万有引力定律公式、例题及其应用

合集下载

高中物理万有引力定律知识点总结与典型例题精选汇总

高中物理万有引力定律知识点总结与典型例题精选汇总

万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦天文学家第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k Tr =23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。

2.万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。

2rMmGF =(1687年) 2211/1067.6kg m NG ⋅⨯=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。

万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。

实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。

万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2EE R mm Gmg =(式中R E 为地球半径或物体到地球球心间的距离),可得到GgR m EE 2=。

(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。

(3) 地球自转对地表物体重力的影响。

体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为ϕ的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力 F向=mRcos ϕ·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg ,其方向与支持力N 反向,应竖直向下,而不是指向地心。

期末复习:万有引力定律及其应用

期末复习:万有引力定律及其应用

A
(重庆卷)16.月球与地球质量之比约为1:80,有研究 16.月球与地球质量之比约为 月球与地球质量之比约为1:80, 者认为月球和地球可视为一个由两质点构成 的双星系 它们都围绕月地连线上某点o做匀速圆周运动. 统,它们都围绕月地连线上某点o做匀速圆周运动. 据此观点,可知月球与地球绕o 据此观点,可知月球与地球绕o点运动的线速度大小 之比约为 A,1:6400 B,1:80 B, C, C, 80:1 D, D, 6400:1
C.
4π ( ) 3Gρ 1 π 2 ( ) Gρ
1 2
3 ) B. ( 4π G ρ
1 2
D
3π ) D. ( Gρ
1 2
Mm 4π 2 G 2 =m 2 R R T
4 3 M = ρ πR 3
上海物理 : 15. 月球绕地球做匀速圆周运动的向
心加速度大小为a 心加速度大小为a,设月球表面的重力加速度大 小为g 小为g1,在月球绕地球运行的轨道处由地球引力 产生的加速度大小为g 产生的加速度大小为g2,则 A. g1=a B. g2=a C. g1+g1=a D. g1-g2=a
r ∝1 m
v ∝1 m
m2 r1 = l m1 + m 2
m1 r2 = l m1 + m 2
(天津卷)6.探测器绕月球做匀速圆周运动, 6.探测器绕月球做匀速圆周运动 探测器绕月球做匀速圆周运动, 变轨后在周期较小的轨道上仍做匀速圆周运动, 变轨后在周期较小的轨道上仍做匀速圆周运动, 则变轨后与变轨前相比 A.轨道半径变小 A.轨道半径变小 B.向心加速度变小 B.向心加速度变小 C.线速度变小 C.线速度变小 D.角速度变小 D.角速度变小
pq

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用1.万有引力定律:引力常量G=6.67× N•m2/kg22.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)3.万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)(2)重力=万有引力地面物体的重力加速度:mg = G g = G ≈9.8m/s2高空物体的重力加速度:mg = G g = G <9.8m/s24.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。

由mg=mv2/R或由= =7.9km/s5.开普勒三大定律6.利用万有引力定律计算天体质量7.通过万有引力定律和向心力公式计算环绕速度8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)功、功率、机械能和能源1.做功两要素:力和物体在力的方向上发生位移2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。

(2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。

如人用力推车前进时,人的推力F对车做正功。

(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。

如人用力阻碍车前进时,人的推力F对车做负功。

一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。

说了“克服”,就不能再说做了负功4.动能是标量,只有大小,没有方向。

万有引力公式及其推论

万有引力公式及其推论

万有引力公式及其推论
一、开普勒行星运动规律
行星绕太阳的运动轨迹通常按圆轨道处理
开普乐行星运动定律也适合其他天体,例如,月球、卫星绕地球运动
开普勒第三定律中,k值只与中心天体的质量有关,不同的中心天体k值不同。

二、万有引力定律及其应用
地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力,如图所示
1.在两极,向心力等于零,重力等于万有引力;
2.除两极外,物体的重力都比万有引力小;
3.在赤道处,物体的万有引力的两个分力F向和mg刚好在一条直线上,
4.地球表面附近(脱离地面)的重力与万有引力
物体在地球表面附近(脱离地面)绕地球转时,物体所受的重力等
于地球表面处的万有引力,即:
R为地球半径,g为地球表面附近的重力加速度,上式变形得Gm地=gR2。

5.距地面一定高度处的重力与万有引力
物体在距地面一定高度h处绕地球转时,
R为地球半径,g'为该高度处的重力加速度。

三、万有引力的“两个推论”
推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即F引=0。

推论2:在匀质球体内部距离球心r处的质点(质量为m)受到的万有引力等于球体内半径为r的同心球体(质量为m')对其的万有引力
四、天体质量和密度常用的估算方法。

万有引力做功公式微积分推导

万有引力做功公式微积分推导

万有引力做功公式微积分推导
1. 万有引力公式。

- 设两个质点质量分别为M和m,它们之间的距离为r,根据万有引力定律,两质点间的万有引力F = G(Mm)/(r^2)(其中G为引力常量)。

2. 万有引力做功的微积分推导。

- 假设质量为m的物体在质量为M的天体的引力场中运动,取天体M所在位置为坐标原点,当物体从r_1运动到r_2时,计算万有引力做的功。

- 我们把物体的运动路径分成许多小段Δ r_1,Δ r_2,Δ r_3,·s。

- 在每一小段位移Δ r上,近似认为万有引力F是不变的。

当物体位于距离r 处时,万有引力F = G(Mm)/(r^2)。

- 对于一小段位移Δ r,万有引力做的功Δ W≈ F·Δ r,这里F = G(Mm)/(r^2),所以Δ W≈ - G(Mm)/(r^2)Δ r(这里加负号是因为万有引力方向与物体位移方向(沿r 增大方向)相反)。

- 那么从r_1到r_2过程中,万有引力做的总功W就是这些小段功的累加,即W=∑Δ W。

- 当Δ rto0时,这个累加就变成了积分,W =-∫_r_{1}^r_2G(Mm)/(r^2)dr。

- 对∫_r_{1}^r_2(1)/(r^2)dr进行积分,根据积分公式∫ x^ndx=frac{x^n +
1}{n+1}+C(n≠ - 1),这里n=-2,则∫(1)/(r^2)dr=-(1)/(r)+C。

- 所以W=- G Mm<=ft(-(1)/(r))<=ft.rvert_r_{1}^r_2=GMm<=ft((1)/(r_2)-
(1)/(r_1))。

万有引力定律(精选例题)

万有引力定律(精选例题)

例题11:
中子星是恒星演化过程的一种可能结果, 中子星是恒星演化过程的一种可能结果 , 它的密度很 现有一中子星, 30s 大 。现有一中子星 , 观测到它的自转周期为T=1/30s。 问该中子星的最小密度应是多少才能维持该星的稳定, 问该中子星的最小密度应是多少才能维持该星的稳定 , 不致因自转而瓦解。计算时星体可视为均匀球体。 不致因自转而瓦解 。计算时星体可视为均匀球体。(引 2 67× -11 力常数G=6.67×10 N ·m /kg2) 解析:设想中子星赤道处一小块物质,只有当它受到的 解析:设想中子星赤道处一小块物质, 万有引力大于或等于它随星体所需的向心力时, 万有引力大于或等于它随星体所需的向心力时,中子星 才不会瓦解。 才不会瓦解。
3π r= 2 GT
GT M r= 4π 2 (3)海王星发现:
2
(2)天体运动情况:
1 3
(4)证明开普勒第三定律的正确性。
四、人造卫星:基本上都是引力提供向心力
Mm v 4π 2 G 2 = m = mrω = m 2 r = 4π 2 mrf 2 = ma r r T GM 1、线速度: = 即线速度 v ∝ v r
纬度↓ ,r ↑ ,g ↓ 。
例题1:
已知下面哪组数据可以计算出地球的质量M地(引力常数G 为已知)(AD) (A)月球绕地球运行的周期T1及月球到地球中心的距离r1 (B)地球“同步卫星”离地面的高度h
小结: 小结:应用的基本思路与方法 1、天体运动的向心力来源于天体之间的万有引力,即 天体运动的向心力来源于天体之间的万有引力,
例题3:
第一宇宙速度是用r=R 地 计算出来的,实际上人造地球 卫星轨道半径都是r>R地,那么轨道上的人造卫星的线 速度都是( ) (A)等于第一宇宙速度 (C)小于第一宇宙速度 (B)大于第一宇宙速度 (D)以上三种情况都可能

万有引力定义公式和应用场景

万有引力定义公式和应用场景

万有引力定义公式和应用场景万有引力是一种自然现象,指两个物体之间相互吸引的力。

它的定义、公式及应用场景我们分别详细介绍如下。

一、定义:万有引力是指在自然界中,所有物体之间都存在着一种相互吸引的力。

根据万有引力定律,任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。

二、公式:万有引力的公式由牛顿提出,称为万有引力定律。

根据这个定律,两个物体之间的引力可以用以下公式表示:F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是万有引力常数(约等于6.67 * 10^-11 N·m^2/kg^2),m1和m2是两个物体的质量,r是两个物体之间的距离。

三、应用场景:万有引力的应用场景非常广泛,以下是其中几个重要的应用:1.行星运动:万有引力是维持行星运动的主要力量。

行星绕着太阳运动,依靠太阳对行星施加的引力来保持它们的运动轨道。

2.人造卫星:人造卫星的运行也依赖于万有引力。

卫星在地球的引力作用下绕地球运动,这种运动轨道被称为地球同步轨道。

卫星的轨道高度和速度必须精确计算,才能保证卫星能够稳定地绕地球运转。

3.潮汐现象:潮汐现象是地球和月球之间的万有引力相互作用的结果。

地球上的潮汐是因为月球和太阳对地球的引力作用导致的。

月球和太阳对地球的引力使得地球上的水产生潮汐起伏,这对于航海、捕鱼和能源开发等都有重要影响。

4.天体测量:万有引力的公式被广泛应用于天体测量。

通过测量天体之间的引力,可以获得天体的质量和距离等重要参数。

例如,通过测量行星对恒星的引力作用,科学家可以推断出行星的质量和轨道,从而探索宇宙的奥秘。

5.粒子加速器:粒子加速器是研究微观世界的重要工具。

加速器中的粒子之间的相互作用主要依靠万有引力。

通过合理调节加速器中的引力,科学家可以将粒子加速到非常高的速度,并产生高能粒子碰撞,从而揭示物质的微观结构和性质。

综上所述,万有引力是自然界中一种重要的力量,它的公式和应用场景等内容不仅丰富了我们对物理学的理解,而且对于天体运动、卫星轨道、潮汐现象、天体测量和粒子加速器等领域的研究和应用都具有重要的意义。

万有引力定律的应用(共11张PPT)

万有引力定律的应用(共11张PPT)

宇宙速度的计算
第一宇宙速度
根据万有引力定律,可以 计算出环绕地球运行的最 大速度,即第一宇宙速度。
第二宇宙速度
通过万有引力定律,还可 以计算出逃离地球引力的 最小速度,即第二宇宙速 度。
第三宇宙速度
利用万有引力定律,可以 计算出逃离太阳系所需的 最小速度,即第三宇宙速 度。
03
万有引力定律在地球科学中的应 用
万有引力定律的公式
总结词
万有引力定律的公式是F=G(m1m2)/r²,其中F表示两物体之间的万有引力,G 是自然界的常量,m1和m2分别表示两个物体的质量,r表示两物体之间的距 离。
详细描述
这个公式是万有引力定律的核心内容,它精确地描述了两个物体之间万有引力 的数量关系。根据这个公式,我们可以计算出任意两个物体之间的万有引力的 大小。
桥梁和建筑物的稳定性分析
桥梁和建筑物的稳定性分 析
万有引力定律可以用来计算建筑物或桥梁的 支撑结构所受的重力,从而评估其稳定性。
桥梁和建筑物的抗震设计
通过分析地震发生时地面运动对建筑物的影 响,利用万有引力定律计算出建筑物在地震
中的受力情况,进而优化抗震设计。
物体落地速度的计算
物体落地速度的计算
THANKS
感谢观看
统研究提供基础。
04
万有引力定律在物理实验中的应 用
重力加速度的测量
总结词
通过测量物体自由落体的时间,可以计 算出重力加速度的值。
VS
详细描述
在重力加速度的测量实验中,通常使用自 由落体法。通过测量物体下落的时间,结 合已知的高度和重力加速度的公式,可以 计算出当地的重力加速度值。这种方法简 单易行,是物理学中常用的实验方法之一 。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中的重要定律之一,由英国科学家牛顿在17世纪发现并公布。

它描述了物体之间相互作用的力与它们的质量和距离的关系。

本文将介绍万有引力定律的具体内容以及一些应用示例。

一、万有引力定律的表述万有引力定律指出,任何两个物体之间都存在着一种相互吸引的力,这个力称为引力。

它的大小与两个物体的质量成正比,与它们的距离平方成反比。

假设有两个物体,质量分别为m1和m2,它们之间的距离为r。

根据万有引力定律,它们之间的引力F可以通过以下公式计算得到:F =G * (m1 * m2) / r^2其中,G为万有引力常数,约等于6.67430 × 10^-11 N·(m/kg)^2。

根据这个定律,我们可以计算出物体之间的引力大小,并进一步研究物体的运动状态和相互作用。

二、万有引力定律的应用万有引力定律在物理学的研究中有广泛的应用。

下面将介绍一些具体的应用示例。

1. 行星运动万有引力定律对行星的运动轨迹和速度提供了解释。

根据定律,行星与恒星之间的引力使得行星绕恒星运动。

行星在受到引力作用下,沿着椭圆轨道围绕恒星旋转。

同时,根据引力的大小和方向,我们还可以计算出行星的速度和运动轨道。

2. 卫星轨道人造卫星的运行轨道也可以通过万有引力定律进行计算。

卫星以地球为中心,受到地球引力的作用,所以会围绕地球旋转。

通过计算引力大小和速度,可以确定卫星的轨道,从而实现正常运行和通信。

3. 弹道轨道使用火箭进行太空探索时,火箭也是根据万有引力定律的计算结果进行定位和轨道规划的。

引力对火箭产生的影响可以通过计算得到,从而确定火箭发射时的初始速度和轨道,确保火箭能够顺利进入太空。

4. 重力加速度万有引力定律还可以用于计算地球表面上的重力加速度,即物体下落的速度增加量。

根据质量和距离的关系,可以计算出地球表面上的引力大小,进而计算物体下落的加速度,并用于物理学中相关的问题解决。

以上仅是万有引力定律的一些应用示例,实际上在天文学、空间科学、物理学等许多领域都有涉及。

万有引力定律讲解(附答案)

万有引力定律讲解(附答案)

6.3 万有引力定律 班级: 组别: 姓名: 【课前预习】1.万有引力定律:(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。

(2)表达式: F =G m 1m 2r 2 。

2.引力常量(1)引力常量通常取G = ×10-11 N·m 2/kg 2,它是由英国物理学家卡文迪许在实验室里测得的。

(2)意义:引力常量在数值上等于两个质量都是1kg 的质点,相距1m 时的相互吸引力。

【新课教学】,一、牛顿的“月——地”检验1.检验的目的:地球对月亮的力,地球对地面上物体的力,太阳对行星的力,是否是同一种力。

2.基本思路 (理论计算):如果是同一种力,则地面上物体的重力G ∝21R ,月球受到地球的力21r f ∝。

又因为地面上物体的重力mg G =产生的加速度为g ,地球对月球的力提供月球作圆周运动的向心力,产生的向心加速度,有向ma F =。

所以可得到:22Rr F G a g ==向 又知月心到地心的距离是地球半径的60倍,即r=60R ,则有:322107.23600-⨯==⋅=g g r R a 向m/s 2。

3.检验的过程(观测计算):牛顿时代已测得月球到地球的距离r月地 = ×108 m ,月球的公转周期T = 天,地球表面的重力加速度g = m /s 2,则月球绕地球运动的向心加速度: =向a (字母表达式) =向a ( (数字表达式) =向a ×10-3m/s 2 (结果)。

4.检验的结果:理论计算与观测计算相吻合。

表明:地球上物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律。

"二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间的距离r 的二次方成反比,引力的方向在它们的连线上。

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。

万有引力公式gm等于

万有引力公式gm等于

万有引力公式gm等于引言万有引力公式是物理学中最重要且最基础的公式之一,它描述了两个物体之间的引力的大小。

这个公式的发现与牛顿的《自然哲学的数学原理》相关,它解释了地球绕着太阳运行、月球绕着地球运行等自然现象。

本文将详细介绍万有引力公式的定义、物理意义以及一些应用。

1.万有引力公式的定义万有引力公式可以用于计算两个物体之间的引力大小。

根据牛顿的定律,在质量为m1和m2的两个物体之间存在一个引力F,它的大小由以下公式给出:$$F=G\cd ot\f ra c{{m_1\c do tm_2}}{{r^2}}$$其中,G为引力常数,$6.67430\ti me s10^{-11}$N·(m/kg)^2。

m1和m2分别为两个物体的质量,r是两个物体之间的距离。

2.万有引力公式的物理意义万有引力公式的物理意义是描述质量之间相互吸引的力,并且这个力与两个物体的质量成正比,与它们之间距离的平方成反比。

这意味着质量越大、距离越近,两个物体之间的引力越强。

引力的作用是使得两个物体趋向于彼此靠近,并且决定了天体运动的轨迹。

3.万有引力公式的应用3.1太阳系中行星的轨道运动万有引力公式可以用来解释太阳系行星的轨道运动。

根据这个公式,行星受到太阳的引力作用,导致它们绕太阳运动。

行星离太阳越近,受到的引力越大,运动速度越快;行星离太阳越远,受到的引力越小,运动速度越慢。

这样,行星绕太阳的轨道成为一条椭圆,且各行星的轨道是稳定的。

3.2物体在地球表面的重力万有引力公式可以用来计算物体在地球表面受到的重力。

将地球看作一个球体,将物体放在地球表面上方一个距离为r的位置。

假设物体的质量为m,地球的质量为M,根据万有引力公式,物体所受的重力F可以表示为:$$F=G\cd ot\f ra c{{m\c do tM}}{{(R+r)^2}}$$其中,R是地球的半径。

这个公式说明,物体的重力随着它与地球的距离的平方的减小而减小,距离地球越远,重力越小。

万有引力公式-经典例题

万有引力公式-经典例题

万有引力公式-经典例题--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________万有引力定律及其应用知识网络一、万有引力定律:(1687年)适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ⋅⨯=-二、万有引力定律的应用 1.解题的相关知识:(1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r Tm 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G2RmM =mg 从而得出GM =R 2g 。

(2)圆周运动的有关公式:ω=Tπ2,v=ωr 。

讨论:①由222r v m r Mm G =可得:rGMv = r 越大,v 越小。

②由r m rMmG22ω=可得:3r GM =ω r 越大,ω越小。

③由r T m r Mm G 222⎪⎭⎫⎝⎛=π可得:GM r T 32π= r 越大,T 越大。

④由向ma rMm G=2可得:2r GMa =向 r 越大,a 向越小。

点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。

人造卫星及天体的运动都近似为匀速圆周运动。

2.常见题型万有引力定律的应用主要涉及几个方面:(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。

万有引力定律公式及说明

万有引力定律公式及说明

万有引力定律公式及说明好的,以下是为您生成的文章:咱们从小到大,都听说过万有引力定律。

这玩意儿可神奇了,它能解释好多好多关于天体运行的现象。

那万有引力定律的公式到底是啥呢?它就是 F = G×(m₁×m₂)/r²。

这里面的每个字母都有它的含义。

F 代表两个物体之间的引力,G 呢,是个引力常量,数值约为 6.67×10⁻¹¹ N·m²/kg²。

m₁和 m₂分别是两个物体的质量,r 则是两个物体质心之间的距离。

咱们来举个例子感受一下这个公式的威力。

就说地球绕着太阳转吧。

太阳质量老大了,地球质量也不小。

它们之间的距离又那么远,可为啥地球就老老实实地绕着太阳转,而不是到处乱跑呢?这就是万有引力在起作用。

根据这个公式,太阳和地球之间的引力刚刚好能让地球保持在它的轨道上,不快不慢,不偏不倚。

记得有一次,我带着一群小朋友去公园玩。

有个小朋友看到树上的苹果掉下来,就好奇地问我:“为什么苹果会掉下来,而不是飞到天上去呢?”我就跟他们讲了万有引力定律。

我说:“就像地球拉着咱们,不让咱们飞出去一样,地球也拉着苹果,让它掉到地上。

”小朋友们似懂非懂地点点头,那小眼神充满了好奇和探索的欲望。

万有引力定律可不光能解释苹果掉地上这种小事儿,还能解释好多超级大的事儿呢。

比如说,月亮为啥绕着地球转?行星为啥绕着太阳转?甚至是遥远的星系之间的相互作用,都离不开万有引力定律。

再比如说,人造卫星的发射。

科学家们得精确计算地球和卫星之间的万有引力,才能让卫星在预定的轨道上运行。

要是算错了一点点,那卫星可能就跑偏啦。

而且啊,这个定律在我们日常生活中也有一些有趣的应用。

比如我们跳起来的时候,总会落回地面,这就是地球的万有引力在拉着我们。

还有,我们扔出去的东西,最终也会掉到地上,也是因为万有引力。

总的来说,万有引力定律虽然看起来就是个公式,但它背后的意义可大了去了。

万有引力定律的应用例题

万有引力定律的应用例题

万有引力定律的应用例题万有引力定律是描述物体之间相互作用的重要定律,它可以应用于多个领域。

下面是一些关于万有引力定律应用的例题:1. 两个质量分别为2kg和4kg的物体,在它们之间的距离为3米的地方,求它们之间的引力大小。

根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数(约等于6.67430 × 10^-11 N·m^2/kg^2),m1和m2分别为物体1和物体2的质量,r为它们之间的距离。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (2kg * 4kg) / (3m)^2 ≈ 8.83 × 10^-10 N。

2. 地球的质量为5.97 × 10^24 kg,半径为6.37 × 10^6 m。

一个质量为70 kg的人站在地球表面上,请计算他所受到的重力大小。

根据万有引力定律,我们可以计算出人所受到的地球引力。

将地球看作质点,人与地球的距离为地球半径。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (70kg * 5.97 × 10^24 kg) / (6.37 × 10^6 m)^2 ≈ 686 N。

3. 在国际空间站(ISS)轨道上,距离地球表面约400公里的地方,一个质量为600 kg的卫星以4 km/s的速度绕地球运动。

求该卫星所受到的引力大小。

在空间站轨道上,卫星的质量和距离会随时间变化,但我们可以假设在给定时刻,质量和距离保持恒定。

根据万有引力定律,我们可以计算出卫星所受到的引力。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (600kg * 5.97 × 10^24 kg) / (400km + 地球半径)^2 ≈ 2.10 × 10^4 N。

万有引力定律应用例题

万有引力定律应用例题

万有引力定律应用例题
1. 一个天体的质量是地球的5倍,距离地球的位置上空1兆米的地方有一颗小行星。

求小行星受到的引力与在地球表面受到的引力之比。

解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。

设地球质量为M,小行星质量为m,地球半径为R,小行星与地球的距离为r。

在地球表面受到的引力为F1=GMm/R²,其中G为万有引力常数。

在位置上空1兆米的地方,小行星与地球的距离为R+r,利用万有引力定律得到小行星受到的引力为F2=GMm/(R+r)²。

所以,小行星受到的引力与在地球表面受到的引力之比为
F2/F1=(GMm/(R+r)²)/(GMm/R²)=(R/R+r)²。

代入已知条件,得到比值为(6400km/6400000000m)
²=2.5×10^-19。

2. 一个地球上的物体质量为5千克,距离地球表面2米的地方有一只1千克的小鸟。

求小鸟受到的引力大小和方向。

解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。

小鸟受到的引力大小为F=GMm/r²,其中G为万有引力常数,M为地球质量,m为小鸟质量,r为小鸟与地球的距离。

代入已知条件,得到引力大小为F=(6.67×10^-11 N·m²/kg²)×(5 kg)×(1 kg)/(2 m)²。

计算得到引力大小为F≈3.34×10^-9牛顿。

引力的方向与两个物体之间的连线方向相反,所以小鸟受到的引力方向指向地球。

万有引力计算及应用

万有引力计算及应用

万有引力的应用:1. 地球质量的计算地面附近的重力与万有引力实质相同,不考虑地球自转的影响,重力等于引力2Mmmg GR = 质点m 所在处的g 值与到底薪距离R 对应。

R ↑,g ↓,因此测出离地心R 处的g 值,就可算出地球质量2gR M G =,此法在其他星球上成立2. 在任何星球表面,g 值比较容易测量,当用到GM 时,可用GM= gR ²换算,该公式称为“黄金代换”。

由于g 、R 为人们所熟知,因此常用gR ²替代GM 来解题,此式可推广,如M 为某天体的质量,g 则为某天体表面的重力加速度,R 为该天体的半径题1:已知引力常量116.6710G -=⨯N ·m ²/kg ²,重力加速度g 取9.8m/s ²,地球半径66.410R =⨯m ,则可知地球质量的数量级是(D )A 1810kgB 2010kgC 2210kgD 2410kg题2:已知地球表面重力加速度为g ,地球半径为R ,求同步地球卫星离地面的高度h答案:h R =;T 为24小时 3. 计算天体的质量某星体围绕中心天体z m 做圆周运动的周期为T ,圆周运动的轨道半径为r ,由222z m m G m r r T π⎛⎫= ⎪⎝⎭得2324z r m GT π=题3:太阳光经过500s 到达地球,地球的半径为66.410R =⨯m ,试估算太阳质量与地球质量的比值(保留一位有效数字) 答案:5310⨯ 4. 发现未知天体由最外侧天体轨道的“古怪”现象提出猜想,根据轨道的古怪情况和万有引力定律计算新天体的可能轨道,根据计算出的轨道预测新天体可能出现的时刻和位置,进行实地观察验证海王星和哈雷彗星按时回归的意义不仅在于发现了新天体,更重要的是确立了万有引力定律的地位。

表明了一个科学的理论不仅能解释已知的事情还能推测未知的事实题4.海王星的发现是万有引力定律应用的一个成功范例,但是发现海王星后,人们发现海王星的轨道与理论计算值有较大差异,于是沿用了发现海王星的办法,经过多年努力,才由美国以落维尔天文台在理论上计算出的轨道附近天区内找到了质量比理论值晓得多的冥王星,冥王星绕太阳运行的轨道半径是40个天文单位,(日地距离为一个天文单位),求冥王星与地球绕太阳运行的线速度之比。

牛顿万有引力定律

牛顿万有引力定律

牛顿万有引力定律牛顿万有引力定律是描述物体之间相互作用力的重要定律。

它由英国科学家艾萨克·牛顿于17世纪提出,是经典力学的基石之一。

牛顿万有引力定律可以简明地表述为:任何两个物体之间存在着吸引力,该引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。

本文将详细介绍牛顿万有引力定律的概念、公式以及一些应用实例。

一、概念牛顿万有引力定律是牛顿力学的基础,它描述了物质之间相互作用的力。

根据该定律,每个物体都对其他物体施加引力。

该引力的大小与物体的质量成正比,与物体之间的距离的平方成反比。

简而言之,任何两个物体之间都存在吸引力,无论物体的质量大小。

二、公式牛顿万有引力定律的数学表达式如下:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力;G是引力常数,约等于6.6743×10^-11 N·m^2/kg^2;m1和m2分别表示两个物体的质量;r是两个物体之间的距离。

这个公式说明了引力与质量和距离的关系。

质量越大,引力越大;距离越近,引力越大。

这个定律适用于宏观物体之间的相互作用,如行星、恒星等。

三、应用实例1. 地球引力对物体的影响地球对物体施加引力是最常见的应用实例之一。

根据牛顿万有引力定律,地球上的物体都受到地球的引力作用。

这就是为什么我们可以站在地面上不会飘走的原因。

地球的质量足够大,使得其引力可以压倒其他较小物体的引力。

2. 行星运动牛顿万有引力定律也可以解释行星运动的规律。

行星绕太阳运动的路径是椭圆,而不是圆形。

这是因为行星与太阳之间的引力使得行星沿着椭圆轨道运动。

根据万有引力定律,太阳对行星施加引力,使得行星围绕太阳旋转。

3. 人造卫星轨道牛顿万有引力定律对人造卫星的轨道设计也有应用。

为了使卫星保持稳定的轨道,需要考虑地球对卫星的引力。

通过控制卫星的速度和轨道高度,可以让卫星保持在特定的轨道上,实现通信、导航等功能。

总结牛顿万有引力定律是一个基础而又重要的物理定律,可以解释宏观物体之间的引力相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力定律及其应用知识网络:教学目标:1.掌握万有引力定律的内容并能够应用万有引力定律解决天体、卫星的运动问题2.掌握宇宙速度的概念3.掌握用万有引力定律和牛顿运动定律解决卫星运动问题的基本方法和基本技能 教学重点:万有引力定律的应用教学难点:宇宙速度、人造卫星的运动教学方法:讲练结合,计算机辅助教学教学过程:一、万有引力定律:(1687年)适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ⋅⨯=- 二、万有引力定律的应用1.解题的相关知识:(1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r Tm 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G2R mM =mg 从而得出GM =R 2g 。

(2)圆周运动的有关公式:ω=Tπ2,v=ωr 。

讨论:①由222rv m r Mm G =可得:r GM v = r 越大,v 越小。

②由r m rMm G 22ω=可得:3r GM =ω r 越大,ω越小。

③由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π可得:GM r T 32π= r 越大,T 越大。

④由向ma r Mm G =2可得:2rGM a =向 r 越大,a 向越小。

点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。

人造卫星及天体的运动都近似为匀速圆周运动。

2.常见题型万有引力定律的应用主要涉及几个方面:(1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。

现有一中子星,观测到它的自转周期为T =301s 。

问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。

计算时星体可视为均匀球体。

(引力常数G =6.67⨯1011-m 3/kg.s 2) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。

设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ334R M = 由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。

点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。

(2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002RGM g mg R Mm G =∴= 轨道重力加速度:()()22h R GM g mg h R GMmh h +=∴=+【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。

设卫星表面的重力加速度为g ,则在卫星表面有mg r GMm=2 ……经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。

上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。

解析:题中所列关于g 的表达式并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度。

正确的解法是 卫星表面2R Gm=g 行星表面20R GM=g 0 即20)(R R M m =0g g 即g =0.16g 0。

(3)人造卫星、宇宙速度:人造卫星分类(略):其中重点了解同步卫星宇宙速度:(弄清第一宇宙速度与发卫星发射速度的区别)【例3】我国自行研制的“风云一号”、“风云二号”气象卫星运行的轨道是不同的。

“一号”是极地圆形轨道卫星。

其轨道平面与赤道平面垂直,周期是12h ;“二号”是地球同步卫星。

两颗卫星相比 号离地面较高; 号观察范围较大; 号运行速度较大。

若某天上午8点“风云一号”正好通过某城市的上空,那么下一次它通过该城市上空的时刻将是 。

解析:根据周期公式T=GM r 32π知,高度越大,周期越大,则“风云二号” 气象卫星离地面较高;根据运行轨道的特点知,“风云一号” 观察范围较大;根据运行速度公式V=r GM知,高度越小,速度越大,则“风云一号” 运行速度较大,由于“风云一号”卫星的周期是12h ,每天能对同一地区进行两次观测,在这种轨道上运动的卫星通过任意纬度的地方时时间保持不变。

则下一次它通过该城市上空的时刻将是第二天上午8点。

【例4】可发射一颗人造卫星,使其圆轨道满足下列条件( )A 、与地球表面上某一纬度线(非赤道)是共面的同心圆B 、与地球表面上某一经度线是共面的同心圆C 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的D 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的解析:卫星绕地球运动的向心力由万有引力提供,且万有引力始终指向地心,因此卫星的轨道不可能与地球表面上某一纬度线(非赤道)是共面的同心圆,故A 是错误的。

由于地球在不停的自转,即使是极地卫星的轨道也不可能与任一条经度线是共面的同心圆,故B 是错误的。

赤道上的卫星除通信卫星采用地球静止轨道外,其它卫星相对地球表面都是运动的,故C 、D 是正确的。

【例5】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。

解析:如果周期是12小时,每天能对同一地区进行两次观测。

如果周期是6小时,每天能对同一纬度的地方进行四次观测。

如果周期是n 24小时,每天能对同一纬度的地方进行n 次观测。

设上星运行周期为T 1,则有2122)(4)(T R h m R h Mm G +=+π 物体处在地面上时有g m R GMm 020= 解得:g R h R T 31)(2+=π 在一天内卫星绕地球转过的圈数为1T T ,即在日照条件下有1T T 次经过赤道上空,所以每次摄像机拍摄的赤道弧长为1122T T R T T R S ππ==,将T 1结果代入得 gR h TS 32)(4+=π 【例6】在地球(看作质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是( )A .它们的质量可能不同B .它们的速度可能不同C .它们的向心加速度可能不同D .它们离地心的距离可能不同解析:同步卫星绕地球近似作匀速圆周运动所需的向心力由同步卫星的地球间的万有引力提供。

设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步卫星距离地面的高度为h ,由F 引=F 向, G 2)(h R mM +=m 224T π(R+h )得:h =3224πGMT -R ,可见同步卫星离地心的距离是一定的。

由G 2)(h R mM+=m h R v +2得:v =h R GM +,所以同步卫星的速度相同。

由G 2)(h R mM+=ma 得:a = G 2)(h R M+即同步卫星的向心加速度相同。

由以上各式均可看出地球同步卫星的除质量可以不同外,其它物理量值都应是固定的。

所以正确选项为A 。

点评:需要特别提出的是:地球同步卫星的有关知识必须引起高度重视,因为在高考试题中多次出现。

所谓地球同步卫星,是相对地面静止的且和地球有相同周期、角速度的卫星。

其运行轨道与赤道平面重合。

【例7】地球同步卫星到地心的距离r 可由22234πc b a r =求出,已知式中a 的单位是m ,b 的单位是s ,c 的单位是m/s 2,则:A .a 是地球半径,b 是地球自转的周期,C 是地球表面处的重力加速度;B .a 是地球半径。

b 是同步卫星绕地心运动的周期,C 是同步卫星的加速度;C .a 是赤道周长,b 是地球自转周期,C 是同步卫星的加速度D .a 是地球半径,b 是同步卫星绕地心运动的周期,C 是地球表面处的重力加速度。

解析:由万有引力定律导出人造地球卫星运转半径的表达式,再将其与题给表达式中各项对比,以明确式中各项的物理意义。

AD 正确。

【例8】我国自制新型“长征”运载火箭,将模拟载人航天试验飞船“神舟三号”送入预定轨道,飞船绕地球遨游太空t =7天后又顺利返回地面。

飞船在运动过程中进行了预定的空间科学实验,获得圆满成功。

①设飞船轨道离地高度为h ,地球半径为R ,地面重力加速度为g .则“神舟三号”飞船绕地球正常运转多少圈?(用给定字母表示)。

②若h =600 km ,R =6400 km ,则圈数为多少?解析:(1)在轨道上h R v m h R GmM +=+22)( ① v =Th R )(2+π② 在地球表面:2R GmM =mg ③ 联立①②③式得:T =g h R R h R +⋅+)(2π故n =hR g h R tR T t ++=)(2π ②代人数据得:n =105圈(4)双星问题:【例9】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。

现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。

解析:设两星质量分别为M 1和M 2,都绕连线上O 点作周期为T 的圆周运动,星球1和星球2到O 的距离分别为l 1和l 2。

由万有引力定律和牛顿第二定律及几何条件可得M 1:G 221R M M =M 1(T π2)2 l 1 ∴M 2=21224GTl R π 对M 2:G 221R M M =M 2(T π2)2 l 2 ∴M 1=22224GTl R π 两式相加得M 1+M 2=2224GT R π(l 1+l 2)=2324GT R π。

(5)有关航天问题的分析:【例10】无人飞船“神州二号”曾在离地高度为H =3. 4⨯105m 的圆轨道上运行了47小时。

求在这段时间内它绕行地球多少圈?(地球半径R =6.37⨯106m ,重力加速度g =9.8m/s 2)解析:用r 表示飞船圆轨道半径r =H + R ==6. 71⨯106m 。

M 表示地球质量,m 表示飞船质量,ω表示飞船绕地球运行的角速度,G 表示万有引力常数。

相关文档
最新文档