定向凝固

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定向凝固

定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。自20世纪60年代以来,定向凝固技术发展很快。由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。

制备方法:

1. 发热剂法

定向凝固技术的起始阶段。

基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。

2. 功率降低法

铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。热量主要通过已凝固部分及底盘由冷却水带走。由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。

3. 高速凝固法

装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。

4. 液态金属冷却定向凝固

合金在熔炼炉内熔炼后,浇入保温炉内的铸型,保温一段时间,按选择的速度将铸型拉出保温炉,浸入金属液进行冷却。在加热系统和冷却系统之间有辐射挡板,确保将加热区和冷却区隔开,使固液界面保持在辐射挡板中心附近,以实现定向凝固。

5. 流化床冷却法

液态金属冷却法采用低熔点合金冷却,成本高,可能使铸件产生低熔点金属脆性。

6. 区域熔化液态金属冷却法

在液态金属冷却法的基础上发展的一种新型的定向凝固技术。其冷却方式与液态金属冷却法相同,但改变了加热方式,利用电子束或高频感应电场集中对凝固界面前沿液相进行加热,充分发挥过热度对温度梯度的贡献,从而有效地提高了固液界面前沿温度梯度,可在较快的生长速率下进行定向凝固,可以使高温合金定向凝固一次枝晶和二次枝晶间距得到非常明显的细化。但是,单纯采用强制加热的方法以求提高温度梯度从而提高凝固速度,仍不能获得很大的冷却速度,因为需要散发掉的热量相对而言更多了,故冷却速度提高有限。

7. 激光超高温度梯度快速定向凝固

激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性。

激光束作为热源,加热固定在陶瓷衬底上的高温合金薄片,激光束使金属表面迅速熔化,达到很大的过热度。在激光表面快速熔凝时,凝固界面的温度梯度可高达5×104 K/cm。但一般的激光表面熔凝过程并不是定向凝固,因为熔池内部局部温度梯度和凝固速度是不断变化的,且两者都不能独立控制;同时,凝固组织是从基体外延生长的,界面上不同位置的生长方向也不相同。

8. 连续定向凝固

将结晶器的温度保持在熔体的凝固温度以上,绝对避免熔体在型壁上形核,熔体的凝固只在脱离结晶器的瞬间进行。随着铸锭不断离开结晶器,晶体的生长方向沿热流的反方向进行。

可以得到完全单方向凝固的无限长柱状组织;铸件气孔、夹渣等缺陷较少;组织致密,消除了横向晶界。但它的局限性在于依赖于固相的导热,所以只适用于具有较大热导率的铝合金及铜合金的小尺寸铸锭。

9. 电磁约束成形定向凝固

利用电磁感应加热直接熔化感应器内的金属材料,利用在金属熔体表层部分产生的电磁压力来约束已熔化的金属熔体成形。

无坩埚熔炼、无铸型、无污染的定向凝固成形,可得到具有柱状晶组织的铸件,同时还可实现复杂形状零件的近终成形。

但对某些密度大、电导率小的金属,实现完全无接触约束时,约束力小,不容易实现稳定的连续的凝固。

10. 深度过冷定向凝固

装有试样的坩埚装在高频线圈中循环过热,使异质核心通过蒸发与分解去除;或通过净化剂的吸附消除和钝化异质核心,获得深过冷的合金熔体。

再将坩埚的底部激冷,底部先形核,晶体自下而上生长,形成定向排列的树枝晶骨架,残余的金属液向已有的枝晶骨架上凝固,最终获得了定向凝固组织。

3.1定向凝固的理论基础

在定向凝固过程中,随着凝固速度的增加,固液界面的形态由低速生长的平面晶i胞晶i枝晶i细胞晶i高速生长的平面晶变化。无论是哪种固液界面形态,保持固液界面的稳定性对材料的制备和材料的力学性能非常重要。因此,固液界面稳定性是凝固过程中一个十分重要的科学问题。低速生长的平面晶固液界面稳定性可以用成分过冷理论来判定,高速生长的平面晶同液界面稳定性可以用绝对稳定性理论来判定。但到目前为止,关于胞晶、枝

晶、细胞晶固液界面稳定性问题,

尚没有相应的判定理论体系。

3.1.1成分过冷

成分过冷理论能成功地判定

低速生长条件下无偏析特征的平

面凝固,避免胞晶或枝晶的生长。

20世纪50年代Chalmers、Tiller

等人首次提出单相二元合金成分

过冷理论。固液界面液相区内形成

成分过冷的条件主要有两个方面:

一是由于溶质在固相和液相中的

相关文档
最新文档