2018年山西省中考数学试题(图片版,有答案)
山西省中考数学试题与答案
2018年山西省中考数学试卷与答案20分)第Ⅰ卷选择题(共分.在每个小题给出的四个选项中,只分,共20一、选择题(本大题10个小题,每题2 有一项符合题目要求,请选出并在答题卡上将该项涂黑)的绝对值是()B1.-311 D.3B.3C.-A.-33的度数为235o, 则∠、、b相交于点AB。
已知∠1=2.如图,直线a∥b,直线c分别与a C()oo D.135B.155o C.145165 A.o c a1A2 bB题)(第2,这个数据用科学记数M.山西是我国古代文明发祥地之一,其总面积约为16万平方千3 D法表示为()5464106×平方千M D.116×10.平方千M C.1.6×10.A0.16×10M B平方千.M平方千4.下列运算正确的是()B6246 22322223=6D.3aaB.(-a)·=-a.Cx2+xa =)(A.a-bx=a-b的正弦值()A o,若将各边长度都扩大为原来的2倍,则∠t△ABC中,∠C=90.在5RD倍D.不变.缩小2倍C.扩大4A.扩大2倍BBA C 题)(第5C2的值().估算31-6 之间4和53.在和4之间D.在3 B1A.在和2之间.在2和之间C个红球37.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有1 ,那么袋中球的总个数为()B且摸到红球的概率为 4 个D 个.39 C12 B15A.个.个.个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是().下图是由87A1 / 13DA B C从中任取一根木棒,能组成三角10cm.9.现有四根木棒,长度分别为4cm,6cm,8cm,形的个数为()C 4个个C.3个D.A.1个B.2的解集0B(0,5)两点,则不等式-k x-b<10.如图,直线y=kx+b交坐标轴于A(-3,0)、A为()3x>3 D.x<.A.x>-3 Bx<-3 C.b=yk x+yBA O x10(第题)100第Ⅱ卷选择题(共分)分,共24分.把答案写在题中横线上)二、填空题(本大题共8个小题,每小题3233—3x x)=______________.—11.计算:9x÷( AB=4cm,则=________cm.8DR t12.在△ABC中,∠ACB=90°,是AB的中点,CD.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒131豆子停在黑色方格中的概率是______________.3题)13(第12 x=5..方程14-=0的解为______________2-x+1x轴上,△,点AB⊥y轴于点BP在x是反比例函数图象上一点,过点15.如图,AA作 4=.,则这个反比例函数的解读式为______________y的面积为ABP2xyAB O xP题)(第15.将3、2、116.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中标有数字的一面朝任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则(填“公平”或“不公平”).哥哥胜该游戏对双方______________不公平2 / 13剪开,将扇OCAB的半径是以.图1AB为直径的半圆形纸片,AB=6cm,沿着垂直于17⌒BC'交OO'是OB的中点.'CAB于点形OAC沿方向平移至扇形O'A'C'.如图2,其中⌒BFF,则BF 的长为_______cm.πC C C' F OOO ' BB AA 1图2图(第17题)于AC作BC=10,D是AB的中点,过点DDE⊥中,18.如图,在△ABCAB=AC=13,60,则DE的长是______________.点E13AEDCB(第18题)8个小题,共76分.解答应写出文字说明、证明过程或演算步骤)三、解答题(本大题共5分,共10分)19.(每小题101-2)()32sin45-o+-(1+)计算:9(- 22-1x3xx(2)先化简,再求值:( -)·,其中x=-3x21xx-+120.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1)将图3补充完整得3分(画出虚线不扣分)(2)图略,答案不唯一,只要符合题目要求均得3分3 / 1321.(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整).(1)该店第一季度售出这种品牌的电动自行车共多少辆?(2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C型电动自行车应订购多少辆?辆数240 210 C180 150D 30% 120 B60 A6035%型号D C B A)(第21题图2 1)(第21题图是,E为直径的⊙O经过点DAB22.(本题8分)如图,四边形ABCD是平行四边形,以45o.O 上一点,且∠AED=⊙O的关系,并说明理由.)试判断CD与⊙(1 的正弦值.5cm.求∠ADEAE)若⊙O的半径为3cm,=(2DC AE 题)(第222的左在B、B两点(Ax-2-3的图象与x轴交于x1023.(本题分)已知二次函数y=A .C,顶点为D轴交于点侧),与y 的坐标,并在下面直角坐标系中画出该二次函数的大致图象;、DA、B、C)求点(122如何平移得到?=-x3可由抛物线yx2=)说出抛物线(2yx-OCDB)求四边形的面积.3(4 / 13元,乙款每套分)某服装店欲购甲、乙两种新款运动服,甲款每套进价35024.(本题8套甲、乙两款元的资金订购307600元且不高于8000进价200元,该店计划用不低于运动服.1)该店订购这两款运动服,共有哪几种方案?(元的价格全部出售,哪种方案获利最无,乙款每套3002)若该店以甲款每套400(大?上,连接EDEFG的边D1,已知正方形ABCD的边CD在正方形25.(本题10分)如图.AE、GC 有怎样的位置关系,并证明你的结论.AE与GC(1)试猜想AE,连接边上,如图2D按顺时针方向旋转,使点E落在BCDEFG(2)将正方形绕点)中的结论是否还成立?若成立,给出证明;若不成立,请说明理1CG。
2018年山西省中考数学试卷有答案
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下面有理数比较大小,正确的是( ) A .02<B .53-<C .23--<D .14-<2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列列四部著作中,不属于我国古代数学著作的是()A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》 3.下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .2362 =2a a aD .2633()28b b a a -=- 4.下列一元二次方程中,没有实数根的是( )A .22=0x x -B .2410x x +-=C .22430x x -+=D .2352x x =-5.近年来快递业发展迅速,下表是2018年1—3月份山西省部分地市邮政快递业务量的A .31979.万件B .33268.万件C .33887.万件D .41601.万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于山西省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1 010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时B .63.13610⨯立方米/时C .63.63610⨯立方米/时D .536.3610⨯立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( ) A .49B .13C .29D .198.如图,在Rt ABC △中,°90ACB ∠=,°60A ∠=,6AC =,将ABC △绕点C 按逆时针方向旋转得到A B C ''△,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( ) A .12B .6C .D .9.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( )A .2(4)7y x =-+B .2(4)25y x =--C .2(+4)7y x =+D .2(+4)25y x =-10.如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是 ( ) A .4π4- B .4π8- C .8π4-D .8π8-第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共5小题,每小题3分,共15分.请把答案填写在题中的横线上) 11.计算:1)+= .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345=∠+∠+∠+∠+∠ 度.图1 图213.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.如图,直线MN PQ ∥,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ; ③作射线AE 交PQ 于点F . 若=2AB ,°=60ABP ∠,则线段AF 的长为 . 15.如图,在Rt ABC △中,°=90ACB ∠,=6AC ,=8BC ,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题:(本大题共8个小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分) 计算: (1)210|4|362---+⨯+;(2)222111442x x x x x x -----+-.17.(本小题满分8分)如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)ky k x=≠的图象相交于点(4,2)C --,(2,4)D .(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,10y >;(2)当x 为何值时,12y y <,请直接写出x 的取值范围.18.(本小题满分9分)在“优秀传统文化进校园”活动中,学校计划每周二下午三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图均不完整)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)请解答下列问题:(1)请补全条形统计图和扇形统计图(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人? (4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.(本小题满分8分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索别与桥面交于竖直平面内(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据°sin380.6≈,°cos380.8≈,°tan380.8≈,°sin280.5≈,°cos280.9≈,°tan280.5≈);(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(本小题满分7分)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列列车时速更快,安全性更好.已知“太原南一北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和诸号”列车行驶时间的45(两列车兴号中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.(本小题满分8分)任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)证明.(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成==AX BY XY 的证明过程 (3)上述解决问题的过程中,通过作平行线把四边形BA Z Y '''放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 .A .平移旋转C .轴对称D .位似22.(本小题满分12分) 综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,=2AD AB ,E 是AB 延长线上一点,且=BE AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFC ,连接AM .试判断线段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:∵=BE AB ,∴=2AE AB ∵=2AD AB ,∴=AD AE ∵四边形ABCD 是矩形,∴AD BC ∥∴EM EBDM AB=.(依据1) ∵=BE AB ,∴1EMDM=,∴EM DM =. 即AM 是ADE △的DE 边上的中线, 又∵=AD AE ,∴AM DE ⊥.(依据2) ∴.AM 垂直平分DE 反思交流(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明: (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明;图1图2图323.(本小题满分13分) 综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE AC ∥交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由;(3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.数学试卷 第9页(共24页) 数学试卷 第10页(共24页)山西省2018年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】A 中,02>-,错;B 中,53-<,正确;C 中,23->-,错误;D 中,14>-,错误,故选B .【考点】有理数的大小比较. 2.【答案】B【解析】“算经十书”包括《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算经》在四个选项中《几何原经》是古希腊数学家欧几里得所著的一部数学著作,故选B . 【考点】我国古代数学著作. 3.【答案】D【解析】A 中,322326()(1)()a a a -=-=,错误;B 中,222235a a a +=,错误;C 中,2352 =2a a a ,错误;D 中,2633()28b b a a-=-,正确,故选D .【考点】整式的运算. 4.【答案】C【解析】A 中,224(2) 40b ac ∆=-=-=>,此方程有两个不相等的实数根,不符合题意;B 中,224441(1)200b ac ∆=-=-⨯⨯-=>,此方程有两个不相等的实数根,不符合题意;C 中,22 4(4)42380b ac ∆=-=--⨯⨯=-<,此方程没有实数根,符合题意;D中,原方程变形为23520x x -+=,224(5)43210b ac ∆=-=--⨯⨯=>.此方程有两个不相等的实数根,不符合题意,故选C .【考点】一元二次方程根的判别式.5.【答案】C【解析】把这7个数据按从小到大的顺序排列为302.34,319.79,332.68,338.87,416.01,725.86,303.78,位于最中间的数据为338.87故选C .【考点】中位数. 6.【答案】C【解析】1 010立方米/秒 1 010 3 600=⨯立方米/时=3 636 000立方米/时63.636 10=⨯立方米/时,故选C . 【考点】科学记数法. 7.【答案】A【解析】画树状图如图所示,共有9种等可能的结果,其中两次摸出的小球都是黄球的结果有4种,所以P (两次都摸到黄球)4=9,故选A .【考点】列表法或画树状图法求概率. 8.【答案】D【解析】连接BB ',由旋转的性质知,=AC A C ',又°60A =∠,∴ACA'△是等边三角形∴°=60ACA '∠,由旋转可知°==60BCB ACA ''∠∠, BC B C '=,∴BCB '△为等边三角形,∴BB BC '=.在Rt ABC △中, tan606BC AC ︒===B '与点B 之的距离是D .【考点】旋转的性质、等边三角形的判定与性质、锐角三角函数. 9.【答案】B【解析】22289816169(4)25y x x x x x =--=-+--=--,故选B . 【考点】二次函数表达式的一般式与顶点式的转换. 10.【答案】A【解析】∵四边形ABCD 为正方形,∴AB BC CD AD ===,4AC BD ==, ∴AB AD BC CD S S S S ===弓形弓形弓形弓形.如图所示,290π4142443602ABDAEF S S S π⨯=-=-⨯⨯=-△阴影扇形,故选A .数学试卷 第11页(共24页) 数学试卷 第12页(共24页)【考点】正方形的性质、扇形的面积公式.第Ⅱ卷二.填空题 11.【答案】17【解析】原式22 11(81 17=-=-=. 【考点】平方差公式 12.【答案】360【解析】由多边形的外角和为°360,知°12345=360∠+∠+∠+∠+∠. 【考点】多边形的外角和定理. 13.【答案】55【解析】设长为8 cm x ,高为11 cm x ,根据题意,得8+11+20115x x ≤,解得5x ≤,1155x ≤ ,即符合此规定的行李箱的高的最大值为55 cm【考点】一元一次不等式的应用. 14.【答案】【解析】如图,过点A 作AG PQ ⊥于点G ,由尺规作图可知,1=2∠∠,∵MN PQ ∥,∴1=3∠∠.∴2=3∠∠.∵°=60ABP ∠,∴°2=3=30∠∠.在Rt ABG △中° sin602AG AB ===在Rt AGF △中,∵°3=30∠,∴2AF AG ==【考点】解直角三角形、角平分线的作法、平行线的性质、三角形外角的性质.15.【答案】125【解析】如图,连接EF ,DE ,DF .∵°=90ACB ∠,∴EF 为O 的直径,∴EF 必过圆心O ∵CD 为O 的直径,∴DE AC ⊥,DF BC ⊥,∵°=90ACB ∠, AD BD =,∴5CD AD BD ===,∴3AE CE ==,4CF BF ==,∴EF AB ∥,∴FGB OFG =∠∠,∵FG 为O 的切线,∴°=90OFG ∠,∴°=90FGB ∠,在Rt CDF △中,3DF ===,在Rt BDF △中,∵DF BF BD FG =,∴ 341255DF BF FG BD ⨯===.三、解答题 16.【答案】(1)7 (2)2x x - 【解析】(1)原式8421=-++ 7=(2)原式22(1)(1)11(2)2x x x x x x -+----=- +1122x x x =--- 2xx =-.【考点】实数的运算、分式的混合运算.17.【答案】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+.∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【解析】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+. ∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+. ∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【考点】待定系数法求一次函数与反比例函数的解析式、一次函数与反比例函数交点问题.18.【答案】解:(1)补全条形统计图和扇形统计图如图所示.(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516. 【解析】解:(1)补全条形统计图和扇形统计图如图所示.(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516.数学试卷 第15页(共24页) 数学试卷 第16页(共24页)【考点】条形统计图、扇形统计图、概率公式. 19.【答案】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中, 90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=.在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=. ∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【解析】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中, 90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=. 在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=.∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【考点】解直角三角形的应用.20.【答案】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--. 解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.518263+=(小时). 答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时.【解析】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--.解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.数学试卷 第17页(共24页) 数学试卷 第18页(共24页)518263+=(小时). 答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时. 【考点】分式方程的应用.21.【答案】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ . ∴==AX BY XY .(3)D (或位似)【解析】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ . ∴==AX BY XY . (3)D (或位似)【考点】菱形的判定与性质、等腰三角形的判定与性质、相似三角形的判定与性质、位似.22.【答案】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠. ∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠.数学试卷 第19页(共24页) 数学试卷 第20页(共24页)∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC .四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF =.CF =.CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【解析】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠. ∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠. ∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC.数学试卷 第21页(共24页) 数学试卷 第22页(共24页)四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF ==.CF =.CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【考点】平行线分线段成比例、等腰三角形的性质矩形的性质、全等三角形的判定与性质、正方形的判定与性质、线段垂直平分线的判定定理. 23.【答案】(1)由0y =,得2114033x x --=. 解,得13x =-,24x =.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .(2)14)Q ,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴.由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形. ∴45OBC QFG ︒==∠∠.∴2GQ FG FQ ==. ∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△.∴FG GPAO OC=,即4FG GP =.∴44233GP FG FQ ===.∴236QP GQ GP =+=+=,∴7FQ =, ∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠,∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+33QP PM QM m m m m m ==-++--=--.∴2214+)33FQ m m ==-=. ∵0<,∴QF 有最大值,∴当27m ==时,QF 有最大值. 【解析】(1)由0y =,得2114033x x--=.解,得13x =-,24x =.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .数学试卷 第23页(共24页) 数学试卷 第24页(共24页)(2)14)Q ,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴.由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形. ∴45OBC QFG ︒==∠∠.∴2GQ FG FQ ==. ∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△.∴FG GPAO OC=,即4FG GP =. ∴44233GP FG FQ==. ∴236QP GQ GP FQ FQ FQ =+=+=,∴7FQ =, ∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠,∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+33QP PM QM m m m m m ==-++--=--.∴2214+)33FQ m m ==-=. ∵0<,∴QF有最大值,∴当2m ==时,QF 有最大值. 解法二:提示,先分别求出BQ 和BF 关于m 的代数式,再由QF BF BQ =-得到QF 关于m 的代数式【考点】抛物线的性质、等腰三角形的性质、二次函数与一元二次方程的关系、勾股定理、相似三角形的判定与性质.。
2018年山西省中考数学试卷试题及答案
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)(2018•山西)下面有理数比较大小, 正确的是( )A .02<-B .53-<C .23-<-D .14<-2.(3分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》3.(3分)(2018•山西)下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a =D .2633()28b b a a-=- 4.(3分)(2018•山西)下列一元二次方程中,没有实数根的是( )A .220x x -=B .2410x x +-=C .22430x x -+=D .2352x x =-5.(3分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时B .63.13610⨯立方米/时C .63.63610⨯立方米/时D .536.3610⨯立方米/时7.(3分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .198.(3分)(2018•山西)如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC∆绕点C 按逆时针方向旋转得到△A B C '',此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .D .9.(3分)(2018•山西)用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为()A .2(4)7y x =-+B .2(4)25y x =--C .2(4)7y x =++D .2(4)25y x =+-10.(3分)(2018•山西)如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .44π-B .48π-C .84π-D .88π-二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2018•山西)计算:1)-= .12.(3分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 度.13.(3分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.(3分)(2018•山西)如图,直线//MN PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ;③作射线AE 交PQ 于点F .若2AB =,60ABP ∠=︒,则线段AF 的长为 .15.(3分)(2018•山西)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)210|4|362---+⨯+.(2)222111442x x x x x x -----+-. 17.(2018•山西)如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D . (1)求一次函数和反比例函数的表达式;(2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin280.5︒≈,cos280.9︒≈,tan 280.5)︒≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西”全程大约500千米,“复兴号” 92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号” 92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号” 92G 次列车从太原南到北京西需要多长时间.21.(2018•山西)请阅读下列材料,并完成相应的任务:A BZ ABZ ''=∠∴Z 任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX BY XY ==的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA Z Y '''放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 .A .平移B .旋转C .轴对称D .位似22.(2018•山西)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:BE AB =,2AE AB ∴=.2AD AB =,AD AE ∴=.四边形ABCD 是矩形,//AD BC ∴. ∴EM EB DM AB=.(依据1) BE AB =,∴1EM DM=.EM DM ∴=. 即AM 是ADE ∆的DE 边上的中线,又AD AE =,AM DE ∴⊥.(依据2) AM ∴垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.(2018•山西)综合与探究 如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小, 正确的是( ) A .02<-B .53-<C .23-<-D .14<-【解答】解:A 、02>-,故此选项错误;B 、53-<,正确;C 、23->-,故此选项错误;D 、14>-,故此选项错误;故选:B .2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》【解答】解:A 、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B 、《几何原本》是古希腊数学家欧几里得所著的一部数学著作; C 、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰; D 、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作; 故选:B .3.(3分)下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a =D .2633()28b b a a-=-【解答】解:A 、326()a a -=,此选项错误;B 、222235a a a +=,此选项错误;C 、23522a a a =,此选项错误;D 、2633()28b b a a-=-,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .220x x -=B .2410x x +-=C .22430x x -+=D .2352x x =-【解答】解:A 、△40=>,有两个不相等的实数根,故此选项不合题意;B 、△164200=+=>,有两个不相等的实数根,故此选项不合题意;C 、△164230=-⨯⨯<,没有实数根,故此选项符合题意;D 、△25432252410=-⨯⨯=-=>,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A.46.0610⨯立方米/时B.63.13610⨯立方米/时C.63.63610⨯立方米/时D.536.3610⨯立方米/时【解答】解:610103600 3.63610⨯=⨯立方米/时,故选:C.7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt ABC∆中,90ACB∠=︒,60A∠=︒,6AC=,将ABC∆绕点C按逆时针方向旋转得到△A B C'',此时点A'恰好在AB边上,则点B'与点B之间的距离为( )A .12B .6C .D .【解答】解:连接B B ',将ABC ∆绕点C 按逆时针方向旋转得到△A B C '', AC A C '∴=,AB A B '=,60A CA B ''∠=∠=︒,∴△AA C '是等边三角形,60AA C '∴∠=︒,180606060B A B ''∴∠=︒-︒-︒=︒,将ABC ∆绕点C 按逆时针方向旋转得到△A B C '',60ACA BAB ''∴∠=∠=︒,BC B C '=,906030CB A CBA ''∠=∠=︒-︒=︒, BCB '∴∆是等边三角形, 60CB B '∴∠=︒, 30CB A ''∠=︒, 30A B B ''∴∠=︒,180603090B BA ''∴∠=︒-︒-︒=︒, 90ACB ∠=︒,60A ∠=︒,6AC =,12AB ∴=,6A B AB AA AB AC ''∴=-=-=,B B '∴=故选:D .9.(3分)用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( ) A .2(4)7y x =-+B .2(4)25y x =--C .2(4)7y x =++D .2(4)25y x =+-【解答】解:289y x x =-- 281625x x =-+-2(4)25x =--.故选:B .10.(3分)如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为()A .44π-B .48π-C .84π-D .88π-【解答】解:利用对称性可知:阴影部分的面积=扇形AEF 的面积ABD -∆的面积2904142443602ππ=-⨯⨯=-,故选:A .二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:1)= 17 .【解答】解:原式221=- 181=- 17=故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 360 度.【解答】解:由多边形的外角和等于360︒可知, 12345360∠+∠+∠+∠+∠=︒,故答案为:360︒.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【解答】解:设长为8x,高为11x,由题意,得:1920115x+…,解得:5x…,故行李箱的高的最大值为:1155x=,答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线//MN PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在NAB∠内交于点E;③作射线AE交PQ于点F.若2AB=,60ABP∠=︒,则线段AF的长为【解答】解://MN PQ,60NAB ABP∴∠=∠=︒,由题意得:AF平分NAB∠,1230∴∠=∠=︒,13ABP ∠=∠+∠, 330∴∠=︒, 1330∴∠=∠=︒,AB BF ∴=,AG GF =, 2AB =,112BG AB ∴==,AG ∴2AF AG ∴==,故答案为:15.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为125.【解答】解:如图,在Rt ABC ∆中,根据勾股定理得,10AB =,∴点D 是AB 中点,152CD BD AB ∴===, 连接DF ,CD 是O 的直径, 90CFD ∴∠=︒, 142BF CF BC ∴===,3DF ∴==, 连接OF ,OC OD =,CF BF =, //OF AB ∴, OFC B ∴∠=∠, FG 是O 的切线, 90OFG ∴∠=︒, 90OFC BFG ∴∠+∠=︒, 90BFG B ∴∠+∠=︒, FG AB ∴⊥, 1122BDF S DF BF BD FG ∆∴=⨯=⨯, 341255DF BF FG BD ⨯⨯∴===, 故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)210|4|362---+⨯+.(2)222111442x x x x x x -----+-. 【解答】解:(1)原式184613=-+⨯+8421=-++7=.(2)原式22(1)(1)11(2)2x x x x x x --+=---- 1122x x x +=--- 2xx =-. 17.如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D . (1)求一次函数和反比例函数的表达式;(2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.【解答】解:(1)一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D , ∴114224k b k b -+=-⎧⎨+=⎩,解得112k b =⎧⎨=⎩.∴一次函数的表达式为12y x =+.反比例函数22k y x=的图象经过点(2,4)D , ∴242k =. 28k ∴=.∴反比例函数的表达式为28y x=. (2)由10y >,得20x +>. 2x ∴>-.∴当2x >-时,10y >.(3)4x <-或02x <<.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人? (4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【解答】解:(1)由条形图知,男生共有:102013952+++=人,∴女生人数为1005248-=人,∴参加武术的女生为481581510---=人,∴参加武术的人数为201030+=人,3010030%∴÷=,参加器乐的人数为91524+=人,2410024%∴÷=,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是10100%40% 1015⨯=+.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)50021%105⨯=(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151********==+++.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin280.5︒≈,cos280.9︒≈,tan 280.5)︒≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【解答】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC ∆中,90ADC ∠=︒,38A ∠=︒. tan38CD AD ︒=,∴5tan380.84CD x AD x ===︒. 在Rt BDC ∆中,90BDC ∠=︒,28B ∠=︒. tan 28CD BD ︒=,∴2tan 280.5CD xBD x ===︒. 234AD BD AB +==,∴522344x x +=. 解得72x =.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西”全程大约500千米,“复兴号” 92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号” 92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号” 92G 次列车从太原南到北京西需要多长时间.【解答】解:设“复兴号” 92G 次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:5005004054x x =+, 解得:52x =, 经检验,52x =是原分式方程的解, 1863x ∴+=. 答:乘坐“复兴号” 92G 次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:A BZ ABZ ''=∠∴Z任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX BY XY==的证明过程;'''放大得到四边形BAZY,从而(3)上述解决问题的过程中,通过作平行线把四边形BA Z Y确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【解答】解:(1)四边形AXYZ是菱形.证明://YX ZA,ZY AC,//∴四边形AXYZ是平行四边形.ZA YZ=,∴平行四边形AXYZ是菱形.(2)证明:CD CB=,13∴∠=∠.ZY AC,//∴∠=∠.1223∴∠=∠.∴=.YB YZ四边形AXYZ是菱形,∴==.AX XY YZ∴==.AX BY XY'''放大得到四边形BAZY,从而确定了点Z,Y的位置,(3)通过作平行线把四边形BA Z Y此时四边形BA Z Y '''∽四边形BAZY ,所以该变换形式是位似变换. 故答案是:D (或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:BE AB =,2AE AB ∴=.2AD AB =,AD AE ∴=.四边形ABCD 是矩形,//AD BC ∴.∴EM EBDM AB=.(依据1) BE AB =,∴1EMDM=.EM DM ∴=. 即AM 是ADE ∆的DE 边上的中线, 又AD AE =,AM DE ∴⊥.(依据2) AM ∴垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM DE⊥,四边形DEFG是正方形,DE FG∴,//∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH BC⊥于点H,四边形ABCD是矩形,点E在AB的延长线上,CBE ABC GHC∴∠=∠=∠=︒,90∴∠+∠=︒.90BCE BEC四边形CEFG为正方形,CG CEGCE∠=︒,∴=,90∴∠+∠=︒.90BCE BCG2BEC BCG∴∠=∠.∴∆≅∆.GHC CBE∴=,HC BE四边形ABCD是矩形,AD BC∴=.=,BE AB=,AD AB2BC BE HC∴==,22∴=.HC BH∴垂直平分BC.GH∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM BC⊥于点N.⊥于点M,过点E作EN FM∴∠=∠=∠=︒.BMN ENM ENF90四边形ABCD是矩形,点E在AB的延长线上,∴∠=∠=︒,CBE ABC90∴四边形BENM为矩形.BM EN∠=︒.BEN∴=,90∴∠+∠=︒.1290四边形CEFG为正方形,∠=︒.CEFEF EC∴=,90∴∠+∠=︒.2390∴∠=∠.13∠=∠=︒,CBE ENF90∴∆≅∆.ENF EBC∴=.NE BE∴=.BM BE四边形ABCD是矩形,∴=.AD BC2=,AB BE=.AD AB∴=.2BC BMBM MC ∴=.FM ∴垂直平分BC .∴点F 在BC 边的垂直平分线上.23.综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.【解答】解:(1)当0y =,2114033x x --=,解得13x =-,24x =,(3,0)A ∴-,(4,0)B ,当0x =,2114433y x x =--=-,(0,4)C ∴-;(2)5AC ==,易得直线BC 的解析式为4y x =-, 设(Q m ,4)(04)m m -<<,当CQ CA =时,222(44)5m m +-+=,解得1m =,2m =,此时Q 点坐标为4)-;当AQ AC =时,222(3)(4)5m m ++-=,解得11m =,20m =(舍去),此时Q 点坐标为(1,3)-; 当QA QC =时,2222(3)(4)(44)m m m m ++-=+-+,解得252m =(舍去),综上所述,满足条件的Q 点坐标为4)或(1,3)-; (3)解:过点F 作FG PQ ⊥于点G ,如图,则//FG x 轴.由(4,0)B ,(0,4)C -得OBC ∆为等腰直角三角形45OBC QFG ∴∠=∠= FQG ∴∆为等腰直角三角形,FG QG ∴==, //PE AC ,//PG CO , FPG ACO ∴∠=∠, 90FGP AOC ∠=∠=︒, ~FGP AOC ∴∆∆.∴FG PG OA CO =,即34FG PG=,44233PG FG FQ ∴===,PQ PG GQ ∴=+=,7FQ PQ ∴=, 设(P m ,2114)(04)33m m m --<<,则(,4)Q m m -,2211144(4)3333PQ m m m m m ∴=----=-+,2214)2)33FQ m m m ∴=-+=-20-<, QF ∴有最大值.∴当2m =时,QF 有最大值.第31页(共31页)。
【精品】山西省2018年中考数学试题(含答案)
数学第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是( )A .02<-B .53-<C .23-<-D .14<-2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》 3.下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a ⋅= D .326328b b a a ⎛⎫-=- ⎪⎝⎭4.下列一元二次方程中,没有..实数根的是( ) A .220x x -= B .2410x x +-= C .22430x x -+= D .2352x x =-5.近年来快递业发展迅速,下表是2018年13月份我省部分地市邮政快递业务量的统计结果(单位:万件):13月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时B .63.13610⨯立方米/时 C .63.63610⨯立方米/时 D .536.3610⨯立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29 D .198.如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC ∆绕点C 按逆时针方向旋转得到'''A B C ∆,此时点'A 恰好在AB 边上,则点'B 与点B 之间的距离为( )A .12B .6C ..9.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( )A .2(4)7y x =-+ B .2(4)25y x =-- C .2(4)7y x =++ D .2(4)25y x =+- 10.如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .44π-B .48π-C .84π-D .88π-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:1)= .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 度.13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm ,长与宽的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.如图,直线//MN PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ;③作射线AE 交PQ 于点F .若2AB =,60ABP ∠=︒,则线段AF 的长为 .15.如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)214362---+⨯+.(2)222111442x x x x x x --⋅---+-. 17.如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D .(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整). 请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin 280.5︒≈,cos280.9︒≈,tan 280.5︒≈)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南—北京西”全程大约500千米,“复兴号”92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”92G 次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:BAZ ∆.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤....,在(1)的基础上完成AX BY XY ==的证明过程; (3)上述解决问题的过程中,通过作平行线把四边形'''BA Z Y 放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是________.A .平移B .旋转C .轴对称D .位似 22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE AB =,∴2AE AB =. ∵2AD AB =,∴AD AE =.∵四边形ABCD 是矩形,∴//AD BC . ∴EM EBDM AB=.(依据1) ∵BE AB =,∴1EMDM=.∴EM DM =. 即AM 是ADE ∆的DE 边上的中线, 又∵AD AE =,∴AM DE ⊥.(依据2) ∴AM 垂直平分DE . 反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接..写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.试卷答案一、选择题1-5: BBDCC 6-10: CADBA二、填空题11. 17 12. 360 13. 55 14. 125三、解答题16.(1)解:原式84217=-++=. (2)解:原式22(1)(1)11(2)2x x x x x x --+=⋅----1122x x x +=--- 2x x =-. 17. 解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D , ∴114224k b k b -+=-⎧⎨+=⎩,解得112k b =⎧⎨=⎩.∴一次函数的表达式为12y x =+. ∵反比例函数22k y x =的图象经过点(2,4)D ,∴242k=.∴28k =. ∴反比例函数的表达式为28y x=. (2)由10y >,得20x +>.∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<. 18.解:(1)(2)10100%40%1015⨯=+.答:男生所占的百分比为40%. (3)50021%105⨯=(人).答:估计其中参加“书法”项目活动的有105人. (4)15155151********==+++.答:正好抽到参加“器乐”活动项目的女生的概率为516. 19.解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC ∆中,90ADC ∠=︒,38A ∠=︒. ∵tan 38CD AD ︒=,∴5tan 380.84CD x AD x ===︒. 在Rt BDC ∆中,90BDC ∠=︒,28B ∠=︒. ∵tan 28CD BD ︒=,∴2tan 280.5CD xBD x ===︒. ∵234AD BD AB +==,∴522344x x +=. 解得72x =.答:斜拉索顶端点C 到AB 的距离为72米.(2)答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 20.解法一:设乘坐“复兴号”92G 次列车从太原南到北京西需要x 小时, 由题意,得50050040151()646x x =+--. 解得83x =. 经检验,83x =是原方程的根. 答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时. 解法二:设“复兴号”92G 次列车从太原南到北京西的行驶时间需要x 小时, 由题意,得5005004054x x =+. 解得52x =.经检验,52x =是原方程的根. 518263+=(小时). 答:乘坐“复兴号”92G 次列车从太原南到北京西需要83小时. 21.解:(1)四边形AXYZ 是菱形.证明:∵//ZY AC ,//YX ZA ,∴四边形AXYZ 是平行四边形.∵ZA YZ =,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴12∠=∠.∵//ZY AC ,∴13∠=∠.∴23∠=∠.∴YB YZ =.∵四边形AXYZ 是菱形,∴AX XY YZ ==.∴AX BY XY ==.(3)D (或位似).22.(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例). 依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”). ②答:点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上,∴90CBE ABC GHC ∠=∠=∠=︒,∴1290∠+∠=︒.∵四边形CEFG 为正方形,∴CG CE =,90GCE ∠=︒,∴1390∠+∠=︒.∴23∠=∠.∴GHC CBE ∆≅∆.∴HC BE =,∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =,BE AB =,∴22BC BE HC ==,∴HC BH =.∴GH 垂直平分BC .∴点G 在BC 的垂直平分线上.(3)答:点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上).证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N .∴90BMN ENM ENF ∠=∠=∠=︒。
2018年山西省中考数学试卷含答案解析(Word版)
数 学 著 作 的是( )
A.《 九 章 算 术 》 B. 《 几 何 原 本 》 C. 《海岛算经》 D. 《周髀算经》
【 答 案 】B
【 考 点 】数 学 文 化
【 解 析】《几何原本》的作者是欧几里得
3. 下列运算正确的是()
b
b
A. a3
2 a
6 B.
2a2 3a2
6a2 C. 2a2 a3
形 , 则 1 2 3 4 5 度.
【 答 案 】360 【 考 点 】多边形外角和 【 解 析 】∵ 任意 n 边形的外角和为 360°,图中五条线段组成五边形
∴ 1 2 3 4 5 360 .
13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某 厂 家 生 产 符 合 该规定 的 行 李 箱 , 已 知行李 箱 的 宽 为 20cm,长与高的比为 8:11,则符合此规定 的 行 李 箱 的 高 的 最大值 为_____cm.
4 / 15
12
【答案】
5
【 考 点 】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数 【 解 析 】连 接 OF
∵ FG为⊙ 0 的切线∴ OF⊥ FG ∵ Rt△ ABC中 ,D 为 AB中 点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF∥ BD ∵ O 为 CD中 点 ∴ F 为 BC中 点
【 答 案 】55 【 考 点 】一元一次不等式的实际应用 【 解 析 】解:设行李箱的长为 8xcm,宽为 11xcm
2018年山西省中考数学试卷(含详细答案及解析)中考真题
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.【点评】此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1010×360×24=3.636×106立方米/时,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.D.【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.【点评】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.【点评】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN 于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点评】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S=DF×BF=BD×FG,△BDF∴FG===,故答案为.【点评】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点评】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题;20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.请阅读下列材料,并完成相应的任务:.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE 为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;。
2018年山西省中考数学试卷(答案+解析)
2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。
)1.(3分) 下面有理数比较大小,正确的是()A。
<﹣2B。
﹣5<3C。
﹣2<﹣3D。
1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。
下列四部著作中,不属于我国古代数学著作的是()A。
《九章算术》B。
《几何原本》C。
《海岛算经》D。
《周髀算经》3.(3分) 下列运算正确的是()A。
(﹣a3)2=﹣a6B。
2a2+3a2=6a2C。
2a2•a3=2a6D。
(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。
| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。
319.79万件B。
332.68万件C。
338.87万件D。
416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。
2018年山西省中考数学试卷(附详细答案)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算12-+的结果是 ( )A .3-B .1-C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=oC .14∠=∠D .34∠=∠3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 ( )A .众数B .平均数C .中位数D .方差4.将不等式组260,40x x -⎧⎨+>⎩≤的解集表示在数轴上,下面表示正确的是( )ABAB 5.下列运算错误的是( )A.0(31)1-=B .291(3)44-÷= C .22256x x x -=-D .3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '△,C D '与AB 交于点E .若135∠=o ,则2∠的度数为( )A .20oB .30oC .35oD .55o 7.化简2442x xx x ---的结果是 ( )A .22x x -+B .26x x -+C .2xx -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( ) A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.2是无理数的证明如下:假设2是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()(2)2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以22(2)2m p =,222p m =,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知“2是有理数”的假设不成立,所以,2是无理数.这种证明“2是无理数”的方法是 ( ) A .综合法 B .反证法 C .举反例法 D .数学归纳法 10.如图是某商品的标志图案.AC 与BD 是O e 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若10cm AC =,36BAC ∠=o ,则图中阴影部分的面积为( )A .25cm πB .210cm π C .215cm πD .220cm π第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:41892-= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知ABC △三个顶点的坐标分别为(0,4)A ,(1,1)B -,(2,2)C -.将ABC △向右平移4个单位,得到A B C '''△,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o ,得到A B C ''''''△,点,,A B C '''的对应点分别为''A ,''B ,''C ,则点''A 的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54o .已知测角仪的架高 1.5CE =米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090=o,cos540.5878=o,tan 54 1.3764=o ).15.一副三角板按如图方式摆放,得到ABD △和BCD △,其中90ADB BCD ∠=∠=o ,60A ∠=o ,45CBD ∠=o .E 为AB 的中点,过点E 作EF CD ⊥于点F .若4cm AD =,则EF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分)(1)计算:231(2)8sin 453-⎛⎫-+- ⎪⎝⎭o g .(2)分解因式:22(2)(2)y x x y +-+.17.(本小题满分6分)已知:如图,在ABCD Y 中,延长AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.(本小题满分7分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF ,EF . (1)求函数ky x=的表达式,并直接写出E ,F 两点的坐标; (2)求AEF △的面积.19.(本小题满分7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.山西省有着“小杂粮王国”的美誉,谷子作为山西省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2 000万亩,年总产量为150万吨,山西省谷子平均亩产量为160 kg ,国内其他地区谷子的平均亩产量为60 kg .请解答下列问题: (1)求山西省2016年谷子的种植面积是多少万亩.(2)2017年,若山西省谷子的平均亩产量仍保持160 kg 不变,要使山西省谷子的年总产量不低于52万吨,那么,2017年山西省至少应再多种植多少万亩的谷子?20.(本小题满分12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是 亿元;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页) 数学试卷 第6页(共28页)②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号,,,A B C D 表示).21.(本小题满分7分)如图,ABC △内接于O e ,且AB 为O e 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O e 的切线交于点D . (1)若4AC =,2BC =,求OE 的长;(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.(本小题满分12分) 综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或,形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD 中,8cm AD =,12cm AB =.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '△,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形;(2)请在图4中判断NF 与ND '的数量关系,并加以证明; (3)请在图4中证明AEN △是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称. 23.(本小题满分14分) 综合与探究如图,抛物线2y x x =+x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t秒(0t >).(1)求直线BC 的函数表达式;(2)①直接写出,P D 两点的坐标(用含t 的代数式表示,结果需化简); ②在点P ,Q 运动的过程中,当PQ PD =时,求t 的值.(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案. 【考点】有理数的加法 2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=o ,25∠=∠,43∠=∠,可得35180∠+∠=o ,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可. 【考点】平行线的判定 3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好. 【考点】数据的集中趋势和离散程度 4.【答案】A 【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:5/ 14则点A''的坐标为(6,0).数学试卷第11页(共28页)数学试卷第12页(共28页)13.8 1.515.3mAB AD BD∴=+=+=.27/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)画树状图为:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)312A A ∠=∠+∠=∠Q ,2CDE A ∴∠=∠.(2)连接OC ,由等腰三角形的性质得出1A ∠=∠,由切线的性质得出OC CD ⊥,得出290CDE ∠+∠=o ,证出3CDE ∠=∠,再由三角形的外角性质即可得出结论.【考点】圆的有关性质,切线的性质,相似三角形的判定和性质22.【答案】(1)证明:Q 四边形ABCD 是矩形,90D DAE ∴∠=∠=o ,由折叠的性质得,AE AD =,90AEF D ∠=∠=o ,90D DAE AEF ∴∠=∠=∠=o ,∴四边形AEFD 是矩形,AE AD =Q ,∴矩形AEFD 是正方形;(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=o ,HF HD HD '==,Q 四边形AEFD 是正方形,90EFD ∴∠=o ,90AD H ∠'=o Q ,90HD N '∴∠=o ,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)Q 四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+Q ,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE Q ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =Q :,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=o ,由折叠的性质得到AE AD =,90AEF D ∠=∠=o ,。
2018年山西中考数学答案+解析
2018 年山西中考数学卷一.选择题(每题 3 分)1. 下面有理数比较大小,正确的是()A .0<-2B .-5<3C .-2<-3D .1<-4【答案】B【考点】有理数比较大小【解析】正数永远大于负数;负数比较大小,绝对值大的反而小,判断出只有选项 B 正确,故而选 B .2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果,下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》【答案】B【考点】数学史【解析】《算经十书》是指汉、唐一千多年间的十部著名的数学著作,十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙 子算经》.不包括古希腊著名数学家欧几里得的《几何原本》,故而选 B .⎭3. 下列运算正确的是()A .(-a 3 )2= -a 6B . 2a 2+ 3a 2= 6a2C . 2a 2⋅ a 3= 2a6D . ⎛ - ⎝b 2 ⎫32a ⎪= - b 6 8a 3【答案】D【考点】幂的运算【解析】A 选项考查的是幂的乘方,偶次方结果非负,等式右边不该有负号;B 选项考查的是合并同类项, 字母部分不变,系数相加减,等式右边系数应该为 5;C 选项考查的是同底数幂的乘积,底数不变,指数相加,等式右边指数应该为 5;D 选项考查的也是幂的乘方,奇次方不改变符号,为唯一正确答案,故而选 D .4. 下列一元二次方程中,没.有.实数根的是( )A .x²-2x=0B .x²+4x -1=0C .2x²-4x+3=0D .3x²=5x -2【答案】C【考点】二次方程根的判别【解析】A 选项,△=(-2)2-0=4,则该方程有两个相等的实数根;B 选项,△=42+4=20,则该方程有两个不相等的实数根;C 选项,△=(-4)2-4×2×3=-8,则该方程没有实数根;D 选项,△=(-5)2-4×3×2=1,则该方程有两个不相等的实数根; 故而选 C .5.近年来快递业发展迅速,下表是 2018 年 1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件);1-3 月份我省这七个地方邮政快递业务量的中位数是()A.319.79 万件B.332.68 万件C.338.87 万件D.416.01 万件【答案】C【考点】中位数的概念【解析】将我省七个地方邮政快递业务量进行从小到大的排序(单位:万件):302.34、319.79、332.68、338.87、416.01、725.86、3303.78,中间的数据 338.87 万件即为中位数,故而选 C.6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒,若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06⨯104 立方米/时B.3.136⨯106 立方米/时C.3.636⨯106 立方米/时D.36.36⨯105 立方米/时【答案】C【考点】科学记数法【解析】1 小时=60 分钟=3600 秒,1010 立方米/秒=1010×3600 立方米/时=3636000 立方米/时=3.636×106 立方米/时,故而选 C.7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A.4 9B.13C.29D.19【答案】A【考点】概率的计算【解析】第一次摸到的情况有黄球、黄球、白球;第二次摸到的情况有黄球、黄球、白球。
2018年山西省中考数学试卷(带解析答案)
第 5页(共 21页)
A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8
【解答】解:利用对称性可知:阴影部分的面积=扇形 AEF 的面积﹣△ABD 的面
第 2页(共 21页)
故选:C.
5.(3 分)近年来快递业发展迅速,下表是 2018 年 1~3 月份我省部分地市邮政 快递业务量的统计结果(单位:万件):
太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68 302.34 319.79 725.86 416.01 338.87 1~3 月份我省这七个地市邮政快递业务量的中位数是( ) A.319.79 万件 B.332.68 万件 C.338.87 万件 D.416.01 万件 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01, 725.86,3303.78 由于这组数据有奇数个,中间的数据是 338.87 所以这组数据的中位数是 338.87 故选:C.
3.(3 分)下列运算正确的是( ) A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2
C.2a2•a3=2a6 D. t ﷽
t﷽
【解答】解:A、(﹣a3)2=a6,此选项错误;
B、2a2+3a2=5a2,此选项错误;
C、2a2•a3=2a5,此选项错误;
D、 t ﷽ 故选:D.
t
,此选项正确; ﷽
2.(3 分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋 唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳 动成果.下列四部著作中,不属于我国古代数学著作的是( )
山西省2018年中考数学试题(解析版)
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1. 下面有理数比较大小,正确的是()A. 0<﹣2B. ﹣5<3C. ﹣2<﹣3D. 1<﹣4【答案】B【解析】分析:直接利用有理数比较大小的方法分别比较得出答案.详解:A、0>-2,故此选项错误;B、-5<3,正确;C、-2>-3,故此选项错误;D、1>-4,故此选项错误;故选:B.点睛:此题主要考查了有理数大小比较,正确把握比较方法是解题关键.2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A. B. C. D. 学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...【答案】B【解析】【分析】根据数学常识逐一判别即可得.【详解】A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选B.【点睛】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.《周髀算经》3. 下列运算正确的是()A. (﹣a3)2=﹣a6B. 2a2+3a2=6a2C. 2a2•a3=2a6D.【答案】D【解析】【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【详解】A、(-a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、(,此选项正确;故选D.【点睛】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.4. 下列一元二次方程中,没有实数根的是()A. x2﹣2x=0B. x2+4x﹣1=0C. 2x2﹣4x+3=0D. 3x2=5x﹣2【答案】C【解析】【分析】计算出四个选项中方程的根的判别式的值,即可得出答案.【详解】A.∵△=(−2)2−4×1×0=4>0,∴此方程有两个不等实数根,此选项不符题意;B.∵△=42−4×1×(-1)=20>0,∴此方程有两个不等实数根,此选项不符题意;C.∵△=(−4)2−4×2×3=-8<0,,∴此方程无实数根,此选项符合题意;D.∵△=(−5)2−4×3×2=1>0,∴此方程有两个不等实数根,此选项不符题意.故选C.【点睛】本题考查了一元二次方程根的判别式.准确求出一元二次方程根的判别式的值是解题的关键.5. 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A. 319.79万件B. 332.68万件C. 338.87万件D. 416.01万件【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78 由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选C.【点睛】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A. 6.06×104立方米/时B. 3.136×106立方米/时C. 3.636×106立方米/时D. 36.36×105立方米/时【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1010×360×24=3.636×106立方米/时,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.【答案】A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8. 如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A. 12B. 6C. 6D.【答案】D【解析】【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【详解】连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°-60°-60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°-60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°-60°-30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB-AA'=AB-AC=6,∴B'B=6,故选D.【点睛】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.9. 用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A. y=(x﹣4)2+7B. y=(x﹣4)2﹣25C. y=(x+4)2+7D. y=(x+4)2﹣25【答案】B【解析】【分析】直接利用配方法进而将原式变形得出答案.【详解】y=x2-8x-9=x2-8x+16-25=(x-4)2-25.故选B.【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.10. 如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB 的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A. 4π﹣4B. 4π﹣8C. 8π﹣4D. 8π﹣8【答案】A【解析】【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积-△ABD的面积.【详解】利用对称性可知:阴影部分的面积=扇形AEF的面积-△ABD的面积=×4×2=4π-4,故选A.【点睛】本题考查扇形的面积公式、正方形的性质等知识,解题的关键是学会用转化的思想思考问题.二、填空题(本大题共5个小题,每小题3分,共15分)11. 计算:(3+1)(3﹣1)= .【答案】17.【解析】【分析】根据平方差公式计算即可.【详解】原式=(3)2-12=18-1=17故答案为:17.【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.12. 图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13. 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.【答案】55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14. 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为_____.【答案】2.【解析】【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【详解】如图,作高线BG,∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.【点睛】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,此题难度不大,熟练掌握平行线和角平分线的基本作图是关键.15. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O 分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.【答案】.【解析】【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【详解】如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案为.【点睛】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16. 计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2).【答案】(1)7;(2) .【解析】【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【详解】(1)原式=8-4+×6+1=8-4+2+1=7.(2)原式===.【点睛】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.17. 如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【答案】(1)y1=x+2;;(2)当x>﹣2时,y1>0;(3)x<﹣4或0<x<2.【解析】【分析】(1)将C、D两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案.(3)根据图象即可求出答案该不等式的解集.【详解】(1)∵一次函数y1=k1x+b的图象经过点C(-4,-2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数y2=的图象经过点D(2,4),∴4=.∴k2=8.∴反比例函数的表达式为y2=(2)由y1>0,得x+2>0.∴x>-2.∴当x>-2时,y1>0.(3)x<-4或0<x<2.【点睛】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法以及数形结合的思想,本题属于中等题型.18. 在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【答案】(1)详见解析;(2)40%;(3)105;(4).【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【答案】(1)斜拉索顶端点C到AB的距离为72米;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【解析】【分析】(1)过点C作CD⊥AB于点D.解直角三角形求出DC即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等【详解】(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵tan38°=,∴AD=.在Rt△BDC中,∠BDC=90°,∠B=28°.∵tan28°=,∴BD=.∵AD+BD=AB=234,∴x+2x=234.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)【点睛】本题考查解直角三角形的应用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20. 2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【答案】乘坐“复兴号”G92次列车从太原南到北京西需要小时.【解析】【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:,解得:x=,经检验,x=是原分式方程的解,∴x+=答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点睛】题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21. 请阅读下列材料,并完成相应的任务:同理可得.∴Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【答案】(1)四边形AXYZ是菱形,证明详见解析;(2)详见解析;(3)D.【解析】【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ 是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【详解】(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点睛】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.22. 综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E 是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【详解】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质,构造全等三角形是解本题的关键.23. 综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.【答案】(1)C(0,﹣4);(2)Q点坐标为(,﹣4)或(1,﹣3);(3)当m=2时,QF有最大值.【解析】【分析】(1)解方程x2−x-4=0得A(-3,0),B(4,0),计算自变量为0时的二次函数值得C点坐标;(2)利用勾股定理计算出AC=5,利用待定系数法可求得直线BC的解析式为y=x-4,则可设Q(m,m-4)(0<m<4),讨论:当CQ=CA时,则m2+(m-4+4)2=52,当AQ=AC时,(m+3)2+(m-4)2=52;当QA=QC时,(m+3)2+(m-4)2=52,然后分别解方程求出m即可得到对应的Q点坐标;(3)过点F作FG⊥PQ于点G,如图,由△OBC为等腰直角三角形.可判断△FQG为等腰直角三角形,则FG=QG=FQ,再证明△FGP~△AOC得到,则PG=FQ,所以PQ=FQ,于是得到FQ=PQ,设P(m,m2-m-4)(0<m<4),则Q(m,m-4),利用PQ=-m2+m得到FQ=(-m2+m),然后利用二次函数的性质解决问题.【详解】(1)当y=0,x2−x-4=0,解得x1=-3,x2=4,∴A(-3,0),B(4,0),当x=0,y=x2−x-4=-4,∴C(0,-4);(2)AC=,易得直线BC的解析式为y=x-4,设Q(m,m-4)(0<m<4),当CQ=CA时,m2+(m-4+4)2=52,解得m1=,m2=-(舍去),此时Q点坐标为(,-4);当AQ=AC时,(m+3)2+(m-4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,-3);当QA=QC时,(m+3)2+(m-4)2=52,解得m=(舍去),综上所述,满足条件的Q点坐标为(,-4)或(1,-3);(3)解:过点F作FG⊥PQ于点G,如图,则FG∥x轴.由B(4,0),C(0,-4)得△OBC为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG为等腰直角三角形,∴FG=QG=FQ,∵PE∥AC,PG∥CO,∴∠FPG=∠ACO,∵∠FGP=∠AOC=90°,∴△FGP~△AOC.∴,即,∴PG=FG=•FQ=FQ,∴PQ=PG+GQ=FQ+FQ=FQ,∴FQ=PQ,设P(m,m2-m-4)(0<m<4),则Q(m,m-4),∴PQ=m-4-(m2-m-4)=-m2+m,∴FQ=(-m2+m)=-(m-2)2+∵-<0,∴QF有最大值.∴当m=2时,QF有最大值.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.。
2018年山西省中考数学试卷
数学试卷 第1页(共8页)数学试卷 第2页(共8页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下面有理数比较大小,正确的是( )A .B .C .D .02<53-<23--<14-<2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》 3.下列运算正确的是 ( )A .B .326()a a -=-222236a a a +=C .D .2362 =2a a a 2633()28b b a a-=-4.下列一元二次方程中,没有实数根的是( )A .B .22=0x x -2410x x +-=C . D .22430x x -+=2352x x =-5.近年来快递业发展迅速,下表是2018年1—3月份山西省部分地市邮政快递业务量的统计结果(单位:万件) 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市3 303.78 332.68 302.34 319.79 725.86 416.01 338.871—3月份我省这七个地市邮政快递业务量的中位数是 ( )A .万件B .万件C .万件D .万件31979.33268.33887.41601.6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于山西省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量立方米/秒.若1 010以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .立方米/时B .立方米/时 46.0610⨯63.13610⨯C .立方米/时D .立方米/时63.63610⨯536.3610⨯7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( )A .B .C .D .491329198.如图,在中,,,,将绕Rt ABC △°90ACB ∠=°60A ∠=6AC =ABC △点按逆时针方向旋转得到,此时点恰好在边上,则C A B C ''△A 'AB 点与点之间的距离为( ) B 'B A .12B .6C .D .9.用配方法将二次函数化为的形式为( )289y x x =--2()y a x h k =-+A . B .2(4)7y x =-+2(4)25y x =--C .D .2(+4)7y x =+2(+4)25y x =-10.如图,正方形内接于,的半径为2,以点为圆ABCD O O A 心,以长为半径画弧交的延长线于点,交的延长AC AB E AD 线于点,则图中阴影部分的面积是( )F A . B . 4π4-4π8-C .D .8π4-8π8-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共5小题,每小题3分,共15分.请把答案填写在题中的横线上) 11.计算: .1)+-=12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则 度.12345=∠+∠+∠+∠+∠图1 图213.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过.某厂家生产符合该规定的行李115 cm 箱,已知行李箱的宽为,长与高的比为,则符合此规20 cm 8:11定的行李箱的高的最大值为 .cm 14.如图,直线,直线分别与,相交于MN PQ ∥AB MN PQ 点,.小宇同学利用尺规按以下步骤作图:A B ①以点为圆心,以任意长为半径作弧交于点,交于点;A AN C AB D ②分别别以,为圆心,以大于长为半径作弧,两C D 12CD 弧在内交于点; NAB ∠E ③作射线交于点.AE PQ F 若,,则线段的长为 .=2AB °=60ABP ∠AF 15.如图,在中,,,,点是的中点,以为直径Rt ABC △°=90ACB ∠=6AC =8BC D AB CD 作,分别与,交于点,,过点作的切线,交于点,O O AC BC E F F O FG AB G 则的长为 . FG 三、解答题:(本大题共8个小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分) 计算:(1); 210|4|362---+⨯+(2). 222111442x x x x x x -----+-17.(本小题满分8分)如图,一次函数的图象分别与轴,轴相交于点,,与反比例111(0)y k x b k =+≠x y A B 函数的图象相交于点,. 222(0)k y k x=≠(4,2)C --(2,4)D (1)求一次函数和反比例函数的表达式; (2)当为何值时,;x 10y >(2)当为何值时,,请直接写出的取值范围. x 12y y <x18.(本小题满分9分)在“优秀传统文化进校园”活动中,学校计划每周二下午三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图均不完整)请解答下列问题:(1)请补全条形统计图和扇形统计图数学试卷 第5页(共8页)数学试卷 第6页(共8页)(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人? (4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体况,那么正好抽到参加“器乐”活动项目的女生的概率是多少? 19.(本小题满分8分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表. 项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索,相交于点,AC BC C 分别与桥面交于,两点,且点,,在A B A B C 同一竖直平面内的度数 A ∠的度数 B ∠ 的长度AB 测量数据 °38°28234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点到的距离(参考数据C AB ,,,,,);°sin380.6≈°cos380.8≈°tan380.8≈°sin280.5≈°cos280.9≈°tan280.5≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(本小题满分7分)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列列车时速更快,安全性更好.已知“太原南一北京西”全程大约500千米,“复兴号”次列车平均每小时比某列“和谐号”列车多G92行驶40千米,其行驶时间是该列“和诸号”列车行驶时间的(两列车兴号中途停留45时间均除外).经查询,“复兴号”次列车从太原南到北京西,中途只有石家庄一G92站,停留10分钟.求乘坐“复兴号”次列车从太原南到北京西需要多长时间. G9221.(本小题满分8分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形的和ABC AC 两边上分别取学的点和,使得.(如图)解决这个BC X Y ==AX BY XY 问题的操作步骤如下:第一步,在上作出一点,使得,连接.CA D CD CB =BD 第二步,在上取一点,作,交于点,并在上取一点,CB Y 'Y Z CA ''∥BD Z 'AB A '使.Z A Y Z ''''=第三步,过点作,交于点.A AZ A Z ''∥BD Z 第四步,过点作,交于点,再过点作,交于点 Z ZY AC ∥BC Y Y YX ZA ∥AC X 则有. AX BY XY ==下面是该结论的部分证明证明:∵,∴ AZ A Z ''∥BA Z BAZ ''∠=∠又∵.A BZ ABZ ''∠=∠∴∴, BA Z BAZ ''△∽△Z A BZ ZA BZ'''=同理可得:,∴ Y Z BZ YZ BZ '''=Z A Y Z ZA YZ''''=∵,∴.…Z A Y Z ''''=ZA YZ =-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以AXYZ 证明.(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成的证明过程 ==AX BY XY (3)上述解决问题的过程中,通过作平行线把四边形放大得到四边形,BA Z Y '''BAZY 从而确定了点,的位置,这里运用了下面一种图形的变化是 . Z Y A .平移旋转C .轴对称D .位似22.(本小题满分12分) 综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,ABCD ,是延长线上一点,且,连接,交于点,以为一=2AD AB E AB =BE AB DE BC M DE 边在的左下方作正方形,连接.试判断线段与的位置关系. DE DEFC AM AM DE 探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法: AM DE 证明:∵,∴∵,∴ =BE AB =2AE AB =2AD AB =AD AE ∵四边形是矩形,∴∴.(依据1) ABCD AD BC ∥EM EBDM AB=∵,∴,∴. =BE AB 1EMDM=EM DM =即是的边上的中线, AM ADE △DE 又∵,∴.(依据2) =AD AE AM DE ⊥∴.垂直平分 AM DE 反思交流(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明: A GF (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一CE CE 边在的左下方作正方形,发现点在线段的垂直平分线上,请你给CE CEFG G BC 出证明; 探索发现:(3)如图3,连接,以为一边在的右上方作正方形,可以发现点CE CE CE CEFG,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形C B AE ABCD 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你CEFG 发现的结论,并加以证明;图1图2图323.(本小题满分13分) 综合与探究 如图,抛物线与轴交于,两点(点在点的左侧),与轴211433y x x =--x A B A B y 交于点,连接,.点是第四象限内抛物线上的一个动点,点的横坐标C AC BC P P 为,过点作轴,垂足为点,交于点,过点作m P PM x ⊥M PM BC Q P PE AC ∥交轴于点,交于点. x E BC F (1)求,,三点的坐标;A B C (2)试探究在点运动动的过程中,是否存在这样的点,使得以,,为顶P Q A C Q 点的三角形是等腰三角形.若存在,请直接写出此时点的坐标;若不存在,请说Q 明理由;(3)请用含的代数式表示线段的长,并求出为何值时有最大值.m QF m QF。
2018年山西省中考数学试卷含答案解析(Word版)
2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 63 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D. 设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作 AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZA BZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '. YZ BZ ZA YZZ'A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
2018-年-山西省中考数学-试-卷(解析版).doc
2018 年山西省中考数学试卷( 解析版 )第 I 卷选择题(共 30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5 <3C. -2 <-3D. 1<- 4【答案】B【考点】有理数比较大小2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果. 下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3.下列运算正确的是()A.a3 2 a 6B. 2a2 3a2 6a 2C. 2a2 a3 2a6D. ( b2)3b6 2a a3【答案】D【考点】整式运算【解析】A.a3 2 a6 B2a2 3a2 5a2 C. 2a2 a3 2a54.下列一元二次方程中,没有实数根的是()A. x2 2x 0B. x2 4x 1 0C. 2x2 4x 3 0D. 3x2 5x 2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△ =0,有两个相等的实数根,△< 0,没有实数根.A.△ =4B. △=20C.△=-8D.△=15.近年来快递业发展迅速,下表是2018年1-3月份我省部分地市邮政快递业务量的统计结(果单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B. 332.68万件C. 338.87万件D. 416.01万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87万件.6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/ 秒. 若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 104立方米/时B. 3.136 106立方米/时C. 3.636 106立方米/ 时D. 36.36 105立方米/时【答案】C【考点】科学计数法【解析】一秒为1010 立方米,则一小时为 1010 ×60×60=363600 0 立方米,3636000 用科学计数法表示为3.636×106.7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 4B. 1C.2D.19 3 9 9【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有9种等可能结果,其中两次都摸到黄球的结果有4种,4∴ P(两次都摸到黄球)=98.如图,在 Rt △ ABC 中,∠ ACB=90 °,∠ A=60 °, AC=6,将△ ABC 绕点 C 按逆时针方向旋转得到△A’ B’ C,此时点 A ’恰好在 AB 边上,则点 B ’与点 B 之间的距离是()A.12B. 6C.62D.6 3【考点】旋转,等边三角形性质【解析】连接 BB ’,由旋转可知 AC=A ’ C, BC=B’ C,∵∠ A=60 °,∴△ ACA’为等边三角形,∴ ∠ ACA’ =60°,∴ ∠ BCB’ =60°∴△ BCB’为等边三角形,∴ BB’ =BC=6 3 .9. 用配方法将二次函数y x2 8x 9 化为 y a x h 2 k 的形式为()A. y x 42 7B.y x 4 2 25C. yx 4 2 7D. y x 4 2 25【答案】B【考点】二次函数的顶点式【解析】 y x2 8x 9 x2 8x 16 16 9 x 4 2 2510.如图,正方形 ABCD 内接于⊙ O,⊙ O的半径为 2 ,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点E,交A.4 π -4 AD的延长线B. 4 π -8于点 F ,则图中阴影部分的面积是(C. 8 π -4D. 8π -8)【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴ ∠ BAD=90 °,可知圆和正方形是中心对称图形,第 I 卷非选择题(共 90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(3 2 1)(3 2 1) .【答案】1 7【考点】平方差公式【解析】∵ (a b)(a b) a2 b2∴ (3 2 1)(3 2 1) (3 2 )2 1 18-1=1712.图 1 是我国古代建筑中的一种窗格. 其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美. 图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则12345度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为 360°,图中五条线段组成五边形∴1234 5 360.13 . 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 _____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm ,宽为 11xcm20 8x 11x115解得 x 5∴高的最大值为 11 555 cm14 .如图,直线 MN∥ PQ,直线 AB 分别与 MN,PQ相交于点图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交A,B.小宇同学利用尺规按以下步骤作AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠ NAB内交于点 E;③作射线 AE交 PQ于点 F. 若 AB=2 ,∠ ABP=60 0,2则线段 AF 的长为______.【答案】2 3【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点B作BG⊥AF交AF于点G由尺规作图可知,AF平分∠NAB∴ ∠ NAF=∠ BAF∵MN∥ PQ∴ ∠ NAF=∠ BFA∴ ∠ BAF= ∠ BFA∴BA=BF=2∵ BG⊥ AF∴AG=FG∵ ∠ ABP=60 0∴ ∠ BAF= ∠ BFA=30 0Rt △ BFG 中, FG BF c o s BFA 233 2∴AF 2FG 2 315 .如图,在 Rt △ ABC 中,∠ ACB=90 0, AC=6 , BC=8 ,点 D 是 AB O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交的中点,以 CD 为直径作⊙ O,⊙ AB 于点 G,则 FG 的长为_____.【答案】125【 考 点 】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数 【解析】连接OF∵ FG 为 ⊙ 0 的切线∴ OF ⊥ FG∵ Rt △ ABC 中 , D 为 AB 中 点∴ CD=BD∴ ∠ DCB=∠ B ∵ OC=OF∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD∵ O 为CD 中点∴F 为BC 中点∴ CF BF1BC42Rt △ ABC 中 , s in3 B5FG3 12Rt △ BGF 中 , BF sin B 4 5 5三、解答题(本大题共 8 个小题,共 75 分. 解答应写出文字说明,证明过程或演算步骤)16. (本题共2个小题,每小题5分,共10 分)计算:(1)2) 24 3 16 0(22【考 点】实数的计算【 解 析 】解 : 原 式= 8-4+2+1=7x 2x 211( 2 ) x 1 x 24x 4 x 2【考点】分式化简x2x 2 11x+11 x【解析】解:原式=1 x2 4x 4 x 2 = x 2 x 2 =x 2x17.(本题8分) 如图, 一次函数 y 1 k 1 x b(k 1 0) 的图象分别与 x 轴 , y 轴相交于点 A , B , 与反比 例 函 数 y 2 (k 0) 的图象相交于点 C ( - 4 ,- 2 ), D ( 2 , 4 ) . (1)求一次函数和反比例函数的表达式; ( 2) 当 x 为何值时, y 1 0 ;【考点】反比例函数与一次函数【解析】( 1)解:一次函数y1 k1 x b 的图象经过点C(- 4,- 2),D(2,4),( 3 )解:x 4 或 0 x 2.18.(本题9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动 .教务处在该校七年级学生中随机抽取了100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题 :(1)请补全条形统计图和扇形统计图;(3)若该校七年级学生共有 500 人,请估计其中参加“书法” 项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【考点】条形统计图,扇形统计图【解析】(1)解:(2)解:10100% 40%. 10+15答:男生所占的百分比为40%.(3)解:500 21%=105 (人).答:估计其中参加“书法”项目活动的有105 人. (4)解:15 =15= 515+10+8+15 48 165答:正好抽到参加“器乐”活动项目的女生的概率为5.1619.(本题8分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征 . 某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表 .项目内容课题测量斜拉索顶端到桥面的距离说明:两侧最长斜拉索AC,BC 相交于点 C,分别测量示意图与桥面交于 A ,B 两点,且点 A ,B,C 在同一竖直平面内.测量数据∠ A的度数∠B的度数AB的长度38 °28 °234 米... ...(10.5 , cos 28 0.9 ,tan 28 0.5 );tan 38 0.8 , sin 28【 考 点 】三角函数的应用 【解析】(1)解:过点C 作CDAB 于点D.设 CD= x 米 , 在 RtADC 中 ,∠ ADC=90°, ∠ A=38 ° .AD BDAB 2345 x 2x 234..解 得 x72 .答:斜拉索顶端点C 到AB 的距离为72 米.( 2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教 师 ,活 动 感 受等 .20.( 本题 7 分) 2018 年 1 月 20 日,山西迎来了 “复 兴号” 列车,与 “ 和 谐号”相比,“车 多 行 驶 40 千米,其行驶时间是该列“和谐号 ”列车行驶时间的 4( 两 复5列 车 中 途 停 留 时 间均除 外 ). 经查询,“复兴号” G92 次列车从太原南到北京西,中途只有石家庄 一 站 ,停留10 分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.兴 【 考 点 】分式方程应用【解析】号解 :设乘坐“复兴号”G92 次列车从太原南到北京西需要 x 小 时 ,由题意,得50050085 +40解 得1=1x 3x4( x)”66经 检 验 , x8是原方程的根.3列答:乘坐“复兴号” G92次列车从太原南到北京西需要8小 时 .3车时速在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法. 著名美籍匈牙 利 数 学 家 波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形ABC 的AC和 BC 两边上分别取一点 X 和 Y ,使 得 AX=BY=XY. (如图)解决这个问题的操作步骤如下: 第一步,在 CA 上作出一点D ,使得 CD=CB ,连接 BD. 第二步,在 CB 上取一点 Y ’,作 Y ’ Z ’ //CA,交 BD 于点Z ’,并在AB 上取一点A ’,使Z ’A ’=Y ’Z ’.第三步,过点A 作AZ//A’Z ’,交BD 于 点 Z. 第四步,过点 Z 作 ZY//AC ,交BC 于点Y ,再过Y 作YX//ZA ,交AC 于点X.则 有 AX=BY=XY. 下面是该结论的部分证明:证 明 :AZ//A'Z BA'Z'BAZ又∠A'BZ'=∠ABZ.△BA' Z△BAZZ'A' BZ'.ZA BZ同理可得Y 'Z 'BZ'. Z'A' Y'Z'.YZ BZ ZA YZZ'A'Y'Z',ZA YZ....任 务 :( 1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的 形 状 , 并 加 以 证明;((3)上述解决问题的过程中,通过作平行线把四边形 BA ’ Z ’ Y ’放 大 得 到 四 边 形 BAZY ,从而确 定 了 点 2Z ,Y 的位置,这里运用了下面一种图形的变化是 . ) A.平移B.旋转C.轴对称D.位似请 【考点】菱形的性质与判定,图形的位似【解析】再 (1)答: 四 边 形 AXYZ 是 菱 形.Z Y/ / AC, YX/ / ZA, 四 边 形 AXYZ 是平行四边形.证 明 :仔ZA YZ,AXYZ 是菱形(2)答: 证 明 : CD CB, 12细 ZY//AC,1 3. 阅2= 3. YB YZ .四 边 形 AXYZ 是菱形, AX=XY=YZ.读 AX=BY=XY.上(3) 上述解决问题的过程中,通过作平行线把四边形 BA ’ Z ’ Y ’放 大 得 到 四 边 形 BAZY ,从而 确 定了 点 Z ,Y 的位置,这里运用了下面一种图形的变化是 D (或位似).面 A.平移 B.旋转C.轴对称 D.位似.,在(1)的基础上完成AX=BY=XY 的证明过程;22. ( 本 题 12 分) 综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形 ABCD 中 ,AD=2AB ,E 是 AB 延长 线上一点,且 BE=AB ,连接 DE ,交 BC 于 点 M ,以 DE 为一边在 DE 的左下方作正方形 DEFG , 连 接 AM .试判断线 段 AM 与 DE 的位置关系 . 探究展示:勤奋小组发现,AM 垂直平分 DE ,并 展示 了如下的证明方法:证 明 :BE AB, AE 2AB AD 2AB, AD AEAD / /BC.四边 形 ABCD 是矩形,EM EB(依据1)DMABBE AB,EM EM DM .1DM即AM 是△ADE 的DE 边上的中线,又AD AE, AM DE. (依据2)AM 垂直平分DE .反思交流: (1) 上述证明过程中的“依据 1 ”“依据 2 ” 分别 是指什么?试判断图1中的点 A 是 否 在 线 段 GF 的垂直平分上,请直接回答,不必证明;(2) 创新小组受到勤奋小组的启发,继续进行探究,如图 2 ,连接 CE , 以 CE 为一边在 CE 的 左 下方 作 正 方形 CEFG ,发现点 G 在 线 段 BC 的垂直平分线上,请你给出证明;探索发现:(3) 如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形 ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【 考 点 】平行线分线段成比例,三线合一,正方形、矩形性质,全等 【解析】(1)答: 依 据 1 :两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段 成 比 例 ).依 据 2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).答:点A 在线段GF 的垂直平分线上. (2)证明:过点G 作GH BC 于点H ,四边 形 ABCD 是矩形,点 E 在 AB 的延长线上,CBEABC GHC 90 . 1+ 2=90 .四 边 形 CEFG 为正方形,CG CE, GCE 90 . 1 3 90. 2= 3. △GHC ≌ △CBE. HC BE. 四 边 形 ABCD 是矩形, AD BC.AD 2AB, BE AB, BC 2BE 2HC. HC BH.GH 垂直 平分 BC.点 G 在 BC 的垂直平分线上(3)答:点F在BC边的垂直平分线上(或点证法一:过点F作FM BC于点M,过点E作EN F在 AD 边的垂直平分线上). FM于点 N.BMN ENM ENF 90 .四边形ABCD是矩形,点E 在AB的延长线上,CBE ABC 90. 四边形BENM为矩形.BM EN, BEN 90 . 1 2 90 .四边形 CEFG 为正方形,EF EC, CEF 90 . 2 3 90 .1= 3. CBE ENF 90 ,△ENF≌△EBC.NE BE. BM BE.四边形 ABCD是矩形,AD BC.AD 2AB, AB BE. BC 2BM . BM MC.FM垂直平分 BC,点F在BC边的垂直平分线上.证法二:过 F 作 FN BE交 BE 的延长线于点 N ,连接 FB ,FC.四边形ABCD是矩形,点E在AB的延长线上,∠ CBE=∠ ABC=∠ N=90° .∠ 1+∠ 3=90° .四边形 CEFG 为正方形,EC=EF,∠ CEF=90 °.∠ 1+∠2=90° .∠ 2=∠ 3.△ ENF△ CBE.NF=BE,NE=BC.四边形ABCD是矩形,AD=BC.AD=2AB , BE=AB.设BE=a,则BC=EN=2a,NF=a.BF=CF.点 F 在 BC 边的垂直平分线上 .10 /1523.( 本题 13 分) 综合与探究如图,抛物线 y 1 x2 1x 4 与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,3 3连接AC , BC . 点P是第四象限内抛物线上的一个动点,点P的横坐标为 m ,过点P作 PM x 轴,垂足为点M, PM 交BC于点Q,过点 P 作PE∥AC交 x 轴于点 E ,交BC于点 F .(1)求A,B,C三点的坐标;(2)试探究在点P的运动的过程中,是否存在这样的点 Q ,使得以A, C ,Q 为顶点的三角形是等(腰 3 )请用含m的代数式表示线段 QF 的长,并求出m为何值时 QF 有最大值.三【考点】几何与二次函数综合【解析】角1 x2 1x 4=0形( 1 )解:由 y 0 ,得3 3 解得 x1 3 , x2 4 ..点 A,B的坐标分别为A(-3,0) ,B(4, 0)由 x 0 ,得 y 4 . 点 C 的坐标为 C(0,- 4).若(2)答:Q(5 2 5 24) ,Q2(1, 3) .1 ,2存 2(3)过点F作FG PQ于点G.在则 FG ∥ x 轴 . 由 B (4,0),C(0,- 4),得△O B C为等腰直角三角形.2OBC QFG 45 . GQ FG FQ .2,PE∥ AC , 1 2 .FG ∥ x 轴,2 3 . 1 3 .FGP AOC 90 , △FGP ∽△ AOC . .写出此时点Q 的坐标;若不存在,请说明理由;。