单位根检验的EViews操作
单位根检验的EViews操作课件

如何进一步学习时间序列分析的相关知识
01
阅读时间序列分析相关的专业书籍和学术论文,深入理解时间 序列分析的基本原理和方法。
02
学习EViews软件的使用方法,掌握各种时间序列分析工具和命
令。
参加时间序列分析相关的课程和培训,与专业人士交流学习,
03
提高自己的分析能力。
THANKS FOR WATCHING
设,认为数据不存在单位根。
03
根据单位根检验结果,可以进一步进行其他相关分析和建 模。
04
单位根检验的EViews操 作实例
单个时间序列数据的单位根检验
01
打开EViews软件,选择 “File”菜单中的“New”选 项,创建一个新的工作文件。
02
在工作文件中,选择 “Quick”菜单中的“Empty Group”选项,创建一个空的 工作组。
单位根检验的原理
单位根检验基于ADF(Augmented Dickey-Fuller)检验和PP(Phillips-Perron )检验等统计方法,通过构建适当的回归模型并检验其残差是否具有单位根来确 定时间序列数据是否平稳。
如果残差存在单位根,则说明时间序列数据是非平稳的,即存在一个单位根;如 果残差不存在单位根,则说明时间序列数据是平稳的。
02
EViews软件介绍
EViews软件的特点
界面友好
01
EViews软件采用直观的图形界面,方便用户进行数据处理和统
计分析。
功能强大
02
EViews提供了丰富的数据处理、模型估计、统计分析和预测功
能,满足各种研究需求。
兼容性好
03
EViews支持多种数据格式和软件接口,方便与其他软件进行数
单位根检验的EViews操作

继续讨论:
对GDP的一阶差分进行检验
在10%的显著性水平下,单位根检验的临界值为 -3.2602,上述检验统计量值-3.62511小于相应DW临界值, 从而拒绝H0,表明我国1978——2003年D(GDP)序 列是平稳序列.
年度数据一般选择1或2年,月度数据一般选择6个月、12个月或者18个月, 季度数据一般4或者8。
单位根检验的 EViews操作
利用EViews进行单位根检验
(ADF、DF检验的操作步骤基本相同)
在主菜单选择Quick / Series Statistics / Unit Root Test 输入待检验的序列名/单击OK / 出现单位根检验对话框 单位根检验对话框(由三部分构成) (1)检验类型(Test Type) (A)DF检验 PP检验 (2)检验对象 Level(水平序列) 1st difference(一阶差分序列)
• 我们老师说样本较大时,选用bic ,较小 时用aic • 先找出最小的AIC和SIC(不是绝对值), 在此基础上看ADF检验是否通过,即判 断是否是平稳序列。 • 我一般是根据VAR模型的最优滞后阶 数-1作为协整的最优滞后阶数
• 根据赤池信息准则或舒瓦茨信息准则 • adf检验是在残差存在自相关时用的,滞 后阶数可以根据序列自相关和偏自相关 图确定
方法3: 单位根检验
Quick
Series Statistics
Unit Root Test
输入变量名(本例:GDP)
选择ADF检验 / Level(水平序列)/ Trend and Intercept (趋势项和漂移项)/ 滞后期数:2
在原假设 H 0 : 1或 H 0 : =0 下,单位根的t检验统计量的值为:
eviews残差单位根检验步骤

Eviews残差单位根检验步骤1. 概述Eviews是一种广泛用于计量经济学研究的数据分析软件,它提供了一系列的统计分析工具,其中包括残差单位根检验。
残差单位根检验是判断时间序列数据是否平稳的重要方法之一,本文将介绍在Eviews 软件中进行残差单位根检验的具体步骤。
2. 数据准备在进行残差单位根检验之前,首先需要利用Eviews进行时间序列模型的拟合,得到模型的残差序列。
在Eviews中,可以使用最小二乘法、一般最小二乘法等方法估计时间序列模型,得到残差序列。
以ARMA(p,q)模型为例,其残差序列可以通过以下步骤获取:(1) 打开Eviews软件,导入所需数据;(2) 选择“Quick/Estimate Equation”或“Proc/Estimate Equation”,在弹出的窗口中输入ARMA(p,q)模型的方程形式,点击“OK”进行模型估计;(3) 在估计结果页面,找到残差序列并将其保存。
3. 单位根检验Eviews提供了多种单位根检验的方法,如ADF检验、Phillips-Perron检验等。
下面将以ADF检验为例,介绍在Eviews中进行残差单位根检验的步骤。
(1) 打开Eviews软件,打开保存的残差序列数据;(2) 选择“View/Residual Diagnostics/Unit Root Test”;(3) 在弹出的窗口中选择ADF单位根检验,设置滞后阶数和趋势项,并点击“OK”进行检验;(4) 在ADF单位根检验结果页面,查看检验统计量的数值及其显著性水平,进行单位根检验的判断。
4. 检验结果解读进行残差单位根检验后,需要对检验结果进行解读。
在Eviews中,一般使用的显著性水平为0.05,若检验统计量的值小于相应的临界值,就可以拒绝原假设,即残差序列是平稳的。
相反,若检验统计量的值大于临界值,则不能拒绝原假设,残差序列是非平稳的。
在解读检验结果时,需要注意控制滞后阶数和趋势项的选择,以及检验结果的稳健性和有效性。
(最新整理)eviews讲解单位根检验

2021/7/26
1
单位根检验
第一节 单序列单位根检验 第二节 面板数据单位根检验
2021/7/26
2
第一节 单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作
三 不同检验结果后续分析思路
四 协整检验
2021/7/26
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:小于临界值则接受H1 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
备注:只要软件提供了P值就直接按P规则 做判定;除非没有提供的情况 下 才动用临界值法
备注:只要软件提供了P值就直接按P规则
做判定;除非没有提供的情况下 才动用 临界值法
2021/7/26
8
三 不同检验结果后续分析思路
分析思路 差分平稳
2021/7/26
9
不同检验结果后续分析思路
时间序列总体分析思路
时间序列
平稳性检验 原:不平稳
若是平稳序列
非平稳序列
单序列 多序列
考虑差分平稳
ARMA 多元回归分析 差分平稳I(d) 不平稳
16
例10.4中I?的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可
以2得021出/7/2结6 论: I?是I(1)的。
17
2021/7/26
18
右边 所有 栏目 软件
自动 填写 无需 更改
单位根检验操作

利用EViews进行单位根检验 (ADF、DF检验的操作步骤基本相同)
在主菜单选择Quick / Series Statistics / Unit Root Test 输入待检验的序列名/单击OK / 出现单位根检验对话框
单位根检验对话框(由三部分构成) (1)检验类型(Test Type)
在原假设 H0 : 1或H0 : =0 下,单位根的t检验统计量的值为:
ˆ 或 ˆ ... 0.786011
ˆˆ ˆˆ
在1%、5%、10%三个显著性水平下,单位根检验的临界值分
别为- 4.4167、-3.6219、-3.2474,显然,上述 检验统计量值大于
相应DW临界值,从而接受
我们老师说样本较大时,选用bic ,较小时用 aic
先找出最小的AIC和SIC(不是绝对值),在 此基础上看ADF检验是否通过,即判断是否是 平稳序列。
我一般是根据VAR模型的最优滞后阶数-1 作为协整的最优滞后阶数
根据赤池信息准则或舒瓦茨信息准则
adf检验是在残差存在自相关时用的,滞后阶 数可以根据序列自相关和偏自相关图确定
H ,表明我国1978——2003年度GDP 0
序列存在单位根,是非平稳序列。
继续讨论: 对GDP的一阶差分进行检验
在10%的显著性水平下,单位根检验的临界值为 -3.2602,上述检验统计量值-3.62511小于相应DW临界值, 从而拒绝H0,表明我国1978——2003年D(GDP)序 列是平稳序列.
单位根是否应该包括常数项和趋势项可以通过 观察序列图确定,通过Quick-graph-line操作观 察你的数据,若数据随时间变化有明显的上升 或下降趋势,则有趋势项,若围绕0值上下波 动,则没有趋势项;其二,关于是否包括常数 项有两种观点,一种是其截距为非零值,则取 常数项,另一种是序列均值不为零则取常数项。
eviews检验相关方法(2)

我用的是Eviews3.1注册版(因为其他的版本没注册都不稳定容易自己关闭程序),但大抵操作应该是相同的。
首先建立新的workfile,在命令窗口输入series,弹出新建的数列窗口,把要检验的数据存进去。
然后再数列窗口下点击view,找到unit root test就是单位根检验,弹出来的窗口的左上角是选择检验方式,一般保持默认的DF那一项就好了,Eviews里面的这个DF选项是把DF与ADF检验都包括在一起了。
右边的intercept啦intercept and trend啦是针对ADF 检验的不同模型,如果搞不清楚干脆就按默认吧。
左下角的level,1st differential,2st什么的是问你是针对原始数据、还是一阶差分、二阶差分来做检验,默认是level,就是原始数据。
都选好之后点击OK就好了。
输出的结果主要是看上面的表,第一个表左边给出一个值,右边给了三个值,分别是置信度99%,95%,90%的ADF检验临界值。
左边的值如果小于右边的某个值,说明该数据落在右边那个对应值的置信区间里。
比如左边给出-3,右边对应95%置信度的值是-1,-3<-1所以数据不存在单位根,是平稳的,这一检验的置信度是95%。
大概是这样吧,具体的ADF模型选择等等最好看一看相关书籍。
Eviews不难学的~~嘿嘿我也就是三天恶补大概看完的。
ADF检验的原假设是存在单位根,一般EVIEWS输出的是ADF检验的统计值,只要这个统计值是小于1%水平下的数字就可以极显著的拒绝原假设,认为数据平稳。
注意,ADF值一般是负的,也有正的,但是它只有小于1%水平下的才能认为是及其显著的拒绝原假设这样的话,如果你的变量是水平变量。
那么,你需要取对数,一般来说,取对数后的变量一般是平稳的,这样,你无需作协整;如果对数变量非平稳,再取一阶差分(绝大多数的水平变量取对数后再一阶差分是平稳的),你就可以作协整了了。
如果你的变量已是相对数,xt 与yt 并非I(1),那么,不能作协整,仅作一般的时间序列分析即可。
使用Eviews进行面板数据操作(有详图,包括Hausman检验,单位根检验)

每个个体有共
同的参数 bi
bi 随个体不
同而发生
变
变化
参
数
bi 随个体不 同而发生
模 型
变化
下面为个体固定效应的结果。 点击view——representation可以显示具体的回归方程式。
2. 面板数据的检验
① Hausman检验(要在随机效应结果窗口中进行) 对数据进行随机效应模型估计,在估计结果窗口点击view——Fixed/Random Effects testing——Correlated Random Effect-Hausman Test(6.0以上的 版本才可以)
⑤ 在打开的数据组中点击view——graph——scatter——simple scatter, 便可得到不同时间的散点图。
⑥ 同理,按ctrl键,分别选择ip_i, ip_ah,I p_bj, ip_hb…便可得到不同个体 的散点图。
由于是用同一组数据画出的图形,所以虽然采用的 是不同的方法,但是绘出的两个图形一样。
在估计结果中点击proc——Make Model可以出现估计结果的联立方 程形式,进一步点击Solve键可以 在弹出的对话框中进行动态和静态 预测。
在估计结果或原始的面包数据窗口中点击view——unit root test
这里默认为 Schwarz检 验,因为在 小样本情况 下Schwarz 检验效果最 好。
注意:只有在随机效应估计窗口中才能 进行Hausman检验,只有在固定效应估 计窗口中才能进行似然比检验
Hausman检验的原假设是个体效 应与回归变量无关,应建立随机效 应模型,因此当Hausman值较大, 其对应的P值远小于0.05时,拒绝
单位根检验操作讲解

GDP序列,检验其是否为平稳序列。
方法1: 用时序图判断
由GDP的时序图初步判断序列是不平稳的(可以看出该序列可能 存在趋势项,若需用ADF检验则选择第三种模型进行检验)。
方法2: 用自相关系数图判断
中国GDP时间序列的自相关系数不是很快地(如滞后期K=2,3
趋于零,即缓慢下降,再次表明序列是非平稳的.
• 单位根是否应该包括常数项和趋势项可 以通过观察序列图确定,通过Quickgraph-line操作观察你的数据,若数据随 时间变化有明显的上升或下降趋势,则 有趋势项,若围绕0值上下波动,则没有 趋势项;其二,关于是否包括常数项有 两种观点,一种是其截距为非零值,则 取常数项,另一种是序列均值不为零则 取常数项。
方法3: 单位根检验
Quick
Series Statistics
Unit Root Test
输入变量名(本例:GDP)
选择ADF检验 / Level(水平序列)/ Trend and Intercept (趋势项和漂移项)/ 滞后期数:2
在原假设 H0 : 1或H0 : =0 下,单位根的t检验统计量的值为:
• • •
• •
判断用不用常数项和趋势项一般做法是: 先画原序列的曲线图,根据图形可以看出是否应该包含截距项(常数项) 或者趋势项(这种方法是比较常用、有效和易行的); 对于生成过程比较复杂的时间序列数据,比较难直观地判断其是否含有 时间趋势或常数项,而需要对常数项、时间趋势项及单位根项的系数进 行反复检验,以及它们之间较为复杂的联合检验,以确定具体被检验时 间序列的具体生成过程等,比较复杂。 所以,对于一般的序列,采用画图的方法就可以了。 至于你检验出现的这种情况则是正常现象,因为检验序列显著性水平的T 统计量在原假设下的渐进分布依赖于单位根检验的不同形式。
eviews讲解单位根检验解读

6
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法 具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值 右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
单位根检验
第一节
单序列单位根检验
1
第二节
面板数据单位根检验
第一节
单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作 三 不同检验结果后续分析思路 四 协整检验
2
一 序列单位根检验在时间序列分析中的地位
时间序列总体分析思路
时间序列
平稳性检验 原:不平稳
各种方法的结果(除Breitung检验 外)都接受原假设, I? 存在单位根,是非平稳的。
15
例10.4中I?的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可 以得出结论: I?是I(1)的。
16
13
分析数据的平稳性软 件 操 作
在Pool对象,View/Unit Root Test,输入相应的Pool序列名 填写序列 名 选择检验 方法 填写秩序
右边 所有 栏目 软件 自动 填写 无需 更改
填写模式,先做 序列图再选择 14
例10.4中I?的水平变量的所有方法的单位根检验结果:
只有此处小于 0.05,说明除此 法外都认为非 平稳
◎检验的目的:
(1)非平稳序列在各个时点上随机规律不同,因此,难以用已知信息掌握序列总体的随机性 (2)用序列做回归分析可防止伪回归
eviews讲解单位根检验

P规则:小于临界值则接受H1 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
备注:只要软件提供了P值就直接按P规则 做判定;除非没有提供的情况 下 才动用临界值法
序图做出模式选择)。
秩序:水平(level)、一阶差分、二阶甚至高阶差分直至序列平稳为止。
备注:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,
再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模
型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其
所有p值均小于005说明平稳17单位根检验第一节单序列单位根检验第二节面板数据单位根检验??18第一节单序列单位根检验一序列单位根检验在时间序列分析中的地位二序列单位根检验软件相关操作三不同检验结果后续分析思路四协整检验二序列单位根检验软件相关操作三不同检验结果后续分析思路四协整检验????19一序列单位根检验在时间序列分析中的地位时间序列总体分析思路时间序列平稳性检验原
精选课件
12
分析数据的平稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
目的:防止虚假回归或伪回归
方法:
相同根下:LLC、Breintung 、 Hadri
不同根下:IPS、ADF-Fisher 和PP-Fisher5
模式:
三种检验模式:既有趋势又有截距、只有截距、以上都无(对面板序列绘制时
平稳性检验 原:不平稳
eviews处理面板数据操作步骤(特别好)

File/New/ Workfile Workfile structure type : Balanced Panel
Start date 1935 End date 1954 Number of cross 1 OK Cross Section Identifiers:_GM _CH _GE _WE _US
.
10
思路一:变量之间是非同阶单整 :序列变换
◎变量之间是非同阶单整的指即面板数据中有些序列平稳而有些序列不平稳,
此时不能进行协整检验与直接对原序列进行回归。
◎对序列进行差分或取对数使之变成同阶序列
若变换序列后均为平稳序列可用变换后的序列直接进行回归
思路二 若变换序列后均为同阶非平稳序列,则请点
.
若拒绝H1 ,则模型为变参数模型(模型一)。 构建统计量:请点F统计量
.
26
假设检验的 F 统计量的计算方法
构建变参数模型得残差平方和S1 并考虑其自由度 请点
构建变截距模型得残差平方和S2并考虑其自由度 请点
构建不变参数模型得残差平方和S3并考虑其自由度 请点
计算 F2 统计量
F 2 ( S 3 S 1 S ( 1 N ) / N [ N T ( 1 k ( ) k 1 ) ( 1 ) ) ~ ] F [N ( 1 )k ( 1 )N , ( T k 1 )]
第十章 Panel Data模型
第一步 录入数据
第二步 分析数据的平稳性(单位根检验)
第三步 平稳性检验后分析路径选择
第四步 协整检验`
第五步 回归模型
.
1
第一步 录入数据
一 请点 实例数据 二 请点 录入数据软件操作
Eviews 操作步骤

Eviews 操作步骤:一、数据下载(百度国泰安)1、关于指数下载步骤:数据中心→单表查询→股票市场→指数信息2、字段选择指数代码如下:000001 上证指数000002 上证A股指数000003 上证B股指数399001 深成指数399106 深圳综合指数3991007 深圳综合A指数3、时间选择:2010.1.1~2017.9.204、条件筛选:指数代码→选条件→条件值→添加5、预览数据6、下载数据下载格式:.xsl下载详情→下载二、货币量下载1、数据中心→单表查询→经济研究系列→宏观经济→金融业2、字段:M0、M1、M23、时间:2010.1.1-2017.9.204、下载详情→下载5、居民消费指数和国内贷款总量的下载步骤:经济研究系列→宏观经济→固定资产投资三、EVIEWS数据导入File→Open→Foreign data as workfile→rename→File→Save as四、单位根检验Quick→Series Statistics→Unit root test→Seires name(输入如m等)→ok→选择level(1st different、2st different)分别检验,看显著性水平和p值五、VAR 模型Quick→Estimate VAR→Endogenous→输入shz、M0、M1、M2、LOAN→lag Internval →填两个数12或14等(确认找AIC最小的数)→确立六、脉冲影应函数在上面输出结果工具栏:Impulse(或view→impulse response)→display format(选如:mutiple sraphs)→选择冲击变量如:M0→在response中选入shz→ok七、方差分解:在六的结果中→View→variance→decomposition of:shz、m0、m1、m2、loan→ok八、协整检验:1、五、六、七中任选一结果→VIEW→cointegratiom→display format(选table)→decomposition of:shz、m0、m1、m2、loan→ok2、两个变量(两步法):Quick→Estimation Equation→Equationg specification shz、m0等→ok3、Pro→make residual series(保存残差)→name for residual series(命名)→ok→view→unit root test→ok九、格兰杰因果检验:Quick→group statistics→granger causality test→series list(输变量,可以多个变量)十、保存输出结果→freez(然后编辑)→保存。
eviews讲解单位根检验

进一步考虑ECM(误差修正模型) 3
二 序列单位根检验软件相关操作
说明 操作 结果
4
序列平稳性检验(单位根检验)说明
◎检验的目的:
(1)非平稳序列在各个时点上随机规律不同,因此,难以用已知信息掌握序列总体的随机性 (2)用序列做回归分析可防止伪回归
◎检验方法:
方法有①ADF② DFGLS ③ PP与 ④ KPSS ⑤ ERS⑥ NP 前三种有有关常数与趋势项假设,应用不方便,建议少用 后三种是软件 是去除原序列趋势后进行检验,应用方便
只有此处小于 0.05,说明除此 法外都认为非
平稳
各种方法的结果(除Breitung检验 外)都接受原假设, I?
存在单位根,是非平稳的。
15
例10.4中I?的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可
以得出结论: I?是I(1)的。
16
THANK YOU!
12
分析数据的平稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
目的:防止虚假回归或伪回归
方法:
相同根下:LLC、Breintung 、 Hadri
不同根下:IPS、ADF-Fisher 和PP-Fisher5
模式:
三种检验模式:既有趋势又有截距、只有截距、以上都无(对面板序列绘制时
中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
13
分析数据的平稳性软 件 操 作
在Pool对象,View/Unit Root Test,输入相应的Pool序列名
填写序列 名
单位根检验的eviews操作

单位根检验的eviews操作单位根检验是时间序列分析中常用的方法,用于检测序列是否具有随机游走性。
本文将介绍如何在Eviews中进行单位根检验。
首先,打开Eviews软件,导入要进行单位根检验的时间序列数据。
接下来,依次选择“View”-“Coefficient Tests”-“Unit Root Test”。
在“Unit Root Test”窗口中,首先需要在右侧“Specification”栏选择要进行的单位根检验方法。
通常使用的有ADF(Augmented Dickey-Fuller)检验、PP(Phillips-Perron)检验、KPSS(Kwiatkowski-Phillips-Schmidt-Shin)检验等方法。
这里以ADF检验为例。
在“ADF Specification”选项卡中,可以输入滞后阶数和趋势项。
滞后阶数一般为0或1,趋势项可以是无、常数项或常数项和趋势项。
一般情况下,选择一次滞后和常数项即可。
接下来,点击“OK”按钮即可进行单位根检验。
分析结果将会显示在新打开的“Unit Root Test Results”窗口中。
其中,关注ADF统计量及其p值。
当ADF统计量的绝对值小于临界值,或者p值大于0.05时,说明序列存在单位根,即不平稳;否则可以拒绝存在单位根的假设,说明序列是平稳的。
另外,在“Unit Root Test Results”窗口中还可以看到检验时的样本量、滞后阶数、趋势项、估计方程等信息,方便用户进行进一步分析。
除了ADF检验以外,PP检验和KPSS检验的操作也与ADF检验类似,不再赘述。
总之,单位根检验是时间序列分析中常用的方法,在Eviews中进行单位根检验非常方便,只需要几步操作即可得到结果,为后续的进一步分析提供基础。
单位根检验的EViews操作PPT共18页

1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
Байду номын сангаас
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
用eviews检验时间系列是否存在单位根

我国1978-2003年GDP数据平稳性分析实验报告
开机进入eviews系统,建立时间序列,导入以下数据:
x(年度)y(GDP)x(年度)y(GDP)
1978 1991
1979 1992
1980 1993
1981 1994
1982 1995
1983 1996
1984 7171 1997
1985 1998
1986 1999
1987 2000
1988 2001
1989 2002
1990 2003
绘制y的时序图可初步判断该序列是不平稳的。
如图所示:
120000
100000
80000
60000
40000
20000
78808284868890929496980002
Y
接着进行单位根检验:
输入y,弹出如下窗口:
选择ADF检验,level(水平序列),trend and intercept,滞后期数设为2.得到:
可知,在原假设下,单位根的t检验统计量的值为,比在1%,5%,10%这三个显著性水平下的单位根检验的临界值都要大,故接受原假设,可知该时间序列存在单位根,为非平稳序列。
继续对该序列的一阶差分进行检验。
得到
单位根的t检验统计量的值为,比在10%显著性水平下的单位根检验的临界值要小,即拒绝原假设,表明该序列的一阶差分为平稳序列。
eviews讲解单位根检验

请点 说明 请点 软件操作 结果 点检验结果1 结果2
2021/3/26
12
分析数据的ห้องสมุดไป่ตู้稳性(单位根检验)说明 注:所有序列者要检验
原:不稳定(Hadri 除外, Hadri 中 原:稳定)
目的:防止虚假回归或伪回归
方法:
相同根下:LLC、Breintung 、 Hadri
不同根下:IPS、ADF-Fisher 和PP-Fisher5
备注:只要软件提供了P值就直接按P规则
做判定;除非没有提供的情况下 才动用 临界值法
2021/3/26
7
三 不同检验结果后续分析思路
分析思路 差分平稳
2021/3/26
8
不同检验结果后续分析思路
时间序列总体分析思路
时间序列
平稳性检验 原:不平稳
若是平稳序列
非平稳序列
单序列 多序列
考虑差分平稳
ARMA 多元回归分析 差分平稳I(d) 不平稳
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:小于临界值则接受H1 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
备注:只要软件提供了P值就直接按P规则 做判定;除非没有提供的情况 下 才动用临界值法
6
势项
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法2: 自相关系数图判断 方法 用自相关系数图判断
中国GDP时间序列的自相关系数不是很快地(如滞后期K=2,3 时间序列的自相关系数不是很快地( 中国 时间序列的自相关系数不是很快地 , 趋于零,即缓慢下降,再次表明序列是非平稳的 趋于零,即缓慢下降,再次表明序列是非平稳的.
方法3: 方法 单位根检验
方法1: 方法 用时序图判断
的时序图初步判断序列是不平稳的 由GDP的时序图初步判断序列是不平稳的 可以看出该序列可能 的时序图初步判断序列是不平稳的(可以看出该序列可能 存在趋势项,若需用ADF检验则选择第三种模型进行检验 。 检验则选择第三种模型进行检验)。 存在趋势项,若需用 检验则选择第三种模型进行检验
单位根检验的 EViews操作
Hale Waihona Puke 利用EViews进行单位根检验 进行单位根检验 利用 检验的操作步骤基本相同) (ADF、DF检验的操作步骤基本相同) 、 检验的操作步骤基本相同 在主菜单选择Quick / Series Statistics / Unit Root Test 在主菜单选择 输入待检验的序列名/单击 输入待检验的序列名 单击OK / 出现单位根检验对话框 单击 单位根检验对话框(由三部分构成 单位根检验对话框 由三部分构成) 由三部分构成 (1)检验类型(Test Type) )检验类型( (A)DF检验 检验 PP检验 检验 (2)检验对象 ) Level(水平序列) (水平序列) 1st difference(一阶差分序列) (一阶差分序列) 2nd difference(二阶差分序列) (二阶差分序列)
(3)检验式中应包括的附加项 ) Intercept(漂移项) (漂移项) Trend and Intercept(趋势项和漂移项) (趋势项和漂移项) None(无附加项) (无附加项) (4)检验式中因变量的滞后差分项的个数。 )检验式中因变量的滞后差分项的个数。
根据《中国统计年鉴2004》,得到我国 例 根据《中国统计年鉴 》 得到我国1978—2003年的 年的 GDP序列,检验其是否为平稳序列。 序列,检验其是否为平稳序列。 序列 中国1978—2003年度 年度GDP序列 中国 年度 序列
τ
检验统计量值大于
相应DW临界值,从而接受 H 0 ,表明我国 临界值, 表明我国1978——2003年度 年度GDP 相应 临界值 年度 序列存在单位根,是非平稳序列。 序列存在单位根,是非平稳序列。
继续讨论: 继续讨论
的一阶差分进行检验 对GDP的一阶差分进行检验 的一阶差分
在10%的显著性水平下,单位根检验的临界值为 %的显著性水平下 -3.2602,上述检验统计量值 小于相应DW临界值, 临界值, ,上述检验统计量值-3.62511小于相应 小于相应 临界值 从而拒绝H 表明我国1978——2003年D(GDP)序 从而拒绝 0,表明我国 年 序 列是平稳序列. 列是平稳序列
单位根的t检验统计量的值为 检验统计量的值为: 在原假设 H0 : γ = 1或H0 : δ =0 下,单位根的 检验统计量的值为:
γˆ − γ τ= ˆ σ γˆ
δˆ = σˆ ˆ = ... = −0.786011 δ
或
%、5%、 在1%、 %、 %三个显著性水平下,单位根检验的临界值分 %、 %、10%三个显著性水平下, 别为别为 4.4167、-3.6219、-3.2474,显然,上述 、 、 ,显然,
Quick
Series Statistics
Unit Root Test
输入变量名(本例: 输入变量名(本例:GDP) )
选择ADF检验 / Level(水平序列)/ Trend and Intercept 检验 选择 (水平序列) 趋势项和漂移项) 滞后期数: (趋势项和漂移项)/ 滞后期数:2