人教版-数学-八年级上册-《分式的基本性质》名师教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§15.1.2 分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力.
3.渗透类比转化的数学思想方法.
二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.
三、教学方法
分组讨论.
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
1.分式的定义?
2.分数的基本性质?有什么用途?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例2 填空:
(1)
()
3
x
xy y
=,
()
2
2
33
6
x xy x y
x
++
=
解:∵x≠0,
同理可化简第二个.
(2)()()22212,a b ab a b a a b
-== 学生自己解答.
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据. 练习1:
化简下列分式(约分)
例3(1)23225;15a bc ab c
- (2) (3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分.
问:分式约分的依据是什么?
分式的基本性质 在化简分式 时,小颖和小明的做法出现了分歧:
小颖: 小明:
你对他们俩的解法有何看法?说说看!
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分):
把各分式化成相同分母的分式叫做分式的通分.
例4:(1) 与 (2) 与 229;69x x x -++226126.33x xy y x y
-+-y
x 20xy 5222x 20x 5y x 20xy 5=x
41xy 5x 4xy 5y x 20xy 52=⋅=b 23a 2c a b a b 2-5
x x 2-5x x 3+
解:(1)最简公分母是
(2)最简公分母是(x-5)(x+5)
2222(5)2105(5)(5)25
x x x x x x x x x ++==--+- 2233(5)3155(5)(5)25
x x x x x x x x x --==+-+- (三)课堂小结
1.分式的基本性质.
2.性质中的m 可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.
c 2b a
22c 2
bc 3bc b 2bc 3b 23b a a a 2222=••=c 2ab 22a 2c a a 2)b a (c a b a b a a b b 2
2222-=••-=-