2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习
2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习
2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习一、填空题1.如图所示,质量均为m的A、B 两小球,用长为l 的轻质细线相连,置于高为h的光滑水平桌面上,l >h,A 球刚跨过桌边。
若A 球竖直下落着地后不再反跳,则A 球刚要着时的速度大小为_____;B 球刚要着地时的速度大小为_____。
2.如图所示,铜棒ab长0.1m,质量为0.06kg,两端由两根长都是1m的轻铜线悬挂起来,铜棒ab保持水B ,现给铜棒如平,整个装置静止于竖直平面内,装置所在处有竖直向下的匀强磁场,磁感应强度0.5Tab中通入恒定电流,铜棒发生摆动.已知最大偏转角为37°,则铜棒从最低点运动到最高点的过程中,安培力做的功是___________J,恒定电流的大小为_________A(不计感应电流影响).3.如图所示,在光滑水平桌面上有一质量为M的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为的物体,开始绳处于伸直状态,物体从距地面h处由静止释放,物体落地之前绳的拉力为______N;当物体着地的瞬间小车未离开桌子小车的速度大小为_______g4.如图所示,轻质动滑轮下方悬挂质量为m的物块A,轻绳的左端绕过定滑轮连接质量为2m的物块B,开始时物块A、B处于静止状态,释放后A、B开始运动,假设摩擦阻力和空气阻力均忽略不计,重力加速度为g,当物块B向右运动的位移为L时,物块A的速度大小为__________,物块A减少的机械能为_________。
5.一物体在竖直弹簧的上方h米处下落,然后又被弹簧弹回,则物体动能最大时是______。
6.如图所示,一根原长为L的轻质弹簧,下端固定在水平桌面上,上端固定一个质量为m的物体A,A静止时弹簧的压缩量为ΔL1,在A上再放一个质量也是m的物体B,待A、B静止后,在B上施加一竖直向下的力F,使弹簧再缩短ΔL2,这时弹簧的弹性势能为E P.突然撤去力F,则B脱离A向上飞出的瞬间弹簧的长度应为____________.这时B的速度是_____________.7.如图所示,位于光滑水平桌面上的质量均为m的小滑块P和Q都视作质点,Q与轻质弹簧相连。
2021届高三物理一轮复习力学功和能能量守恒定律专题练习
2021届高三物理一轮复习力学功和能能量守恒定律专题练习一、填空题1.能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量_________。
2.针对日益恶化的人类生存环境和能源危机,行之有效的能源利用方法是________和________.3.如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为s 0,滑块以初速度v 0沿斜面上滑,滑块所受摩擦力小于使滑块沿斜面下滑的重力分力.若滑块每次与挡板相碰均无机械能损失(即碰撞前后速度反向,大小不变),则从滑块开始运动到最后停止全程所产生的热量为_____________. 4.人类社会自从进入电气化时代以来,就一直在不断地探寻电能的来源.如今常见的发电方式有:①火力发电、②水力发电、③核发电,其中将自然界的机械能转化为电能的方式是________(写序号即可).如果把直接来自于自然界的煤炭称为一次能源,那么由煤炭转化而来的电能则属于_________能源.5.某海湾共占面积721.010m ⨯,涨潮时水深20m ,此时关上水坝闸门,可使水位保持20m 不变.退潮时,坝外水位降至18m.假如利用此水坝建水力发电站,重力势能转变为电能的效率是10%,每天有两次涨潮,则该电站一天能发电________J.6.如图所示,在没有空气阻力和摩擦力时(实际很小),从斜面A 上由静止释放小球,会发现无论θ角怎样变化,小球最后总能达______________的位置,在物理学中,把这一事实说成是有某个量是守恒的,并且把这个量叫________.7.能的最基本性质是:不同形式的能量之间可以相互____________,而且在转化的过程中能的总量总保持____________.8.有报道说:某厂商发明了一种“手机自生能”技术,装上特制的电池,上下左右摇晃,即可产生电能,每摇1min 可通话2min.如果将手机上下摇动一次,相当于将200g m =的重物举高10cm h =,每秒平均摇一次,则根据报道可知手机使用时的功率约为_______W.(g 取210m/s )9.如图所示,一质量为m 的小球沿光滑的水平面以速度v 冲上一个静止在水平地面上的质量为2m 的曲面体,曲面体的曲面部分为半径为R 的14光滑面圆弧并且和水平面相切。
高考物理一轮复习专项训练及答案解析—机械能守恒定律及其应用
高考物理一轮复习专项训练及答案解析—机械能守恒定律及其应用1.如图所示,斜劈劈尖顶着竖直墙壁静止在水平面上.现将一小球从图示位置由静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法中正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能的减少量等于斜劈动能的增加量2.(2021·海南卷·2)水上乐园有一末段水平的滑梯,人从滑梯顶端由静止开始滑下后落入水中.如图所示,滑梯顶端到末端的高度H=4.0 m,末端到水面的高度h=1.0 m.取重力加速度g=10 m/s2,将人视为质点,不计摩擦和空气阻力.则人的落水点到滑梯末端的水平距离为()A.4.0 m B.4.5 mC.5.0 m D.5.5 m3.质量为m的小球从距离水平地面高H处由静止开始自由落下,取水平地面为参考平面,重力加速度大小为g,不计空气阻力,当小球的动能等于重力势能的2倍时,经历的时间为()A.6H g B .2H 3g C.2H 3gD.2H g4.(2023·武汉东湖区联考)如图所示,有一条长为L =1 m 的均匀金属链条,有一半在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB.522 m/sC. 5 m/sD.352m/s 5.(多选)如图,一个质量为0.9 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.(取g =10 m/s 2)下列说法正确的是( )A .小球做平抛运动的初速度v 0=2 3 m/sB .P 点和C 点等高C .小球到达圆弧最高点C 点时对轨道的压力大小为12 ND .P 点与A 点的竖直高度h =0.6 m6.如图所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC 部分水平,质量均为m的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,小球可视为质点,开始时a 球处于圆弧上端A 点,由静止开始释放小球和轻杆,使其沿光滑弧面下滑,重力加速度为g ,下列说法正确的是( )A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球都滑到水平轨道上时速度大小均为2gRD .从释放a 、b 球到a 、b 球都滑到水平轨道上,整个过程中轻杆对a 球做的功为12mgR7.(多选)如图所示,质量为M 的小球套在固定倾斜的光滑杆上,原长为l 0的轻质弹簧一端固定于O 点,另一端与小球相连,弹簧与杆在同一竖直平面内.图中AO 水平,BO 间连线长度恰好与弹簧原长相等,且与杆垂直,O ′在O 的正下方,C 是AO ′段的中点,θ=30°.现让小球从A 处由静止释放,重力加速度为g ,下列说法正确的有( )A .下滑过程中小球的机械能守恒B .小球滑到B 点时的加速度大小为32g C .小球下滑到B 点时速度最大D .小球下滑到C 点时的速度大小为2gl 08.(2023·广东省深圳实验学校、湖南省长沙一中高三联考)如图所示,一根长为3L 的轻杆可绕水平转轴O 转动,两端固定质量均为m 的小球A 和B, A 到O 的距离为L ,现使杆在竖直平面内转动,B 运动到最高点时,恰好对杆无作用力,两球均视为质点,不计空气阻力和摩擦阻力,重力加速度为g .当B 由最高点第一次转至与O 点等高的过程中,下列说法正确的是( )A .杆对B 球做正功 B .B 球的机械能守恒C .轻杆转至水平时,A 球速度大小为10gL5D .轻杆转至水平时,B 球速度大小为310gL59.(2023·广东省佛山一中高三月考)如图所示,物块A 套在光滑水平杆上,连接物块A 的轻质细线与水平杆间所成夹角为θ=53°,细线跨过同一高度上的两光滑定滑轮与质量相等的物块B 相连,定滑轮顶部离水平杆距离为h =0.2 m ,现将物块B 由静止释放,物块A 、B 均可视为质点,重力加速度g =10 m/s 2,sin 53°=0.8,不计空气阻力,则( )A .物块A 与物块B 速度大小始终相等 B .物块B 下降过程中,重力始终大于细线拉力C .当物块A 经过左侧定滑轮正下方时,物块B 的速度最大D .物块A 能达到的最大速度为1 m/s10.(2023·四川省泸县第一中学模拟)如图所示,把质量为0.4 kg 的小球放在竖直放置的弹簧上,并将小球缓慢向下按至图甲所示的位置,松手后弹簧将小球弹起,小球上升至最高位置的过程中其速度的平方随位移的变化图像如图乙所示,其中0.1~0.3 m 的图像为直线,弹簧的质量和空气的阻力均忽略不计,重力加速度g =10 m/s 2,则下列说法正确的是( )A.小球与弹簧分离时对应的位移小于0.1 mB.小球的v2-x图像中最大的速度为v1=2 m/sC.弹簧弹性势能的最大值为E p=1.2 JD.压缩小球的过程中外力F对小球所做的功为W F=0.6 J11.(2020·江苏卷·15)如图所示,鼓形轮的半径为R,可绕固定的光滑水平轴O转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m的小球,球与O的距离均为2R.在轮上绕有长绳,绳上悬挂着质量为M的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g.求:(1)重物落地后,小球线速度的大小v;(2)重物落地后一小球转到水平位置A,此时该球受到杆的作用力的大小F;(3)重物下落的高度h.12.如图所示,在倾角为θ=30°的光滑斜面上,一劲度系数为k=200 N/m的轻质弹簧一端固定在挡板C上,另一端连接一质量为m=4 kg的物体A,一轻细绳通过定滑轮,一端系在物体A上,另一端与质量也为m的物体B相连,细绳与斜面平行,斜面足够长,B距地面足够高.用手托住物体B使绳子刚好伸直且没有拉力,然后由静止释放.取重力加速度g=10 m/s2.求:(1)弹簧恢复原长时细绳上的拉力大小;(2)物体A沿斜面向上运动多远时获得最大速度;(3)物体A的最大速度的大小.13.(多选)(2023·河北省模拟)如图所示,竖直平面内固定两根足够长的细杆M、N,两杆无限接近但不接触,两杆间的距离可忽略不计.两个小球a、b(可视为质点)的质量相等,a球套在竖直杆M上,b球套在水平杆N上,a、b通过铰链用长度为L=0.5 m的刚性轻杆连接,将a球从图示位置由静止释放(轻杆与N杆的夹角为θ=53°),不计一切摩擦,已知重力加速度的大小为g=10 m/s2,sin 53°=0.8,cos 53°=0.6.在此后的运动过程中,下列说法正确的是()A.a球下落过程中,其加速度大小始终不大于gB.a球由静止下落0.15 m时,a球的速度大小为1.5 m/sC.b球的最大速度为3 2 m/sD.a球的最大速度为2 2 m/s答案及解析1.B 2.A 3.B 4.A 5.CD6.D [对于单个小球来说,杆的弹力做功,小球机械能不守恒,A 、B 错误;两个小球组成的系统只有重力做功,所以系统的机械能守恒,故有mgR +mg (2R )=12·2m v 2,解得v =3gR ,C 错误;a 球在下滑过程中,杆对小球做功,重力对小球做功,故根据动能定理可得W +mgR =12m v 2,v =3gR ,联立解得W =12mgR ,D 正确.] 7.BD [下滑过程中小球的机械能会与弹簧的弹性势能相互转化,因此小球的机械能不守恒,故A 错误;因为在B 点,弹簧恢复原长,因此重力沿杆的分力提供加速度,根据牛顿第二定律可得mg cos 30°=ma ,解得a =32g ,故B 正确;到达B 点时加速度与速度方向相同,因此小球还会加速,故C 错误;因为C 是AO ′段的中点,θ=30°,由几何关系知当小球到C 点时,弹簧的长度与在A 点时相同,故在A 、C 两位置弹簧弹性势能相等,小球重力做的功全部转化为小球的动能,有mgl 0=12m v C 2,解得v C =2gl 0,故D 正确.]8.D [由题知B 运动到最高点时,恰好对杆无作用力,有mg =m v 22L ,B 在最高点时速度大小为v =2gL ,因为A 、B 角速度相同,A 的转动半径只有B 的一半,所以A 的速度大小为v2,当B 由最高点转至与O 点等高时,取O 点所在水平面的重力势能为零,根据A 、B 机械能守恒,mg ·2L -mgL +12m ⎝⎛⎭⎫v 22+12m v 2=12m v A 2+12m v B 2,2v A =v B ,解得v A =310gL 10,v B =310gL5,故C 错误,D 正确;设杆对B 做的功为W ,对B 由动能定理得mg ·2L +W =12m v B 2-12m v 2,解得W =-65mgL ,所以杆对B 做负功,B 机械能不守恒,故A 、B 错误.]9.D [根据关联速度得v A cos θ=v B ,所以二者的速度大小不相等,A 错误;当物块A 经过左侧定滑轮正下方时细线与杆垂直,则根据选项A 可知,物块B 的速度为零,所以B 会经历减速过程,减速过程中重力会小于细线拉力,B 、C 错误;当物块A 经过左侧定滑轮正下方时,物块A 的速度最大,根据系统机械能守恒得mg (h sin θ-h )=12m v 2,解得v =1 m/s ,D 正确.]10.C [由于不计空气阻力,则小球与弹簧分离后,小球加速度为g ,说明小球在x =0.1 m 时刚好回到弹簧原长位置,小球与弹簧分离,即分离时对应的位移为0.1 m ,A 错误;对直线段有v 22=2g (0.3 m -0.1 m),解得v 2=2 m/s ,由题图可知最大速度v 1>v 2,B 错误;从释放到小球速度为0的过程,弹性势能全部转化为小球的机械能,以最低点为重力势能参考平面,小球的机械能为mgh 0=0.4×10×0.3 J =1.2 J ,故弹簧弹性势能最大值为E p =1.2 J ,C 正确;向下按h =0.1 m 的过程,根据功能关系有W F +mgh =E p ,解得W F =0.8 J ,D 错误.] 11.(1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m2Mg(ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R 设F 与水平方向的夹角为α, 则F cos α=F n F sin α=mg解得F =(2mω2R )2+(mg )2 (3)落地时,重物的速度v ′=ωR 由机械能守恒得 12M v ′2+4×12m v 2=Mgh 解得h =M +16m 2Mg(ωR )2.12.(1)30 N (2)20 cm (3)1 m/s 解析 (1)弹簧恢复原长时, 对B :mg -F T =ma 对A :F T -mg sin 30°=ma代入数据可求得:F T =30 N. (2)初态弹簧压缩量 x 1=mg sin 30°k =10 cm当A 速度最大时有 F T ′=mg =kx 2+mg sin 30° 弹簧伸长量x 2=mg -mg sin 30°k=10 cm所以A 沿斜面向上运动x 1+x 2=20 cm 时获得最大速度. (3)因x 1=x 2,故弹簧弹性势能的改变量ΔE p =0 由机械能守恒定律有 mg (x 1+x 2)-mg (x 1+x 2)sin 30° =12×2m v 2,解得v =1 m/s. 13.BC [a 球和b 球所组成的系统只有重力做功,则系统机械能守恒,以b 球为研究对象,b 球的初速度为零,当a 球运动到两杆的交点时,球在水平方向上的分速度为零,所以b 球此时的速度也为零,由此可知从a 球释放至a 球运动到两杆的交点过程中,b 球速度是先增大再减小,当b 球速度减小时,轻杆对a 、b 都表现为拉力,对a 分析,此时拉力在竖直方向上的分力与a 的重力方向相同,则此时其加速度大小大于g ,故A 错误;由机械能守恒得mg Δh =12m v a 2+12m v b 2,当a 下落Δh =0.15 m 时,由几何关系可知轻杆与N 杆的夹角α=30°,此时v a sin α=v b cos α,联立解得v a =1.5 m/s ,故B 正确;当a 球运动到两杆的交点后再向下运动L 距离,此时b 达到两杆的交点处,a 的速度为零,b 的速度最大,设为v b m ,由机械能守恒得mg (L +L sin θ)=12m v b m 2,解得v b m =3 2 m/s ,故C 正确; a 球运动到两杆的交点处,b的速度为零,设此时a 的速度为v a 0,由机械能守恒得mgL sin θ=12m v a 02,解得v a 0=2 2 m/s ,此时a球的加速度大小为g,且方向竖直向下,与速度方向相同,a球会继续向下加速运动,速度会大于2 2 m/s,故D错误.]。
2021版高考物理一轮复习第五章机械能3机械能守恒定律及其应用训练2(含解析)
机械能守恒定律及其应用1.一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过A处时对轨道的压力为( )A.2mgB.3mgC.4mgD.5mg【解析】选C。
小球恰好能通过轨道2的最高点B时,有mg=,小球在轨道1上经过A处时,有F+mg=,根据机械能守恒,有1.6mgR=m-m,解得F=4mg,C项正确,A、B、D错误。
2.如图所示,半径为R的光滑半圆形轨道ABC与倾角为θ=37°的粗糙斜面轨道DC相切于C点,半圆形轨道的直径AC与斜面垂直。
质量为m的小球从A点左上方距A点高为h的P点以某一速度水平抛出,刚好与半圆形轨道的A点相切进入半圆形轨道内侧,之后经半圆形轨道沿斜面刚好运动到与抛出点等高的D处。
已知当地的重力加速度为g,取R=h,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球被抛出时的速度v0。
(2)小球到达半圆轨道最低点B时,对轨道的压力大小。
(3)小球从C到D过程中摩擦力做的功W。
【解析】(1)小球运动到A点时,速度与水平方向的夹角为θ,如图所示。
则有=2gh ①由几何关系得v0tanθ=v1②联立以上各式解得v0=。
③(2)A、B间竖直高度H=R(1+cosθ)④设小球到达B点时的速度为v,则从抛出点到B点过程中,根据机械能守恒有m+mg(H+h)=mv2⑤小球在B点,有N-mg=m⑥联立解得N=5.6mg ⑦由牛顿第三定律知,小球在B点对轨道的压力大小是N′=N=5.6mg,方向竖直向下。
⑧(3)小球在整个运动过程中,重力做功为零,根据动能定理知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能,有W=0-m=-mgh。
⑨答案:(1)(2)5.6mg (3)-mgh3.(2019·兰州模拟)如图所示,竖直平面内的一半径R=0.50 m的光滑圆弧槽BCD,B点与圆心O 等高,一水平面与圆弧槽相接于D点,质量m=0.10 kg的小球从B点正上方H=0.95 m高处的A 点自由下落,由B点进入圆弧轨道,从D点飞出后落在水平面上的Q点,DQ间的距离x=2.4 m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=0.80 m,g 取10 m/s2,不计空气阻力,求:(1)小球经过 C 点时轨道对它的支持力大小N。
2021届高三物理一轮复习力学功和能动能定理专题练习
2021届高三物理一轮复习力学功和能动能定理专题练习一、填空题1.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则小球抛出时的动能是_______。
小球落地时的机械能是_______。
2.如图所示,某物体在一个与水平方向成θ角的恒力F 的作用下做匀加速直线运动,发生的位移为s ,在此过程中,恒力F 对物体所做的功为_______,若地面光滑,物体动能的变化量为________.3.一物体的质量为m ,在水平恒力F 作用下发生了一段位移S ,始末状态的速度分别是1υ和2υ,如图所示。
(1)该过程中恒力F 对物体所做的功W =______________;(2)物体始末状态的动能1k E =_______、2k E =_______;(3)恒力F 对物体所做的功W 与物体动能的变化k E ∆的关系式是___________________。
(以上填空内容均要求用已知物理量的字母表示)。
(4)请根据牛顿第二定律和运动学规律,写出上述关系式的推导过程。
4.某人将重物由静止举高h ,获得的速度为v ,则物体所受合外力对它做的功________物体的动能增量. 5.某同学用图示实验装置来测量物块与木板之间的动摩擦因数,一带有窄片的物块被一弹簧弹射装置弹射出去,沿水平木板滑行,途中安装一光电门,标记为O 点。
设重力加速度为g 。
(1)测得窄片的宽度为L ,记下窄片通过光电门的时间△t ,还需要测量的物理有 。
(标明相关物理量的符号)(2)物块和木板间的动摩擦因数= 。
6.子弹的质量为20g ,射出时的速度为300m/s ,则子弹的动能为_______J ,枪膛中火药的推力对子弹所做的功为_________J .7.一物体以100J 的初动能从倾角为θ的斜面底端的A 点沿斜面向上匀减速滑行到斜面上B 点时,物体的动能减小了80J ,机械能减小了32J ,则当物体回到A 点时,物体的动能为_________J△8.质量为2 kg 的物体受到一个竖直向上的拉力F△50 N ,物体上升了4 m 的高度,则在这一过程中,重力势能的增量为________J ,动能的增量为________J△(g△10 m/s 2)9.地面上物体在变力 F 作用下由静止开始竖直向上运动,力 F 随 高度 x 的变化关系如图所示,物体能上升的最大高度为 h .若 F 0=15N ,H =1.5m ,h =1m ,g =10m/s 2,则物体运动过程中的最大速度 大小为_____m/s ,最大加速度大小为_____m/s 2.10.将质量为m 的物体从离地面高h 的台面以初速度v 0斜向上抛出,若以台面为零势能面,则当物体到达离台面下2h 时物体的动能为__________________;物体的机械能为___________________。
2021届高考物理一轮巩固题:机械能及其守恒定律练习含答案
2021届高考物理一轮巩固题:机械能及其守恒定律练习含答案巩固:机械能及其守恒定律一、选择题1、如图所示,半径为R=0.4 m的光滑的14圆弧形轨道固定于竖直平面内,圆弧形轨道与足够长的光滑固定水平轨道相切,可视为质点的质量均为m =0.5 kg 的小球甲、乙用轻杆连接并置于圆弧形轨道上,小球甲与O点等高,小球乙位于圆心O的正下方,某时刻将两小球由静止释放,最终它们在水平轨道上运动.g 取10 m/s2,则()A.下滑过程中小球乙的机械能守恒B.两小球最终在水平轨道上运动的速度大小为2 2 m/sC.当小球甲滑到圆弧轨道最低点时,轨道对它的支持力大小为10 ND.小球甲下滑过程中重力对它做功的功率增大2、蹦床是一项运动员利用从蹦床反弹中表现杂技技巧的竞技运动,它属于体操运动的一种,蹦床有“空中芭蕾”之称。
在某次“蹦床”娱乐活动中,从小朋友下落到离地面高h1处开始计时,其动能Ek与离地高度h的关系如图乙所示。
在h1~h2阶段图象为直线,其余部分为曲线,h3对应图象的最高点,小朋友的质量为m,重力加速度为g,不计空气阻力和一切摩擦。
下列有关说法正确的是( )A.整个过程中小朋友的机械能守恒B.从小朋友的脚接触蹦床直至蹦床被压缩至最低点的过程中,其加速度先增大后减小C.小朋友处于h=h4高度时,蹦床的弹性势能为Ep=mg(h2-h4)D.小朋友从h1下降到h5过程中,蹦床的最大弹性势能为Epm=mgh13、(双选)如图所示,物块从足够长粗糙斜面底端O点,以某一速度向上运动,到达最高点后又沿斜面下滑.物块先后两次经过斜面上某一点A点时的动能分别为E k1和E k2,重力势能分别为E p1和E p2,从O点开始到第一次经过A点的过程中重力做功为W G1,合外力做功的绝对值为W1,从O点开始到第二次经过A点的过程中重力做功为W G2,合外力做功的绝对值为W2,则下列选项正确的是()A.E k1>E k2,E p1=E p2B.E k1=E k2,E p1>E p2C.W G1=W G2,W1<W2D.W G1>W G2,W1=W24、跳水运动员在跳台上由静止直立落下,落入水中后在水中减速运动到速度为零时并未到达池底,不计空气阻力,则关于运动员从静止落下到水中向下运动到速度为零的过程中,下列说法不正确的是()A.运动员在空中动量的改变量等于重力的冲量B.运动员整个向下运动过程中合外力的冲量为零C.运动员在水中动量的改变量等于水的作用力的冲量D.运动员整个运动过程中重力冲量与水的作用力的冲量等大反向5、(双选)如图所示,半径为R的光滑圆弧轨道AO对接半径为2R的光滑圆弧轨道OB于O点。
2021届高三物理一轮复习力学功和能机械能守恒定律的应用机械能与曲线运动结合问题专题练习
2021届高三物理一轮复习力学功和能机械能守恒定律的应用机械能与曲线运动结合问题专题练习一、填空题1.如图,光滑固定斜面的倾角为30°,A,B 两物体的质量之比为4,1,B 用不可伸长的轻绳分别与A 和地面相连,开始时A,B 离地高度相同.在C 处剪断轻绳,当B 落地前瞬间,A,B 的速度大小之比为_______,机械能之比为_________(以地面为零势能面).2.甲、乙两单摆的摆球静止在平衡位置,摆长L L >甲乙.现给摆球相同的水平初速度,让其在竖直平面内做小角度摆动.用T 甲和T 乙表示甲、乙两单摆的摆动周期,用θ甲和θ乙表示摆球摆到偏离平衡位置的最大位移处时摆线与竖直方向的夹角,可知T 甲__________T 乙,θ甲_________θ乙.(均填“>”“<”或“=”)3.在离地2.4m 高的光滑水平桌面上停放着质量为0.5kg 的小铁块,一个大小为2N 的水平推力持续作用在小铁块上移动2m 后被撤去,同时小铁块飞出桌边抛到地上,取g =10m/s 2,空气阻力不计,则:小铁块离开桌面时的速度的大小为____________。
小铁块在落地时的速度大小为______________。
4.如图,在:半径为2.5m 的光滑圆环上切下一小段圆弧,放置于竖直平面内,两端点距最低点高度差H 为1cm .将小环置于圆弧端点并从静止释放,小环运动到最低点所需的最短时间为____s ,在最低点处的加速度为____m/s 2.(取g =10m/s 2) 5.如图所示,在竖直平面固定着光滑的1/4圆弧槽,它的末端水平,上端离地高H 处一个小球从上端无初速度滑下,若要小球的水平射程为最大值,则圆弧槽的半径为___,最大的水平射程为___。
6.竖直放置的光滑圆轨道半径为R ,一质量为m 的小球在最低点以一定的初速度冲上轨道,若确保小球不脱离轨道,则小球的初速度的取值范围是_________________7.冲击摆是测量子弹速度的装置,如图所示,摆锤的质量很大,子弹从水平方向射入摆锤中并留在其中,随摆锤一起摆动.已知冲击摆的摆长为l,摆锤的质量为M,实验中测得摆锤摆动时摆线的最大摆角是0。
2021届人教版高考物理一轮总复习练习(16) 机械能守恒定律及其应用
[16]第3讲 机械能守恒定律及其应用一、单项选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019·上海长宁区期末)从地面竖直上抛两个质量不同、初动能相同的小球,不计空气阻力,以地面为零势能面,当两小球上升到同一高度时,则( C )A .它们具有的重力势能相等B .质量小的小球动能一定小C .它们具有的机械能相等D .质量大的小球机械能一定大[解析] 本题考查机械能大小的比较问题。
在上升到相同高度时,由于两小球质量不同,由重力势能E p =mgh 可知重力势能不同,故A 错误;在小球上升过程中,根据机械能守恒定律,有E k =E -mgh, 其中E 为两小球相同的初始动能。
在上升到相同高度时,h 相同,质量小的小球动能E k 大,故B 错误;在上升过程中,只有重力做功,两小球机械能守恒,由于初动能相同,则它们具有的机械能相等,故C 正确,D 错误。
2. (2020·山东临沂模拟)如图所示,半径为R 的光滑圆形轨道固定在竖直平面内。
小球A 、B 的质量分别为βm 、m (β为待定系数)。
A 球从左边与圆心等高处由静止释放后沿轨道下滑,并与静止于轨道最低点的B 球碰撞,碰撞后A 、B 两球能达到的最大高度均为R 4。
碰撞中无机械能损失,则待定系数β为( A )A .13B .12C .2D .3[解析] 本题通过圆周运动中的碰撞考查机械能守恒问题。
A 球从静止开始下滑到与B球碰撞后A 、B 球达到最大高度的过程,由机械能守恒定律得βmgR =βmgR 4+mgR 4,解得β=13,故A 正确。
3.如图所示,将一内、外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁。
现让一小球自左端槽口A 点的正上方静止开始下落,从A 点与半圆形槽相切进入槽内,则下列说法正确的是( C )A .小球在半圆形槽内运动的全过程中,只有重力对它做功B .小球从A 点向半圆形槽的最低点运动的过程中,小球处于失重状态C .小球从A 点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D .小球从下落到从右侧离开槽的过程中机械能守恒[解析] 小球在槽内运动的全过程中,从刚释放到最低点,只有重力做功,而从最低点开始上升过程中,除小球重力做功外,还有槽对球的作用力做负功,故A 错误;小球在A 点加速度竖直向下,在最低点,加速度竖直向上,故小球先处于失重状态,后处于超重状态,故B 错误;小球在槽内运动的全过程中,从刚释放到最低点,只有重力做功,而从最低点开始上升过程中,除小球重力做功外,还有槽对球的作用力做负功,所以小球的机械能不守恒,D 错误;小球从A 点经最低点向右侧最高点运动的过程中,只有重力和系统内弹力做功,所以小球与槽组成的系统机械能守恒,故C 正确。
2021届高考物理一轮复习:机械能及其守恒定律练习含答案
2021届高考(人教)物理:机械能及其守恒定律一轮练习含答案专题复习:机械能及其守恒定律一、选择题1、(多选)如图所示,半径为R的光滑圆弧轨道ABC固定在竖直平面内,O是圆心,OC竖直,OA水平,B是最低点,A点紧靠一足够长的平台MN,D点位于A点正上方。
现于D点无初速度释放一个可视为质点的小球,在A点进入圆弧轨道,从C 点飞出后落在平台MN上的P点,不计空气阻力,下列说法正确的是( )A.改变D点的高度,小球可落在平台MN上任意一点B.小球落到P点前瞬间的机械能等于D点的机械能C.小球从A运动到B的过程中,重力的功率一直增大D.如果DA距离为h,则小球经过C点时对轨道的压力为-3mg2、(双选)如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A、B 质量均为m,在水平恒力F作用下以速度v做匀速运动在时轻绳断开,A在F作用下继续前进,则下列说法正确的是()A.t=0至t=m vF时间内,A、B的总动量守恒B.t=2m vF至t=3m vF时间内,A、B的总动量守恒C.t=2m vF时,A的动量为2m vD.t=4m vF时,A的动量为4m v3、从地面竖直上抛两个质量不同、初动能相同的小球,不计空气阻力,以地面为零势能面,当两小球上升到同一高度时,则()A.它们具有的重力势能相等B.质量小的小球动能一定小C.它们具有的机械能相等D.质量大的小球机械能一定大4、(双选)质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用。
力的大小F与时间t的关系如图所示,力的方向保持不变,则()A.3t0时刻的瞬时功率为5F20t0 mB.3t0时刻的瞬时功率为15F20t0 mC.在t=0到3t0这段时间内,水平力的平均功率为23F20t0 4mD.在t=0到3t0这段时间内,水平力的平均功率为25F20t0 6m5、如图所示,水平地面上有一倾角为θ的三角形斜面体,其质量为M,上表面粗糙,下表面光滑.质量为m的滑块放在斜面上能保持静止.现用从零开始缓慢增大、方向水平向左的外力F作用在斜面体上,直到滑块与斜面体发生相对运动为止.在该过程中滑块受到的各力的分析,正确的是()A.斜面对滑块的支持力一直不做功B.滑块受到的摩擦力一直做负功C.斜面对滑块的支持力始终等于mgcosθD.当F大于(M+m)gtanθ之后,支持力大于mg cosθ6、(双选)关于动能,下列说法正确的是()A.公式E k=12m v2中的速度v一般是物体相对于地面的速度B.动能的大小由物体的质量和速率决定,与物体运动的方向无关C.物体以相同的速率向东和向西运动,动能的大小相等但方向不同D.物体以相同的速率做匀速直线运动和曲线运动,其动能不同7、在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出。
备战2021年高考物理-一轮复习训练习题-机械能守恒定律(含答案)
备战2021年高考物理-一轮复习训练习题-机械能守恒定律一、单选题1.下列说法中,正确的是()A. 机械能守恒时,物体一定不受阻力B. 机械能守恒时,物体一定只受重力和弹力作用C. 物体处于平衡状态时,机械能必守恒D. 物体所受的外力不等于零,其机械能也可以守恒2.质量约为0.5kg的足球被脚踢出后,在水平地面上沿直线向前运动约50m后停止。
假定运动员踢球时脚对球的平均作用力为300N,足球在地面运动过程中所受阻力恒为其重力的0.06倍,则运动员踢球时脚对足球做的功为下列哪一个数值()(g=10m/s2)A. 0.5JB. 15JC. 250JD. 15000J3.如图所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A ,直到B恰好离开地面.开始时物体A静止在弹簧上面.设开始时弹簧的弹性势能为E p1,B刚要离开地面时,弹簧的弹性势能为E p2,则关于E p1、E p2大小关系及弹性势能变化ΔE p说法中正确的().A. E p1=E p2B. E p1>E p2 C.ΔE p>0C. ΔE p<04.如图所示,上表面有一段光滑圆弧的质量为M的小车A置于光滑平面上,在一质量为m 的物体B自弧上端自由滑下的同时释放A,则()A.在B下滑过程中,B的机械能守恒B.轨道对B的支持力对B不做功C. 在B下滑的过程中,A和B组成的系统动量守恒D. A、B和地球组成的系统的机械能守恒5.如图所示,光滑绝缘细管与水平面成30°角,在管的上方P点固定一个点电荷+Q,P点与细管在同一竖直平面内,管的顶端A与P点连线水平.电荷量为-q的小球(小球直径略小于细管内径)从管中A处由静止开始沿管向下运动.图中PB⊥AC,B是AC的中点,不考虑小球电荷量对电场的影响.则在Q形成的电场中( )A. A点的电势高于B点的电势B. B点的电场强度大小是A点的2倍C. 小球从A到C的过程中电势能先减小后增大D. 小球从A到C的过程中重力势能减少量大于动能增加量6.竖直向上抛出一个物体,物体受到大小恒定的阻力f,上升的时间为t1,上升的最大高度为h,物体从最高点经过时间t2落回抛出点,从抛出到回到抛出点的过程中,阻力做的功为w,阻力的冲量大小为I,则下列表达式正确的是()A. w=0,I=f(t1+t2)B. w=0,I=f(t2-t1)C. w=-2fh,I=f(t1+t2)D. w=-2fh,I=f(t2-t1)7.一根弹簧的弹力—位移图线如图所示,那么弹簧伸长量由4cm伸长到到8cm的过程中,弹力做功和弹性势能的变化量为()A. 3.6J,-3.6JB. -3.6J,3.6JC. 1.8J,-1.8JD. -1.8J,1.8J8.如图所示,物体在与水平方向成60°角斜向上的500N拉力作用下,沿水平面以1m/s的速度匀速运动了10m.此过程中拉力对物体做的功和做功的功率分别为()A. 50J,50 WB. 25J,25WC. 25 J,25 WD. 2500J,250 W9.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A位置有一只小球.小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零.小球下降阶段下列说法中不正确的是()A.在B位置小球动能最大B.在C位置小球动能最大C. 从A→C位置小球重力势能的减少大于小球动能的增加D. 从A→D位置小球重力势能的减少等于弹簧弹性势能的增加10.如图所示,三角形滑块从左向右做匀速直线运动,滑块上的物体M与滑块保持相对静止,M受到重力G、摩擦力f和支持力N的作用.以地面为参考系,此过程中力对M做功的情况,下列说法正确的是()A. G做正功B. f做正功C. N做正功D. G,f和N均不做功二、多选题11.如图所示,足够长传送带与水平方向的倾角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b相连,开始时,a、b及传送带均静止且a不受传送带摩擦力的作用,现让传送带逆时针匀速转动,则在b上升h高度(未与滑轮相碰)过程中( )A. 物块a重力势能减少量等于物块b重力势能的增加量B. 物块a机械能的减少量等于物块b机械能的增加量C. 摩擦力对物块a做的功等于物块a、b动能增加之和D. 任意时刻,重力对a、b做功的瞬时功率大小相等12.一人用力把质量为2kg的物体由静止提高4m,使物体获得的速度,则下列说法正确的是()A. 人对物体做的功为96JB. 物体动能增加112JC. 机械能增加16JD. 物体重力势能增加80J13.如右图石块自由下落过程中,由A点到B点重力做的功是10 J,下列说法正确的是( )A.由A到B,石块的重力势能减少了10 JB.由A到B,功减少了10 JC. 由A到B,10 J的功转化为石块的动能D. 由A到B,10 J的重力势能转化为石块的动能14.如图所示,汽车质量为m,以恒定功率P沿一倾角为θ的长斜坡向上行驶,汽车和斜坡间的动摩擦因数为μ,某一时刻t时刻速度大小为v,则()A. t时刻汽车的牵引力为B. t时刻汽车的牵引力为mgsinθ+μmgcosθC. t时刻汽车的加速度为﹣μ(gsinθ+gcosθ)D. 汽车上坡的最大速度为15.如图a,在竖直平面内固定一光滑的半圆形轨道ABC,半径为0.4m,小球以一定的初速度从最低点A冲上轨道,图b是小球在半圆形轨道上从A运动到C的过程中,其速度平方与其对应高度的关系图象。
2021届高考物理一轮专题重组卷:第一部分 单元六 机械能守恒定律 含解析
单元六机械能守恒定律考点1.功和功率(Ⅱ);2.动能和动能定理(Ⅱ);3.重力做功与重力势能(Ⅱ);4.功能关系、机械能守恒定律及其应用(Ⅱ)知识点1.做功正、负的判断及功的计算;2.平均功率、瞬时功率的理解及应用;3.动能定理、机械能守恒定律的应用;4.功能关系;5.图象问题一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2019·吉林省吉林市高三上学期期末联考)如图所示,在皮带传送装置中,皮带把物体P匀速带至高处,在此过程中,下列说法不正确的是()A.摩擦力对物体做正功B.摩擦力对物体做负功C.支持力对物体不做功D.合外力对物体做功为零答案B解析物体P匀速向上运动的过程中,摩擦力的方向沿传送带向上,与运动的方向相同,所以摩擦力做正功,A正确,B错误;支持力的方向与物体运动的方向垂直,则支持力对物体不做功,C正确;物体匀速上升,动能变化量为零,根据动能定理可知,合力对物体做功为零,D正确。
2.(2019·浙江宁波高三上学期期末十校联考)设在平直公路上以一般速度行驶的自行车,所受阻力约为车、人总重的0.02倍,则骑车人的功率最接近于()A.10-1 kW B.10-3 kWC.1 kW D.10 kW答案A解析设人和车的总质量为80 kg,总重力即为800 N,则受到的阻力大小为16 N,假设骑自行车的速度为10 m/s,则匀速行驶时,骑车人的功率为P=F v=f v =16×10 W=160 W,最接近于0.1 kW,A正确。
3. (2019·河北张家口高三上学期期末)如图所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是()A.运动员先处于超重状态后处于失重状态B.空气浮力对系统始终做负功C.加速下降时,重力做的功大于系统重力势能的减小量D.任意相等的时间内系统重力势能的减小量相等答案B解析运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,A错误;空气浮力与运动方向总相反,故空气浮力对系统始终做负功,B正确;加速下降时,重力做的功等于系统重力势能的减小量,C错误;因为是变速运动,所以任意相等的时间内,系统下降的高度不相等,则系统重力势能的减小量不相等,D错误。
2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习
2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习一、填空题1.在雅典奥运会上,我国举重运动员取得了骄人的战绩.在运动员举起杠铃过程中,是___________能转化为杠铃的___________能.2.如图所示,某兴趣小组希望通过实验求得连续碰撞中的机械能损失,做法如下:在光滑水平面上,依次有质量为m,2m,3m……10m的10个小球,排列成一直线,彼此间有一定的距离,开始时后面的九个小球是静止的,第一个小球以初速度v0向着第二个小球碰去,结果它们先后全部粘合到一起向前运动.求全过程中系统损失的机械能为__________.3.一小物体以100J的初动能滑上斜面,当动能减少80J时,机械能减少32J,则当物体滑回原出发点时动能为__________ J4.在某一高度用细绳提着一质量m=0.2kg的物体,由静止开始沿竖直方向运动过程中物体的机械能与位移关系的E﹣x图象如图所示,图中两段图线都是直线.取g=10m/s2,物体在0~6m过程中,速度一直_______(增加、不变、减小);物体在x=4m时的速度大小为________。
5.重为20N的物体从某一高度自由落下,在下落过程中所受的空气阻力为2N,则物体在下落1m的过程中,物体的重力势能减少了________,克服阻力做功________,物体动能增加了_________.6.如图所示,一个质量为m的小球用细线悬挂于O点,用手拿着一根光滑的轻质细杆靠着线的左侧水平向右以速度v匀速移动了距离L,运动中始终保持悬线竖直,这个过程中小球的速度为是_________,手对轻杆做的功为是_________.7.一只排球在A点被竖直抛出,此时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,假设排球在整个运动过程中受到的阻力大小恒定,A点为零势能点,则在整个运动过程中,排球的动能变为10 J 时,其重力势能的可能值为________、_________.8.如图所示,水平传送带的运行速率为v,将质量为m的物体轻放到传送带的一端,物体随传送带运动到另一端。
2021届高三物理一轮复习力学功和能功专题练习 (1)
2021届高三物理一轮复习力学功和能功专题练习一、填空题1.如图所示的单摆,让小球从A 点静止释放,小球从A 点向B 点摆动的过程中,小球受到的重力对小球__________功,细绳对小球的拉力__________功.(选填“做”或“不做”)2.一个质量为 2 千克的物体从离地 45 米处自由下落,整个下落过程中,重力的平均功率 是_____.落地时重力瞬时功率为______________.( g =10m/s 2 )3.如图所示,用50 N 的力拉一个质量为10kg 的物体在水平地面上前进,若物体前进了10m ,拉力F 做的功W 1=___J ,重力G 做的功W 2=___J ,如果物体与水平面间动摩擦因数μ=0.1,物体克服阻力做功W 3=___J 。
(sin370.6︒=,cos370.8︒=,210m/s g =)4.物体受到两个互相垂直的作用力而运动.已知力F 1做功6 J ,物体克服力F 2做功8 J ,则力F 1、F 2的合力对物体做功_______ J 。
5.一物体做自由落体运动.在第1s 内和第2s 内,重力对该物体做的功之比为________;在第1s 末和第2s 末,重力做功的瞬时功率之比为________.6.如图所示,一个人用与水平方向成60°的力F =40 N 拉一木箱,在水平地面上沿直线匀速前进了8 m ,则(1)拉力F 对木箱所做的功是________ J.(2)摩擦力对木箱所做的功是________ J.(3)外力对木箱所做的总功是________ J.7.用相同的水平拉力F 分别使质量为m 和2m 的物体在粗糙水平面上移动相同位移s ,若拉力F 对两个物体做功分别为W 1和W 2,则W 1和W 2之间的关系为W 1 W 2.(填=、>、<)8.某人用10N 的恒力F ,通过滑轮把质量为2.5kg 的物体M 从静止开始拉上光滑固定的斜面,斜面倾角为30°,如图所示,恒力F 的方向与斜面成60°,2s 内物体M 的重力势能增加了_________J ,恒力F 做功的平均功率为为____________W .9.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持于作用点的切线方向一致,则转动一周这个力F做到总功应为________ J.10.在水平地面上铺着n块砖,每块砖的质量为m,厚度为h,如将砖一块一块地叠放起来,至少需做的功为_________.11.如图所示,一根长为L的轻绳上端固定在O点,下端拴一个重为m的钢球A,处于静止状态。
山东省2021高考物理一轮复习 专题六 机械能守恒定律精练(含解析)
专题六机械能守恒定律【考情探究】课标解读考情分析备考指导考点内容功和功率1.理解功和功率。
2.了解生产生活中常见功率大小及其意义。
考查内容1.功、功率。
2.动能、动能定理。
3。
机械能守恒定律。
4。
功能关系。
命题趋势1.一般与实际生产、生活相联系。
2。
利用功能关系、机械能守恒定律解决单个或多个物体的运动问题。
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将功、功率、动能、势能等基础知识融入其他问题中考查,也常将动能定理、机械能守恒定律、功能关系作为解题工具在综合题中应用。
动能和动能定理1.理解动能和动能定理。
2.能用动能定理解释生产生活中的现象。
机械能守恒定律1。
理解重力势能,知道重力势能的变化与重力做功的关系。
2.定性了解弹性势能。
3.理解机械能守恒定律.4。
能用机械能守恒定律分析生产生活中的有关问题。
功能关系与能量守恒定律体会守恒观念对认识物理规律的重要性.【真题探秘】基础篇固本夯基【基础集训】考点一功和功率1。
在水平地面上方某处,把质量相同的P、O两小球以相同速率沿竖直方向抛出,P向上,O向下,不计空气阻力,两球从抛出到落地的过程中()A.P球重力做功较多B.两球重力的平均功率相等C.落地前瞬间,P球重力的瞬时功率较大D。
落地前瞬间,两球重力的瞬时功率相等答案 D考点二动能与动能定理2.如图是冰上体育比赛“冰壶运动”的场地示意图(冰面水平)。
在某次训练中,甲队员将质量m=20 kg 的一个冰壶石从左侧的A处向右推出,冰壶石沿中心线运动至与A点相距为x=30 m的营垒中心O处恰好停下.此后,乙队员将完全相同的第二个冰壶石同样在A处向右推出,冰壶石从A处运动到O处经过的时间为t=10 s。
已知冰壶石与冰面间的动摩擦因数为μ=0。
02,冰壶石都可视为质点,取g=10 m/s2。
求:(1)第一个冰壶石被推出时的动能;(2)第二个冰壶石即将碰到第一个冰壶石时的速度大小。
2021届高三物理一轮复习力学功和能动能定理的综合应用专题练习
12.物体A、B的质量之比为mA:mB=4:1,使它们以相同的初速度沿水平地面滑行,若它们受到的阻力相等,那么它们停下来所用的时间之比为tA:tB=______,若两物体与地面的动摩擦因数相同,那么它们停下来所用的时间之比为tA:tB =______
(1)求小球运动到B点时的速度大小;
(2)请通过计算说明小球能否离开轨道?
18.如图,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上、半径为R的光滑圆柱,A的质量为B的两倍。当B位于地面时,A恰与圆柱轴心等高。将A和B由静止释放,求:
(1)A落地前瞬间的速度是多少?
(2)B上升的最大高度是多少?
17.某玩具厂设计出如图所示的玩具,轨道固定在高H1的水平台面上,通过在A处压缩弹簧把质量m=0.01kg的小球(可看作质点)从静止弹出,先后经过直线轨道AC、半径R1=0.1m的圆形轨道、长为L1=0.5m的直线轨道CD、以及两段半径R2=1m的圆弧DE、GP,G、E两点等高且两圆弧对应的圆心角都为 ,所有轨道都平滑连接;小球从P点水平抛出后打到固定在Q点的锣上。CD段的动摩擦因数为0.2,其余轨道光滑,在一次测试中测出小球运动到B点时对内轨的作用力为0.064N。(sin =0.6,cos =0.8,g=10m/s2)
13.质量为m的列车,以恒定的功率沿水平直轨道行使,在时间t内行驶的距离s,其速率为 增大到最大值 .为求出机车的功率P和列车受到的恒定阻力f的大小,所需要的物理方程式为:________________和________________。
2021高中物理人教版一轮复习训练:9功能关系、机械能守恒定律及其应用
9功能关系、机械能守恒定律及其应用考点分析1.此知识点每年必考,试题往往与其他知识点相结合,难度较大。
2.注意要点:(1)只涉及动能的变化用动能定理分析。
(2)只涉及重力势能的变化,用重力做功与重力势能变化的关系分析。
(3)只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析。
例1.(2020∙全国I卷∙20)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2。
则()ArrayA. 物块下滑过程中机械能不守恒B. 物块与斜面间的动摩擦因数为0.5C. 物块下滑时加速度的大小为6.0 m/s2D. 当物块下滑2.0 m时机械能损失了12 J【答案】AB【解析】下滑5 m的过程中,重力势能减少30 J,动能增加10 J,减小的重力势能并不等与增加的动能,所以机械能不守恒,A正确;斜面高3 m、长5 m,则斜面倾角为θ=37°。
令斜面底端为零势面,则物块在斜面顶端时的重力势能mgh=30 J,可得质量m=1 kg,下滑5 m过程中,由功能原理,机械能的减少量等于克服摩擦力做的功μmg·cosθ·s=20 J,求得μ=0.5,B正确;由牛顿第二定律mg sinθ-μmg cosθ=ma,求得a=2 m/s2,C错误;物块下滑2.0 m时,重力势能减少12 J,动能增加4 J,所以机械能损失了8 J,D选项错误。
例2.(2019∙全国II卷∙18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和。
取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示。
重力加速度取10 m/s2。
由图中数据可得()A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J【考题解读】本题考查动能、重力势能、机械能的概念和动能定理、功能关系的应用,以及利用数形结合处理物理问题的能力,体现了能量观念和科学推理的核心素养,同时还体现了图像展示物理关系的形式美。
2021届高三物理一轮复习力学功和能机械能守恒定律及其条件专题练习
2021届高三物理一轮复习力学功和能机械能守恒定律及其条件专题练习一、填空题1.以速度竖直向上抛出一物体,忽略空气阻力的影响,则物体上升的最大高度为____;当物体的动能和重力势能相等时,物体离抛出点的高度为_____.2.如图所示,两块三角形的木板B、C竖直放在水平桌面上,它们的顶点连接在A处,底边向两边分开。
一个锥体置于A处,放手之后,奇特的现象发生了,椎体自动地沿木板滚上了B、C板的高处,不计一切阻力。
锥体在滚动过程中重心_______________(填“逐渐升高”、“逐渐降低”或“保持不变”);锥体在滚动过程中机械能______________填“增大”、“减小”或“不变”)3.质量为M 的滑块从倾角为30︒的光滑斜面顶端开始下滑。
到达斜面底端时速度为v,当它的速度为____时,它的动能和重力势能正好相等,此时它的重力的即时功率为__________。
4.从20m高处,以________m/s的速度水平抛出的物体,落地时的速度大小为25m/s.H静5.如图,光滑轨道abc固定在竖直平面内,c点与粗糙水平轨道cd相切,一质量为m的小球A从高1止落下,在b处与一质量为m的滑块B相撞后小球A静止,小球A的动能全部传递给滑块B,随后滑块BH,滑块B通过在cd段所用时间为t.求:从c处运动到d处,且bd高2(1)cd处的动摩擦因数μ(_____);(2)若将此过程类比为光电效应的过程,则:A为__________;B为__________;.分析说明:__________类比为极限频率06.质量为m的小球,从离桌面1h高处由静止开始落下,桌面离地面的高度为2h,如图所示.若以桌面作为重力势能等于零的参考平面,那么,当小球落地时的机械能为_________,落地速率为________.7.汽车沿一段坡面向下行驶,通过刹车使速度逐渐减小,在刹车过程中重力势能________(填“增加”或“减少”),机械能_________填“不守恒”或“守恒”8.在竖直平面内,一根光滑硬质杆弯成如图所示形状,相应的曲线方程为y = 0.1cos x(单位:m),杆足够长,图中只画出了一部分。
2021届高考一轮物理:机械能及其守恒定律含答案
2021届高考一轮物理:机械能及其守恒定律含答案一轮:机械能及其守恒定律*一、选择题1、(双选)如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A 、B 质量均为m ,在水平恒力F 作用下以速度v 做匀速运动在时轻绳断开,A 在F 作用下继续前进,则下列说法正确的是( )A .t =0至t =m v F 时间内,A 、B 的总动量守恒B .t =2m v F 至t =3m v F 时间内,A 、B 的总动量守恒C .t =2m v F 时,A 的动量为2m vD .t =4m v F 时,A 的动量为4m v2、(双选)如图甲所示,长为l 、倾角为α的斜面固定在水平地面上,一质量为m 的小物块从斜面顶端由静止释放并沿斜面向下滑动,已知小物块与斜面间的动摩擦因数μ与下滑距离x 的变化图象如图乙所示,则 ( )A.μ0>tanαB.小物块下滑的加速度逐渐增大C.小物块下滑到斜面底端的过程中克服摩擦力做的功为μ0mglcosαD.小物块下滑到底端时的速度大小为3、如图所示,一物块从斜面低端以初速度v 0开始沿斜面上滑,物块与斜面间的动摩擦因数μ<tan α,其中α为斜面的倾角,物块沿斜面运动的最大高度为H ,已知滑动摩擦力等于最大静摩擦力,取斜面低端为参考平面,则物块在斜面上运动过程中机械能E 、动能E k 、重力势能E p 与高度h 的关系可能是下图中的( )A B C D4、有一条长为2 m的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条沿斜面向上滑动,则链条刚好全部滑出斜面时的速度为(g取10 m/s2)()A.2.5 m/s B.522m/s C. 5 m/s D.352m/s5、用起重机将质量为m的物体匀速吊起一段距离,那么作用在物体上的各力做功情况应是下列说法中的哪一种()A.重力做正功,拉力做负功,合力做功为零B.重力做负功,拉力做正功,合力做正功C.重力做负功,拉力做正功,合力做功为零D.重力不做功,拉力做正功,合力做正功6、如图是一种工具——石磨,下面磨盘固定,上面磨盘可绕过中心的竖直转轴,在推杆带动下在水平面内转动.若上面磨盘直径为D,质量为m且均匀分布,磨盘间动摩擦因数为μ.若推杆在外力作用下以角速度ω匀速转动,磨盘转动一周,外力克服磨盘间摩擦力做功为W,则()A.磨盘推杆两端点的速度相同B.磨盘边缘的线速度为ωDC.摩擦力的等效作用点离转轴距离为WπμmgD.摩擦力的等效作用点离转轴距离为W 2πμmg7、如图所示,倾角θ=37°的斜面AB与水平面平滑连接于B点,A、B两点之间的距离x0=3 m,质量m=3 kg的小物块与斜面及水平面间的动摩擦因数均为μ=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习
一、填空题
1.如图所示,质量均为m的A、B 两小球,用长为l 的轻质细线相连,置于高为h的光滑水平桌面
上,l >h,A 球刚跨过桌边。
若A 球竖直下落着地后不再反跳,则A 球刚要着时的速度大小为_____;
B 球刚要着地时的速度大小为_____。
2.如图所示,铜棒ab长0.1m,质量为0.06kg,两端由两根长都是1m的轻铜线悬挂起来,铜棒ab保持水
B ,现给铜棒如平,整个装置静止于竖直平面内,装置所在处有竖直向下的匀强磁场,磁感应强度0.5T
ab中通入恒定电流,铜棒发生摆动.已知最大偏转角为37°,则铜棒从最低点运动到最高点的过程中,安培力做的功是___________J,恒定电流的大小为_________A(不计感应电流影响).
3.如图所示,在光滑水平桌面上有一质量为M的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为的物体,开始绳处于伸直状态,物体从距地面h处由静止释放,物体落地之前绳的拉力为______N;当物体着地的瞬间小车未离开桌子小车的速度大小为_______g
4.如图所示,轻质动滑轮下方悬挂质量为m的物块A,轻绳的左端绕过定滑轮连接质量为2m的物块B,开始时物块A、B处于静止状态,释放后A、B开始运动,假设摩擦阻力和空气阻力均忽略不计,重力加速度为g,当物块B向右运动的位移为L时,物块A的速度大小为__________,物块A减少的机械能为_________。
5.一物体在竖直弹簧的上方h米处下落,然后又被弹簧弹回,则物体动能最大时是______。
6.如图所示,一根原长为L的轻质弹簧,下端固定在水平桌面上,上端固定一个质量为m的物体A,A静止时弹簧的压缩量为ΔL1,在A上再放一个质量也是m的物体B,待A、B静止后,在B上施加一竖直向下的力F,使弹簧再缩短ΔL2,这时弹簧的弹性势能为E P.突然撤去力F,则B脱离A向上飞出的瞬间弹簧的
长度应为____________.这时B的速度是_____________.
7.如图所示,位于光滑水平桌面上的质量均为m的小滑块P和Q都视作质点,Q与轻质弹簧相连。
静止在水平面上,P以某一初速度v向Q运动并与弹簧发生碰撞,在整个过程中,弹簧具有的最大弹性势能等于_____ 此时P物体的速度为____
8.如图所示,质量为m、长度为L的匀质铁链的一半搁在倾角为30°的粗糙斜面上,其余部分竖直下垂。
现在铁链下滑至整条铁链刚好全部离开斜面的过程中,铁链的重力势能减少________。
9.在竖直平面内,一根光滑硬质杆弯成如图所示形状,相应的曲线方程为y = 0.1cos x(单位:m),杆足够长,图中只画出了一部分。
将一质量为m的小环(可视为质点)套在杆上,在P点给小环一个沿杆斜向下的初速度v0=1m/s,g取10m/s2,则小环经过最低点Q时处于________状态(选填“超重”、“失重”或“平衡”);小环运动过程中能到达的最高点的y轴坐标为_________m,以及对应的x轴坐标为___________m。
10.如图所示,光滑水平地面上一个静止的滑槽末端和地面相切,滑槽质量为M,一个质量为m的滑块以初速度v0冲上M,恰好到最高点,求:
m 在M 上上升的最大高度h=______________;最终M 获得的最大速度v max =___________________. 11.如图所示,螺旋形管道内径均匀,内壁光滑,螺距均为1m d =,共有5圈整,螺旋横截面的半径2m R =,管道内径远小于螺距,可忽略不计.一小球自管道A 端从静止开始下滑,当它到达管道B 端时的速度v =________m/s ,从A 到B 的时间t 大约为________.
12.如图所示,A 、B 、C 三个物体的质量之比为2:2:1,A 、B 放在光滑的、同一高度的水平台面上,A 、B 之间用一轻绳(无弹性)连接,D 、E 分别是两个摩擦、大小均不计的定滑轮,DE 间的距离为1.2m ,现将C 用一光滑的轻钩挂在绳子上DE 的中点,开始时用手托住C 使绳子水平拉直,然后从静止开始释放C ,当C 下落高度为_______m 时C 的速率是A 的速率的两倍(A 、B 仍在水平台面上),此时C 的速率为_______m/s .(保留两位小数,重力加速度取g = 10m/s 2)
13.如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离S oc =L ,则小球通过最高点A 时的速度表达式v A =___________;小球通过最低点B 时,细线对小球拉力表达式
T B =_____________________;若小球运动到A 点或B 点时剪断细线,小球滑落到斜面底边时到C 点的距离相等,则l 和L 应满足的关系式是__________________.
14.如图,长为1m 的轻杆OA 可绕O 处铰链在竖直平面内转动,质量均为1kg 的小球固定在A 、B 两处,B 为杆的中点.若杆在水平位置由静止起开始自由转动,不计阻力,转动30°角时B 球的速度为______m/s ,
此过程中杆对A球做的功为______J.
二、解答题
15.如图所示,质量为m的小球从四分之一光滑圆弧轨道顶端静止释放,从轨道末端O点水平抛出,击中平台右下侧挡板上的P点。
以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板形状满足方程
y=6-x2(单位:m),小球质量m=0.4kg,圆弧轨道半径R=1.25m,g取10m/s2,求:
(1)小球对圆弧轨道末端的压力大小;
(2)小球从O点到P点所需的时间(结果可保留根号)。
16.在半径R=4000km的某星球表面,宇航员做了如下实验,实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球从轨道上高H处的某点由静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示,忽略星球自转.求:
(1)圆弧轨道BC的半径r;
(2)该星球的第一宇宙速度
17.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水平距离x.已知男演员质量m1和女演员质量m2之比=2,秋千的质量不计,秋千的摆长为R,C点比O点低5R.
word 版 高中物理
1 / 7 参考答案
1
2.0.12 4 3. 2 4
49mgL 5.物体重力与弹力相等时 6.L
7.20.25mv 0.5v 8.7
16mgL 9.超重 0.05 533x x π
π
==或
10.2012()g Mv M m + 02(M m)mv + 11.10 12.6 12.0.35,1. 86(或1.87)
13
6sin mg θ 1.5L l = 14. 1
15.(1) 12N ;
(2) 16.(1)0.16 m (2)4×103 m/s 17.8R。