余角和补角PPT
合集下载
余角和补角ppt课件
15o
24o 46o
66o
75o
44o
截图一
截图二
请你为互为补角的两个角配对
练习三
∠α
20° 35° 60° 48°
∠α的余角
70° 55° 30° 42° 90°
∠α的补角
160° 145° 120° 132° 180°
课堂小结
用几何语言怎 叙述呢?
必选作业
D
如图,点A,O,B 在同一直线上,
遮罩
班优
播放视频
倒计时 拍照上传
放大镜 截图 在线画板
课堂活动 知识配对
遮罩 画笔
思维导图
超链接
课前复习
我们之前学过那些角?
新课导入
1.视频中涉及的是几个角之间的关系? 2.具有什么关系的角叫做互为余角(或补角)?
其中的“互为”是什么意思? 3.900和1800分别与谁有关?你是怎样区分记忆的?
4.2 余 角 和 补 角
教材分析
这是在学生学习了角的大小 比较的基础上,对角之间关系的 进一步深入和拓展;同时又为今 后证明角的相等提供了一种依据 和方法,起着承前启后的作用。
教学过程
一
二
三
四
五
六
课课前前复复习习 新课导入 讲授新课 课堂练习 归归归纳纳纳总总总结结结 作作作业业业布布布置置置
射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为
余角?
AO
C E
B
哪些角互为 补角呢?
自选作业Eຫໍສະໝຸດ C如图所示,直线AB,CD相交于点 O,∠BOE=90°,若∠COE=55°,求∠BOD的 度数 ?
A
B
《余角和补角》PPT课件(华师大版)
2 1
如果两个角的和等于90°,我们就说 这两个角互为余角.
如果两个角的和等于180°(平角), 就说这两个角互为补角,即其中一个 角是另一个角的补角.
1.一个角是70°30′,求它的余角和补角. 2.一个角的补角是它的3倍,这个角多少度? 3.一个角是钝角,它的一半是什么角?
例3 如图,∠1与∠2互补,∠1与∠3互补,那么 ∠2与∠3相等吗?为什么?
角共有 ( )对. C
E
2
D
1
A
O
B
5.一个锐角的补角与它的余角的关系?
6.如果∠1+ ∠ 2=90°, ∠ 2+ ∠ 3=90°,那 么∠ 1与∠ 3之间的关系是_______
7.若∠ 和∠ 互 为余角,则∠ 和∠ 的
补角之和等于_____
8.若一个角的余角与它的补角的和是 210°,则这个角等于_____
练习
如图,要测量两堵围墙所形成的角AOB的度 数,但人不能进入围墙,如何测量?
A B
∠AOB=180°-α
Oα
例题: 点A,O,B在同一条直线上,
射线OD,OE分别平分∠AOC和∠BO
C,图中有哪些互余的角?
D
C
E
A
O
B
随堂练习
1 .下列叙述正确的是( ) . A . 40°与60 °的角互为余角 B . 110 °与90 °的角互为补角 C . 10 °、20 °、60 °的角互为余角 D . 120 °与60 °的角互为补角
余角和补角
2
1
2
1
Байду номын сангаас
2
1
互为余角 如果两个角的和是一
个直角,那么这两个角叫 做互为余角,其中一个角 是另一个角的余角.
如果两个角的和等于90°,我们就说 这两个角互为余角.
如果两个角的和等于180°(平角), 就说这两个角互为补角,即其中一个 角是另一个角的补角.
1.一个角是70°30′,求它的余角和补角. 2.一个角的补角是它的3倍,这个角多少度? 3.一个角是钝角,它的一半是什么角?
例3 如图,∠1与∠2互补,∠1与∠3互补,那么 ∠2与∠3相等吗?为什么?
角共有 ( )对. C
E
2
D
1
A
O
B
5.一个锐角的补角与它的余角的关系?
6.如果∠1+ ∠ 2=90°, ∠ 2+ ∠ 3=90°,那 么∠ 1与∠ 3之间的关系是_______
7.若∠ 和∠ 互 为余角,则∠ 和∠ 的
补角之和等于_____
8.若一个角的余角与它的补角的和是 210°,则这个角等于_____
练习
如图,要测量两堵围墙所形成的角AOB的度 数,但人不能进入围墙,如何测量?
A B
∠AOB=180°-α
Oα
例题: 点A,O,B在同一条直线上,
射线OD,OE分别平分∠AOC和∠BO
C,图中有哪些互余的角?
D
C
E
A
O
B
随堂练习
1 .下列叙述正确的是( ) . A . 40°与60 °的角互为余角 B . 110 °与90 °的角互为补角 C . 10 °、20 °、60 °的角互为余角 D . 120 °与60 °的角互为补角
余角和补角
2
1
2
1
Байду номын сангаас
2
1
互为余角 如果两个角的和是一
个直角,那么这两个角叫 做互为余角,其中一个角 是另一个角的余角.
余角和补角课件(共23张PPT)
6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?
余角和补角 课件(共16张PPT)
课堂小结
余角和补角的定义 定义:两个角的和等于90°(直角),就说这两个角互为余
角,简称互余.如果两个角的和等于180°(平角),就说这两个 角互为补角,简称互补.
余角和补角都是相互的,不能说哪一个角是余角或补角.
请同学们比较互余与互补的概念,说说它们的区别和共同之处.
区别 互余是两个角的和是90°(直角), 互补是两个角的和是180°(平角).
3 1
获取新知
2 1
两个角的和等于90°(直角),就说这两个角互为余角,简称互余. 如图,∠1+∠2=90°,那么∠1是∠2的余角,∠2也是∠1的余角.
4 3
如果两个角的和等于180°(平角),就说这两个角互为补角,简称互补. 如图,∠3+∠4=180°,那么∠3是∠4的补角,∠4也是∠3的补角.
【分析】因为∠1+∠2=180°,∠2+∠3=180°, 所以∠3=∠1=50°.故选A.
同角的补 角相等.
随堂演练
1. 已知∠A=55°,则它的余角是( B )
A.25°
B.35° C.45°
D.55°
2.如果两个角互补,那么这两个角( D为钝角 D.均为直角,或一个为锐角,另一个为钝角
3.若一个锐角和它的余角相等,则它的补角为( C )
A.75°
B.120°
C.135°
D.150°
4. 如图,在三角形ABC中,∠C=90°,点D,E 分别在边AC、AB上,若∠B=∠ADE,则下列 结论正确的是( C ) A.∠A和∠B互为补角. B.∠B和∠ADE互为补角. C.∠A和∠ADE互为余角. D.∠AED和∠DEB互为余角.
1
3
2
同角的余角相等.
探究: 已知∠1与∠2互余,∠3与∠4互余,如果∠1=∠3, 那么∠2与∠4相等吗?为什么?
余角和补角的定义课件
摄影
在摄影中,为了获得更好的拍摄 角度和构图,摄影师会运用补角
的概念来调整相机的角度。
余角和补角的综合应用实例
桥梁设计
在桥梁设计中,为了确保桥梁的稳定 性和安全性,需要精确地计算不同部 分的角度。余角和补角的综合运用可 以帮助工程师更好地设计和建造桥梁 。
道路规划
在道路规划和设计中,为了确保道路 的顺畅和车辆的安全行驶,需要计算 和调整道路的角度。余角和补角的运 用可以帮助设计师更好地完成这项任 务。
THANK YOU
余角和补角的定义课件
• 余角和补角的定义 • 余角和补角的性质应用 • 余角和补角的计算方法 • 余角和补角的特殊情况 • 余角和补角的实际应用
01
余角和补角的定义
余角的定义
总结词
余角是两个角的度数之和为90度。
总结词
补角是两个角的度数之和为180度。
详细描述
如果两个角的度数之和为90度,则这两个 角互为余角。例如,如果一个角是45度, 那么与它互为余角的另一个角就是45度。
角度的减法计算
利用补角的Leabharlann 质,可以将一个角度减去另一个角度,得到一 个新角度。
03
余角和补角的计算方法
余角的计算方法
定义
如果两个角的度数之和为90°,则这两个角互为余 角。
计算公式
余角 = 90° - 已知角。
举例
已知角为45°,则其余角 = 90° - 45° = 45°。
补角的计算方法
定义
总结词
余角的定义是两个角的度 数之和为90度。
详细描述
如果两个角的度数之和为 90度,则这两个角互为 余角。例如,如果一个角 是30度,那么与它互为 余角的另一个角就是60 度。
补角和余角PPT课件.ppt
补角和余角
练习
若∠α+∠β=90°,∠β+∠γ=90°,则
∠α与∠γ的关系是( C )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ
补角和余角
练习
如图,直线AB,CD交于点O,因为∠1 +∠3=180°,∠2+∠3=180°,所以 ∠1=∠2的依据是( C ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
补角和余角
二、互角为余角
1、定义: 如果两个角的和等于一个_直__角__,就说 这两个角互为余角,简称互余,其中一 个角是另一个角的余角.
补角和余角
一、互角为补角
2、数学1= _9_0_°_-_∠__2___ ∠2= _9_0_°_-_∠__1___
补角和余角
回顾
上节课学习了哪些知识? 一、角的大小比较 二、角的和与差 三、角的平分线
补角和余角
一、互角为补角
1、定义: 如果两个角的和等于一个_平__角__,就说 这两个角互为补角,简称互补,其中一 个角是另一个角的补角.
补角和余角
一、互角为补角
2、数学符号语言表达: ∵∠1与∠2互补 ∴ ∠1+ ∠2=180°
补角和余角
课时小结
这节课学习了哪些知识? 一、互为补角的定义 二、互为余角的定义 三、补角和余角的性质
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
补角和余角
三、补角和角余角的性质
如图,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那 么∠2与∠4有什么关系?
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
补角与余角.ppt
动手操作 探索新知
将你手中的角拼一拼,看能不能 拼出一个平角?
133°
47°
新知讲解 引出概念
1
2
图4-29
如果两个角的和等于一个平角,那么 我们就称这两个角互为补角,简称互补.
如图4-29,∠1+∠2=180°,∠1叫做∠2的补角, ∠2也叫做∠1的补角,∠1与∠2互补.
随堂练习 小试牛刀
1、找出下图的补角朋友,将补角朋友 的角度写在括号里。
∴ ∠2= ∠3
概念延伸 性质讲解
同角的余角相等.
例2 已知:∠1和∠2互余, ∠1和∠3互余, 问:∠2与∠3有什么关系?
解: ∵ ∠1和∠2互余
∴ ∠2=90°- ∠1
1
23
又 ∵ ∠1和∠3互余 ∴ ∠3=90°- ∠1
∴ ∠2= ∠3
概念延伸 性质讲解
同角的余角相等
几何语言表达
1
∵ ∠1+∠2 =90°
解: ∵ ∠1和∠2互补 ∴ ∠2=180°- ∠1 =180°- 50° =130°
又 ∵ ∠3和∠2互补 ∴ ∠3=∠1=50° (同角的补角相等)
随堂练习 巩固应用
2、如下图,E、D、F在同一直线上,∠CDE=90°, ∠1=∠2,∠ADC与∠BDC有什么关系?
解: ∵ E、D、F在同一直线上,
例1: 已知:∠1和∠2互补, ∠1和∠3互补, 问:∠2与∠3的大小有什么关系?
13 2
解: ∵ ∠1和∠2互补 ∴ ∠2=180°- ∠1
又 ∵ ∠1和∠3互补 ∴ ∠3=180°- ∠1 ∴ ∠2= ∠3
概念延伸 性质讲解
同角的补角相等
几何语言表达
13
2
∵ ∠1+∠2 =180°
将你手中的角拼一拼,看能不能 拼出一个平角?
133°
47°
新知讲解 引出概念
1
2
图4-29
如果两个角的和等于一个平角,那么 我们就称这两个角互为补角,简称互补.
如图4-29,∠1+∠2=180°,∠1叫做∠2的补角, ∠2也叫做∠1的补角,∠1与∠2互补.
随堂练习 小试牛刀
1、找出下图的补角朋友,将补角朋友 的角度写在括号里。
∴ ∠2= ∠3
概念延伸 性质讲解
同角的余角相等.
例2 已知:∠1和∠2互余, ∠1和∠3互余, 问:∠2与∠3有什么关系?
解: ∵ ∠1和∠2互余
∴ ∠2=90°- ∠1
1
23
又 ∵ ∠1和∠3互余 ∴ ∠3=90°- ∠1
∴ ∠2= ∠3
概念延伸 性质讲解
同角的余角相等
几何语言表达
1
∵ ∠1+∠2 =90°
解: ∵ ∠1和∠2互补 ∴ ∠2=180°- ∠1 =180°- 50° =130°
又 ∵ ∠3和∠2互补 ∴ ∠3=∠1=50° (同角的补角相等)
随堂练习 巩固应用
2、如下图,E、D、F在同一直线上,∠CDE=90°, ∠1=∠2,∠ADC与∠BDC有什么关系?
解: ∵ E、D、F在同一直线上,
例1: 已知:∠1和∠2互补, ∠1和∠3互补, 问:∠2与∠3的大小有什么关系?
13 2
解: ∵ ∠1和∠2互补 ∴ ∠2=180°- ∠1
又 ∵ ∠1和∠3互补 ∴ ∠3=180°- ∠1 ∴ ∠2= ∠3
概念延伸 性质讲解
同角的补角相等
几何语言表达
13
2
∵ ∠1+∠2 =180°
余角和补角(57张PPT)数学
13
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
余角和补角ppt课件
综合素养训练
(2)若∠ AOE 与∠ DOB 互补,求∠ DOE的度数.
解:因为∠AOE+∠AOC=180°,
∠AOE+∠DOB=180°,所以∠AOC=∠BOD.
因为∠BOC+∠AOC=90°,
所以∠BOC+∠BOD=90°.
所以∠EOD=180°-(∠BOC+∠BOD)=90°.
④,∠α + ∠β =180 °,则∠α和∠β 互补.答案:A
综合素养训练
1.[中考·武威] 若∠α =70 °,则∠α的补角的度数是( B )
A.13 0 °
B.110 °
C.30 °
D. 20 °
综合素养训练
2. 如图,一副三角尺按不同的位置摆放,摆放位置中∠α
与∠β 一定相等的图形个数共有( B )
∠2+
(∠1 - ∠2)=
∠1+
∠2 的余角.D 选项是∠2 的余角.
∠2 =9 0 °,故C 选项不是
答案:D
综合应用创新
方法点拨
识别两个角是否互余,只需要计算两个
角的和是否等于90°即可.
综合应用创新
题型
2 利用角平分线的定义探究互余、互补
例 6 [新视角 操作探究题]如图6.3-26,把一张长方形纸片
FG 是∠CFC′的平分线,
所以∠EFB′=
∠BFB′,∠GFC′= ∠CFC′.
因为∠BFC=180°,所以∠GFC′+∠EFB′=
(∠CFC′+
∠BFB′)= ∠CFB= ×180°=90°.
所以∠GFC′与∠EFB′互为余角.
余角与补角ppt
逆补角也是余角
补角的定义与性质
补角是两个角的度数和为180度 补角的性质:互补两角之和为180度,两角互补为补角
逆余角也是补角
余角与补角的关系
互余角和互补角是 余角和补角的延伸
两角互余和两角互 补可以相互转化
余角和补角的区别 在于角度和位置不 同
02
余角和补角的性质和运用
余角和补角的性质
余角
余角和补角在建筑中的运用
建筑结构
在建筑结构中,利用余角和补角可以形成优美的几何图形。例如,古罗马的 万神庙穹顶采用了120度的补角,形成了完美的穹顶结构。
光学设计
在光学设计中,利用余角和补角可以制造出具有特定反射和折射效果的材料 。例如,某些玻璃窗在阳光下会产生一定角度的反射光线,形成特定的视觉 效果。
如果两个角的和等于90度,则 这两个角互为余角。
补角
如果两个角的和等于180度,则 这两个角互为补角。
性质总结
余角和补角是一对互为补角的 关系,即一个角的余角是90度 减去这个角的度数,而一个角 的补角是180度减去这个角的度
数。
余角和补角的运用
1 2
余角的运用
在几何中,可以通过将一个角分成两个相加等 于90度的角来计算角度。
06
复习与回顾
余角与补角的定义及性质回顾
总结词:重要基础
详细描述:回顾余角和补角的定义,以及余角和补角的基本性质。重点强调余角 和补角的表示方法,以及它们在数学和几何中的应用。
余角与补角的计算回顾
总结词:核心技能
详细描述:全面梳理余角和补角的计算规则,包括余角的度 数等于90度减去另一个角的度数,补角的度数等于180度减 去另一个角的度数。同时,强调在计算中需要注意的事项和 易错点。
补角的定义与性质
补角是两个角的度数和为180度 补角的性质:互补两角之和为180度,两角互补为补角
逆余角也是补角
余角与补角的关系
互余角和互补角是 余角和补角的延伸
两角互余和两角互 补可以相互转化
余角和补角的区别 在于角度和位置不 同
02
余角和补角的性质和运用
余角和补角的性质
余角
余角和补角在建筑中的运用
建筑结构
在建筑结构中,利用余角和补角可以形成优美的几何图形。例如,古罗马的 万神庙穹顶采用了120度的补角,形成了完美的穹顶结构。
光学设计
在光学设计中,利用余角和补角可以制造出具有特定反射和折射效果的材料 。例如,某些玻璃窗在阳光下会产生一定角度的反射光线,形成特定的视觉 效果。
如果两个角的和等于90度,则 这两个角互为余角。
补角
如果两个角的和等于180度,则 这两个角互为补角。
性质总结
余角和补角是一对互为补角的 关系,即一个角的余角是90度 减去这个角的度数,而一个角 的补角是180度减去这个角的度
数。
余角和补角的运用
1 2
余角的运用
在几何中,可以通过将一个角分成两个相加等 于90度的角来计算角度。
06
复习与回顾
余角与补角的定义及性质回顾
总结词:重要基础
详细描述:回顾余角和补角的定义,以及余角和补角的基本性质。重点强调余角 和补角的表示方法,以及它们在数学和几何中的应用。
余角与补角的计算回顾
总结词:核心技能
详细描述:全面梳理余角和补角的计算规则,包括余角的度 数等于90度减去另一个角的度数,补角的度数等于180度减 去另一个角的度数。同时,强调在计算中需要注意的事项和 易错点。
余角和补角-完整版PPT课件
∠α的余角
85° 58° 45° 27°37′ 无
135° α
无 90°-α
∠α的补角
175° 148° 135° 117°37′ 90°
45° 180°-α
练习
判断
1、90度的角叫余角,180度的角叫补角。
×
2、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为余角 ×
3、如果一个角有补角,那么这个角一定是钝角
1
(1)写出图中所有的直角_____A__O_D_,_____B_O_D_,__ EOC
A
(2)写出图中与 AOE相等的_____3______________
(3)写出图中 DOE所有的余角_____1_,____3_________
(4)写出图中 AOE所有的余角_____2_,____4_________
2画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C
∠1∠2=90°, ∠2∠3(2)你能发现哪几个角是相等的(直角除外)?
∠1=∠3 B
(3)你能用一句话概括以上规律吗?
同角的余角相等
互为余角
互为补角
对应图形 数量关系 性质
1 2
21
∠1 ∠2 = 90 ° ∠1 ∠2 = 180 °
2
1
1 2
43
互为余角 如果两个角的和等于90°,那 么这两个角互为余角。(简称 互余)
几何语言:∵∠1∠2=900 ∴∠1与∠2互为余角
互为补角 如果两个角的和等于180°, 那么这两个角互为补角。(简 称互补)
几何语言:∵∠3∠4=1800 ∴∠3与∠4互为补角
帮∠ α 找朋友:
∠α
5° 32° 45° 62°23′ 90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ⑵如果两个角的和等于 ,就说这两个角互 为补角。
• ⑶如果∠a=61°38',则∠a得余角为 , ∠a的补角为 。
• ⑷如果一个角与它的余角之比是1:2,那么 这两个角是 ,这个角与它的补角之比 是。
• ⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。
• ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。
• ⑺已知∠1=120°-3m,∠2=3m-角的 1 ,求这个角
的度数 。
5
课 堂 作 业:
• ①P140 13题。 • ②已知∠1=35°19´,则∠1的余角等于
度。
• ③若∠1=30°,则∠1的补角为 度。 • ④一个锐角的补角和它的余角之差为 度。 • ⑤已知∠A是它补角的4倍,那么∠A为 度。 • ⑥已知∠1与∠2互余,且∠1=15°、则∠2
第四章 图形认识初步
4.3.3.余角和补角
学习目标
• 理解余角和补角的定义。 • 会运用互余、互补的关系进行运算。
自学指导:
• 认真看课本(P137思考前) • 结合图形理解余角、补角的概念。 • 思考如何求一个角的余角和补角。 • 4分钟后,比谁能创造性地做出与例题类
似的习题。
检 测 题:
• ⑴如果两个角的和等于 ,就说这两个角互 为余角。
的补角为 度。
• ⑶如果∠a=61°38',则∠a得余角为 , ∠a的补角为 。
• ⑷如果一个角与它的余角之比是1:2,那么 这两个角是 ,这个角与它的补角之比 是。
• ⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。
• ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。
• ⑺已知∠1=120°-3m,∠2=3m-角的 1 ,求这个角
的度数 。
5
课 堂 作 业:
• ①P140 13题。 • ②已知∠1=35°19´,则∠1的余角等于
度。
• ③若∠1=30°,则∠1的补角为 度。 • ④一个锐角的补角和它的余角之差为 度。 • ⑤已知∠A是它补角的4倍,那么∠A为 度。 • ⑥已知∠1与∠2互余,且∠1=15°、则∠2
第四章 图形认识初步
4.3.3.余角和补角
学习目标
• 理解余角和补角的定义。 • 会运用互余、互补的关系进行运算。
自学指导:
• 认真看课本(P137思考前) • 结合图形理解余角、补角的概念。 • 思考如何求一个角的余角和补角。 • 4分钟后,比谁能创造性地做出与例题类
似的习题。
检 测 题:
• ⑴如果两个角的和等于 ,就说这两个角互 为余角。
的补角为 度。