (a) 量化; (b) 量化为8 bit
第二章 数字图像处理基础
• 非统一的图像的采样
– 在灰度级变化尖锐的区域,用细腻的采样,在灰度级 比较平滑的区域,用粗糙的采样
第二章 数字图像处理基础
连续灰度值量化为灰度级的方法有两种,一种是等间隔量化, 另一种是非等间隔量化。等间隔量化就是简单地把采样值的灰度 范围等间隔地分割并进行量化。对于像素灰度值在黑 — 白范围较 均匀分布的图像,这种量化方法可以得到较小的量化误差。该方 法也称为均匀量化或线性量化。为了减小量化误差,引入了非均 匀量化的方法。非均匀量化是依据一幅图像具体的灰度值分布的 概率密度函数,按总的量化误差最小的原则来进行量化。具体做 法是对图像中像素灰度值频繁出现的灰度值范围,量化间隔取小
越少时,图像质量越差,量化级数最小的极端情况就是二值图像, 图像出现假轮廓。
相关文档
最新文档