材料力学课件(配套孙训方的教材)1-1

合集下载

材料力学课件-料力学_孙训方

材料力学课件-料力学_孙训方

y 2 dA
=
i
2 x
A
A
I y =
x2dA =
i
2 y
A
A

ix
Ix A

iy
Iy A
式中的ix、iy称为截面对X、Y轴的惯性半径,其单位与长度单位相同。
材料力学电子教程
附录
13
定义下列积分:
y
x
dA
xC
C
r
y yC
I p = r 2dA (x2 y2 )dA
A
A
为图形(整个截面)对坐标原点O的极惯性矩。
其中X轴平行于X1轴,Y轴平行于Y1轴。 X1=X+b Y1=Y+a
I x1 y12dA y2dA 2a ydA a2 dA
A
Ix

A
2aS x

a2 A
A
A
I y1 x12dA x2dA 2b xdA b2 dA
A
Iy

A
2bS y
yc1 y1
Y
解:
H/ 2
A

b(h 2

y1 )
C
H/ 2
X
yc1

y1

1(h 22

y1
)
1( 2
h 2

y1
)
b
Sx

A yc 1

b(h 2

y
1
)

1( 2
h 2
y1 )

b( h2 8

4 y12
)
材料力学电子教程

材料力学 孙训方第五版PPT课件

材料力学 孙训方第五版PPT课件

为负(压应力)
例题3 如图所示正方形截面的梯形柱,柱顶受轴向压力P作用,上
段柱重为G1,下段柱重为G2。已知:P=15kN,G1=2.5kN,G2=10kN。
求:上、下段柱的底截面1-1,2-2上的应力。
解: N 1 1 P G 1 1 7 .5 k N
P 200
11N A 1 11 10 1.7 2 .5 01 .2 034.375105Pa
思考?
P
P
P/2 P
PP
PP
P/2
该杆件是轴向拉伸变形吗?
.
第二节 受轴向拉伸或压缩时横截面上的内力和应力
一、内力
1、内力的概念:物体内部相邻部分之间相互作用的力
2、内力的计算(截面法)
m
P
P
X 0
m
P
N
N
P
NF0
NF
.
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、内力正负号的规定
N
N
同一截面位置处左、右两侧截面上的内力必须具有相 同的正负号
2N A22 22000 110036 100MPa
m ax2100M P a
.
第四节 拉、压杆件的变形
3P
3P
P
P
L1
L2
L3
(3)
D LD L 1D L2D L3
N1L1 N2L2 N3L3 EA1 EA2 EA3
2 2 ( 0 0 1 0 1 )0 9 1 0 3 2 0 0 2 5 0 1 0 1 6 0 1 3 .5 2 2 0 0 0 1 1 0 0 3 9 2 2 5 0 0 0 1 1 0 0 3 6
令: ' λ:材料泊松比

材料力学(I)第一章 孙训方

材料力学(I)第一章 孙训方

理论分析 材料力学包含 的两个方面 实验研究
——
测定材料的力学 性能;解决某些 不能全靠理论分 析的问题
13
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
§1-2 -
材料力学与生产实践的关系
赵州桥(石拱桥)595-605年 建,充分利用石料的压缩 强度
14
安澜竹索桥(宋代建)(1964 年改为钢缆承托的索桥)充 分利用竹材的拉伸强度
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
§1-1 材料力学的任务 §1-2 材料力学与生产实践的关系 §1-3 可变形固体的性质及其基本假设 §1-4 杆件的几何特性 §1-5 杆件变形的基本形式 -
1
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
§1-1 材料力学的任务 结构物和机械由构件组成。
2
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
结构物实例
3
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
对构件在荷载作用下正常工作的要求 Ⅰ. 具有足够的强度——荷载作用下不断裂,荷载去 除后不产生过大的永久变形(塑性变形)
F F
a
F F
钢 筋
b
4
材 料 力 学 Ⅰ 电 子 教 案
33
材 料 力 学 Ⅰ 电 子 教 案
第一章 绪论及基本概念
伽利略(Galileo Galilei,1564-1642年)
意大利物理学家、天文学家。生于意大利北部佛罗伦 萨一个贵族的家庭。1581年入比萨大学学医。主张研究自 然界必须进行系统的观察和实验,是近代实验科学与机械 唯物主义的奠基者之一。通过实验,推翻了向来奉为权威 的亚里士多德关于“物体下落的速度和重量成比例”的学 说。还发现物体的惯性定律、摆振动的等时性、抛体运行 定律,并确定了伽利略相对性原理,因而被认为是经典力 学和实验物理的先驱。

材料力学(孙训方版全套课件)

材料力学(孙训方版全套课件)

§3 可变形固体的性质及基本假设
一、连续性假设
内容:认为物体在其整个体积内毫无空隙地充满了物质,其 结构是密实的。 无空隙
二、均匀性假设
内容:认为物体内任一点处取出的体积单元,其力学性质(主 要是弹性性质)都是一样的。
有利于建立数学模型
单元体的力学性质能代表整个物体 的力学性能。
三、材料的各向同性假设
F
1 3F
2 2F
4KN
2KN
A 1B
2C
F
4KN
2F
2KN
5KN

例题 2.3
F F
2F
2F
2F

例题 2.4
图示砖柱,高h=3.5m,横截面面积 A=370×370mm2,砖砌体的容重γ=18KN/m 柱顶受有轴向压力F=50KN,试做此砖柱的轴力 图。
50
G Ay
F
F
y
n
n
FNy
F Ay FNy 0
从内力集度最大处开始。)
F1
F2
应力就是单位面积
上的内力?
F3 Fn
F1
ΔFQy
ΔFQz ΔA
F2
DF dF p lim
DA0 DA dA
lim DFN dFN
DA DA0 dA
lim DFQ dFQ
DA DA0 dA
垂直于截面
DF
的应力称为
“ 正应力”
ΔFN
C
A

例题
2.8
计算图示结构BC和CD杆横截面上的正应力值。
已知CD杆为φ28的圆钢,BC杆为φ22的圆钢。
D
E A 1m
以AB杆为研究对像

材料力学(孙训方)PPT课件

材料力学(孙训方)PPT课件

[例3-2-1]已知:一传动轴, n =300r/min,主动轮输P1=500kW,
从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
m2
m3
m1
m4
解:①计算外力偶矩
m1
9.55P1 n
9.55500 300
A
15.9(kN m)
B
C
D
m 2 m 3 9 .5P n 5 2 9. 5 1 35 5 0 4 .0 0 7(8 k m N) m 49 .5P n 5 49. 5 3 25 0 0 6 0 0 .3(7km N)
单元体的四个侧面上只有剪应力而无正应力作用,这 种应力状态称为纯剪切应力状态。
四、剪切虎克定律:
其中:P n
— —
功率,马力(PS) 转速,转/分(rpm)
1PS=735.5N·m/s , 1kW=1.36PS
二、扭矩及扭矩图 1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 2 截面法求扭矩
mx 0 T m 0
m
m
T m
3 扭矩的符号规定:
x
m
T
“T”的转向与截面外法线方向满足右手螺旋法则为正, 反之为负。
m2
m3
m1
m4
A
B
C
T
– –
4.78 kNm
9.56 kNm
D
6.37 kNm
x
例 32-2已知 :m12kN m,m2 4kN m,m3
1kN m,m4 1kN m,求:各段扭矩及画扭
解:1——1:
m4 3 m3 2 m2 1 m1
M0 m1T10
T1 m1 2kNm

材料力学(II)材料力学孙训方课件

材料力学(II)材料力学孙训方课件
材料力学的基本原理
弹性力学的基本原理
弹性力学定义
弹性力学是研究弹性物体在外力作用下变形和内力的规律 的科学。
胡克定律
胡克定律是弹性力学的基本定律之一,它指出在弹性限度 内,物体的应力和应变之间成正比关系。
弹性模量
弹性模量是描述材料弹性性能的重要参数,它表示材料抵 抗变形的能力。
圣维南原理
圣维南原理是弹性力学中的一个基本原理,它指出当一个 物体受到局部外力作用时,物体内部的应力分布只受该局 部外力作用的影响。
轻质高强材料
随着航空航天、汽车等行业的快速发展,对 轻质高强材料的力学性能需求越来越高,这 涉及到对新型复合材料、金属基复合材料等 材料的强度、韧性、疲劳性能等方面的深入 研究。
智能材料
智能材料是一种能够感知外部刺激并作出相 应响应的材料,其力学性能具有非线性、时 变等特点,需要深入研究其本构关系、破坏 准则等方面的内容。
数值模拟与真
利用人工智能技术对复杂的材料行为进行数 值模拟和仿真,提高模拟的精度和效率,缩
短研发周期。
THANKS
[ 感谢观看 ]
多场耦合下的材料力学研究
热-力耦合
在高温环境下,材料的力学性能会受到温度的影响,需要研究温度场与应力场之间的相 互作用关系。
流体-力耦合
在流体环境中,如航空航天器、船舶等,需要考虑流体对结构的作用力以及流体的流动 对结构的影响。
人工智能在材料力学中的应用
机器学习在材料力学中的 应用
利用机器学习算法对大量的实验数据进行处 理和分析,预测材料的力学性能,优化材料 的设计。
CHAPTER 03
材料力学的基本分析方法
有限元分析方法
有限元分析是一种数值分析方法,它将复杂的物理系 统分解为较小的、易于处理的单元,通过求解这些单

孙训方《材料力学》课件讲义

孙训方《材料力学》课件讲义
1.线应变
线应变 是单位长度 上的变形量,无量 纲,其物理意义是 构件上一点沿某一 方向变形量的大小
2.角应变
角应变 —— 即一点单元体两棱角直角的改变 量,无量纲
§1-4 材料力学的主要研究对象
材料力学的主要研究对象从几何方面抽象为杆件。
杆件:长度远大于横向尺寸的构件。杆件主要几 何因素是横截面和轴线,其中横截面是与轴线垂 直的截面;轴线是横截面形心的连线。
纳米力学、流体力学、理性力学 2.有助于后续专业课程学习
建筑结构、 机械设计、结构设计原理 3.有助于学习其它工程:
土木、机械、航空、航天、交通、运输、材料、 生物工程、仪表等 4.今后工程工作中直接受益
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形,故称 为变形固体,而构件一般均由固体材料制成,故构 件一般都是变形固体。
第一章 绪论及基本概念
主要内容
§1-1 材料力学的任务 §1-2 变形固体的基本假设 §1-3 基本概念 §1-4 材料力学的主要研究对象 §1-5 杆件变形的基本形式
【学 时】2 【基本要求】
掌握材料力学的性质、任务和研究对象. 掌握构件的强度、刚度和稳定性问题的概念.
懂得其重要性,激起学习它的兴趣. 理解材料力学的基本假设、基本概念及研究方法.
p ΔP ΔA
应力是一个矢量
应力不但与点有关,而且也与面的方位有关 C点的应力——当面积趋于零时,平均应力的大
小 和方向都将趋于一定极限,得到
lim p
P dP
A0 A dA
应力的国际单位为N/m2 1N/m2 = 1Pa(帕斯卡)
1MN/m2 = 1MPa = 106 N/m2 = 106Pa
1GPa = 1GN/m2 = 109Pa

孙训芳材料力学课件 附录

孙训芳材料力学课件 附录
y
y
2
∫ ( xy )dA = 0
A 2
dA
I P = ∑ I Pi
i =1
I x = ∑ I xi
i =1
I y = ∑ I yi
i =1
I xy = ∑ I xyi
i =1
惯性半径:
任意形状的截面图形的面积为A,则图形对 y轴和x轴的惯性半径分别定义为
y
iy =
x
dA
Iy A
ix =
Ix A
惯性半径的特征:
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
O
x
D. y,x同时平移.
B
本章作业
I-1, I-16, I-3(c), I-19, I-6, I-9,

b/2 y b/2 xc
bh h h bh 2 S x = Ayc = = 2 2 3 12
h/2 x h/2 x1
dy y O
bh 3 ′ 2 = ∫ h2 y 2bdy = I x = ∫ y dA 12 A 2
h
1 bh 3 bh 3 Ix = = 2 12 24
2h bh I x1 = I xc + 3 2
2
h h bh I x = I xc + 2 3 2
2
3 3 2 bh 3 h bh 2bh bh 3 I = + I xc = = x1 9 36 6 36 4 24 2
例题
I.4
图示为三个等直径圆相切的组合问题,求对形 心轴x的惯性矩.
O2,O3到xc轴的距离
O1
1 3 3 d= d 3 2 6 2 3 3 d= d 3 2 3

孙训方第五版 材料力学课件-高等教育出版社

孙训方第五版 材料力学课件-高等教育出版社
扭转
T n
纯弯曲
M
M
第二章 轴向拉伸和压缩
主讲教师:郑新亮
2016年12月13日星期二
第一节 轴向拉伸与压缩的概念及实例
轴向拉伸与压缩是四种基本变形中最基本、最 简单的一种变形形式。 1、工程实例
拉杆 P
压杆
P
P
第一节 轴向拉伸与压缩的概念及实例
2、轴向拉伸与压缩的概念
受力特点:作用于杆端外力的合力作用线与杆件轴线重合 变形特点:沿轴线方向产生伸长或缩短
变 形
{
弹性变形 塑性变形
材料力学是在弹性范围内研究构件的承载能力
第二节 变形固体的基本假设
材料力学对变形固体所做的几个基本假设:
1 均匀连续性假设
变形固体的机械性质在固体内各点都是一样的,并且组成变形 固体的物质毫无空隙的充满了构件的整个几何容积。
2 各向同性假设
变形固体在各个方向上具有相同机械性质。具有相同机械性质 的材料为各向同性材料。
第二节 受轴向拉伸或压缩时横截面上的内力和应力
横截面上的应力分布:
F
ζ
1、正应力的概念:
内力在横截面上的分布集度
N A
单位: 帕斯卡 Pa (=N/m2)
常用单位: MPa=106 Pa GPa=109 Pa
第二节 受轴向拉伸或压缩时横截面上的内力和应力
2、正应力的符号规定:
当轴向力为正时,正应力为正(拉应力),反之 为负(压应力)
2
第二节 受轴向拉伸或压缩时横截面上的内力和应力
讨论: cos 2 sin 2 2
45 90
0
o
o
,max
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑与大型桥梁
桥面结构
缆索与立柱
桥墩
桥面结构
理论力学:刚体力学;研究构件外力与约束力。 材料力学:变形体力学;研究内力与变形。
§1 材料力学的任务 材料力学是研究工程构件在载荷作 用下的内效应,确定构件在正常工作 条件下承载能力的科学.
构件 结构
——组成结构物和机械的单个组成部分 ——建筑物或构筑物中承受外部作用的骨架称为结构.
“肇事”水泥罐高达11米,罐体自重也超过10吨,并装有10吨水泥。事发时, 罐体连根拔起,倒地后将一排数十平方米的工棚压成废墟。水泥罐的使用方—17 号楼施工单位“武汉丰太”公司员工接受警方调查时表示,该钢结构散装水泥罐由 “梅山桥亚”公司提供图纸,“武汉丰太”承建底座。警方现场调查时发现,水泥 罐的罐体和支座都有被撞的痕迹,一根支架与底座仅有两个焊点,水泥罐的水泥底 座仅有30厘米厚。
30 (a) (b)
材料力学的任务:
研究材料及构件在外力作用下所表现的力学 性质,为合理设计构件提供有关强度、刚度、稳 定性分析的理论和方法。
构件受力后,由于塑性屈服引起塑性变形而导致其丧 失正常工作能力。试问这种情况是属于强度、刚度、 还是稳定性问题?
解答:构件受力后,因塑性屈服引起塑性变形,是构 件破坏的一种形式。因此,属于强度问题。刚度问题 中的变形,一般是指弹性变形。稳定性问题中的原有 平衡形态,是指与所受外力相应的变形形式下的平衡 形态。
构件正常工作的条件: 足够的强度 足够的刚度 足够的稳定性
强度:构件抵抗破坏的能力
不因发生断裂 或塑性变形而失效
刚度:构件抵抗弹性变形的能力
不因发生过大的弹性变形而失效
பைடு நூலகம்
稳定性:构件保持原有平衡形式的能力
不因发生因平衡形式的突然转变而失效
巨型水泥罐砸扁民工棚
12月17日凌晨1时10分,武汉市梅山水 泥厂一辆散装水泥罐车,在对汉口花园17号楼 工地水泥罐实施灌装过程中,撞击水泥罐支架, 造成水泥罐倒塌,将紧邻的武汉天弓建筑工程 有限公司民工食堂和1间民工住宿工棚砸塌 (该工棚内共住民工23人)。散落的水泥和瓦 砾,造成1人死亡、1人重伤、7人轻 伤。
相关文档
最新文档