(完整版)初中圆题型总结

合集下载

中考数学常考的圆的六种题型

中考数学常考的圆的六种题型

中考题中常考的圆的六种解题策略第一种场景:遇到弦。

轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。

例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。

初三圆中常考题型总结

初三圆中常考题型总结

授课类型T 圆的基本位置关系 C 圆与直线相关性质综合 T 中考真题运用授课日期及时段教学内容一、同步知识梳理基本概念关系:1、点与圆的位置关系(1)点在圆内 ⇒ d r < ⇒ 点C 在圆内; (2)点在圆上 ⇒ d r = ⇒ 点B 在圆上; (3)点在圆外 ⇒ d r > ⇒ 点A 在圆外;2、直线与圆的位置关系(1)直线与圆相离 ⇒ d r > ⇒ 无交点; (2)直线与圆相切 ⇒ d r = ⇒ 有一个交点; (3)直线与圆相交 ⇒ d r < ⇒ 有两个交点;drd=rrd3、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+;rdd CBAO内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1rRd图3rRd二、同步题型分析题型1:点与圆例1:(★)⊙O 的半径r=10cm ,圆心到直线L 的距离OM=8cm ,在直线L 上有一点P ,PM=6cm ,则点P ( )A 在⊙O 内B 在⊙O 外C 在⊙O 上D 不能确定题型2:直线与圆(相交、相离、相切)例1:(★★★)(2013四川巴中,26,13分)若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,求r 1、r 2的值,并判断两圆的位置关系.题型3:直线与圆(切线的证明).如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,求证:DE 是⊙O 的切线.图2rRd图4rRd 图5r Rd.如图,△ABC 为等腰三角形,AB=AC ,O 是底边BC 的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.变式练习1:已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC =CP =2,弦AB ⊥OC ,劣弧AB ︵的度数为120°,连接PB.(1)求BC 的长;(2)求证:PB 是⊙O 的切线.变式练习2.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G . (1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若OB=BG=2,求CD 的长.变式3:(★★★)已知:如图,射线ABC与⊙O相交于B,C两点,E是的中点,D是⊙O上一点,若∠EDA=∠AMD.求证:AD是⊙O的切线.变式4、如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.题型4:直线与圆(切线长定理)(★★★))例1:已知:如图,P A,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若P A=10cm,求△PCD的周长.O O B AM题型4:圆与圆例1:(★★★)(2013·泰安,18,3分)如图,AB ,CD 是⊙O 的两条互相垂直的直径,点O 1,O 2,O 3,O 4分别是OA 、OB 、OC 、OD 的中点,若⊙O 的半径为2,则阴影部分的面积为( )A .8B .4C .4π+4D .4π-4例2:(★★★)如图,点A ,B 在直线MN 上,AB =11cm ,⊙A ,⊙B 的半径均为1cm .⊙A 以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (s )之间的关系式为r =1+t (t ≥0).(1)试写出点A ,B 之间的距离d (cm)与时间t (s )之间的函数表达式; (2)问点A 出发多少秒时两圆相切?例3:(★★★)如图所示,半圆O 的直径AB=4,与半圆O 内切的动圆O 1与AB 切于点M ,•设⊙O 1的半径为y ,AM=x ,则y 关于x 的函数关系式是( ).A .y=14x 2+x B .y=-14x 2+x C .y=-14x 2-x D .y=14x 2-x三、课堂达标检测检测题1:(★★)已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F .求证:EF 与⊙O 相切.检测题2:(★★)(2013•东营,7,3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程321x x =-的根,1O ⊙与2O ⊙的圆心距为1,那么两圆的位置关系为( ) A .内含B .内切C .相交D .外切检测题3:(★★)(2013江苏泰州,15,3分)如图,⊙O 的半径为4cm ,直线l 与⊙O 相交于A , B 两点,AB 43=cm, P 为直线l 上一动点,以l cm 为半径的⊙P 与⊙O 没有公共点.设PO=d cm ,则d 的范围___________________.检测题4:(★★)(2013•嘉兴5分)在同一平面内,已知线段AO=2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60°得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 .检测题5:(★★)(2013广东梅州,11,3分)如图,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .检测题6:(★★)已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长.一、专题精讲题型一:圆的分类讨论例1:(★★)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a -C .22ba b a -+或 D .b a b a -+或例2:(★★)(2013贵州省六盘水,16,4分)若⊙A 和⊙B 相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为题型三:三角形与圆例2:(★★★)已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.二、专题过关检测题1:(★★★)(2013白银,17,4分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=.检测题2:(★★★)已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.一、能力培养(2011,十堰)如图,A B是半圆O的直径,点C为半径O B上一点,过点C作C D⊥A B 交半圆O于点D,将△A C D沿A D折叠得到△A E D,A E交半圆于点F,连接D F.(1)求证:D E是半圆的切线;(2)连接O D,当O C=B C时,判断四边形O D F A的形状,并证明你的结论.例.2.:.[2011..上,以...A E..为直径的⊙...A B.....O.与...].如图,已知点.....·湛江......E.在.R t..△.A B C...的斜边直角边...B C....D.....相切于点(1)...B A C...;...平分∠...求证:...A D(2).......O.的半径....若.B E..=.2.,.B D..=.4.,求⊙。

圆九年级知识点与题型

圆九年级知识点与题型

圆九年级知识点与题型圆是中学数学中一个非常重要的几何概念,也是九年级数学课程中的一个重点内容。

掌握圆的知识点和解题方法,对于学生提高数学成绩以及应对考试非常有帮助。

一、圆的定义和性质圆是平面上的一个几何图形,由与一点距离相等的所有点组成。

这个点叫作圆心,到圆心的距离叫做半径,用字母r或者R表示。

圆上的任意一点到圆心的距离都等于半径。

圆的周长叫做圆周长,用C表示。

圆的面积叫做圆面积,用S表示。

圆有许多重要性质。

首先,圆上任意两点的距离都等于半径。

其次,圆的周长公式是C=2πr,其中π是一个数,约等于3.14159。

最后,圆的面积公式是S=πr²。

掌握这些公式,可以帮助我们计算圆的周长和面积。

二、圆的判断和证明问题在九年级数学中,还会遇到一些与圆相关的判断和证明问题。

比如,给出一些线段,让我们判断是否能构成一个圆,以及在何种条件下可以构成。

一种常用的方法是判断给出线段之间的关系。

如果给出的三条线段互相相等,并且两两之间的夹角都是直角,那么我们可以判断这三条线段构成一个圆。

此外,对于已知的圆,我们也可以进行一些证明问题。

比如,给出一个圆和一个半径长线段,让我们证明这条线段是圆的一条半径。

这时,我们可以使用数学定理和性质来辅助证明。

例如,根据圆的定义和性质,我们可以得知半径垂直于圆上的切线,从而帮助我们证明给出的线段是圆的半径。

三、圆的应用问题圆不仅在数学中有重要的地位,而且在现实生活中也有广泛的应用。

比如,圆形的轮胎、圆形的饼干、圆形的碗等等,这些都是我们生活中常见的圆形物体。

在实际问题中,我们也会遇到一些与圆有关的测量、计算等应用问题。

例如,给出一个轮胎的直径,让我们计算这个轮胎的周长。

我们可以使用圆周长公式C=2πr来完成这个计算。

此外,还可以通过应用圆的面积公式,计算一些与圆相关的问题。

比如,给出一个半径为5cm的圆形蛋糕,问这个蛋糕的面积是多少。

我们可以通过公式S=πr²,帮助我们计算出这个蛋糕的面积。

初中数学圆的知识点归纳及题型

初中数学圆的知识点归纳及题型

初中数学圆的知识点归纳及题型在初中数学的学习中,圆是一个非常重要的知识点,它不仅在几何中有着广泛的应用,还与其他数学知识有着紧密的联系。

下面我们就来对初中数学圆的知识点进行归纳,并对常见的题型进行分析。

一、圆的基本概念1、圆的定义平面内到定点的距离等于定长的点的集合叫做圆。

定点称为圆心,定长称为半径。

2、圆的表示方法以点 O 为圆心,以 r 为半径的圆,记作“⊙O,半径为r”。

3、弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

4、弧圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

5、圆心角顶点在圆心的角叫做圆心角。

6、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

二、圆的基本性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线;圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、弧、弦、圆心角的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:当 d > r 时,点在圆外;当 d = r 时,点在圆上;当 d < r 时,点在圆内。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:当 d > r 时,直线与圆相离;当 d = r 时,直线与圆相切;当 d < r 时,直线与圆相交。

3、圆与圆的位置关系设两圆的半径分别为 R 和 r(R > r),圆心距为 d,则有:当 d > R + r 时,两圆外离;当 d = R + r 时,两圆外切;当 R r < d < R + r 时,两圆相交;当 d = R r 时,两圆内切;当 d < R r 时,两圆内含。

圆的重难点题型汇编(一)(十三大题型)(解析版)-初中数学

圆的重难点题型汇编(一)(十三大题型)(解析版)-初中数学

圆的重难点题型汇编考点归纳【题型01:垂径定理及应用】【题型02:点与圆的位置关系的判定】【题型03:直线与圆的位置关系的判定】【题型04:切线判定与性质综合】【题型05:圆周角定理】【题型06:圆内接四边形】【题型07:三角形的内切圆及切线长】【题型08:三角形的外接圆】【题型09:正多边形与圆的综合】【题型10:弧长和扇形的面积】【题型11:圆锥的侧面积】【题型12:圆锥的侧面最短路径问题】【题型13:不规则图形的阴影面积】【题型01:垂径定理及应用】考点精讲【题型01:垂径定理及应用】1.如图,是一个圆弧形拱桥的截面示意图.点P 是拱桥AB的中点,桥下水面的宽度AB =24m ,点P 到水面AB 的距离PH =8m .点P 1,P 2均在AB 上,PP 1 =PP 2 ,P 1P 2∥AB 且P 1P 2=10m ,在点P 1,P 2处各装有一个照明灯,图中△P 1CD 和△P 2EF 分别是这两个灯的光照范围.两灯可以分别绕点P 1,P 2左右转动,且光束始终照在水面AB 上.即∠CP 1D ,∠EP 2F 可分别绕点P 1,P 2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD ,EF 在AB 上,此时,线段ED 是这两灯照在水面AB 上的重叠部分的水面宽度.(1)求圆弧形拱桥所在圆的半径.(2)求照明灯P 1距离水面的高度.(3)已知∠CP 1D =∠EP 2F =90°,在这两个灯的照射下,当整个水面AB 都被灯光照到时,求这两个灯照在水面AB 上的重叠部分的水面宽度.【答案】(1)圆弧型拱桥所在圆的半径为13米(2)照明灯P 1距离水面的高度为7米.(3)这两个灯照在水面AB 上的重叠部分的水面宽度为4m 或26817m .【分析】本题主要考查了垂径定理、勾股定理、等腰直角三角形、解直角三角形等知识点,正确作出作辅助线、构造直角三角形解决问题成为解题的关键.(1)设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,根据垂径定理可得,AH =BH =12AB =12,然后运用勾股定理列方程求解即可;(2)根据题意得出P 1K =P 2K =5,勾股定理求得OK 的长,进而可得P 1T =KH =7;(3)当整个水面AB 都被灯光照到时,分①C 与A 重合,F 与B 重合,②当E 与A 重合,D 与B 重合两种情况分别画出图形,解直角三角形即可解答.【详解】(1)解:如图:设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,∵点点P 是拱桥AB 的中点,∴PH ⊥AB ,∴O ,P ,H 共线,AH =BH =12AB =12,设⊙O 半径为r ,则OH =OP -PH =r -8 ,在Rt △AHO 中,AH 2+OH 2=OA 2,∴122+r -8 2=r 2,解得:r =13,∴圆弧型拱桥所在圆的半径为13米.(2)解:如图:设PH 交P 1P 2于K ,圆心为O ,连接HO ,AO ,P 1O ,过P 1作P 1T ⊥AB 于T ,则四边形PTHK 是矩形,∵PP1 =PP 2,且P 1P 2=10,∴P 1K =P 2K =5,∴OK =OP 21-P 1K 2=132-52=12,∴PK =OP -OK =13-12=1,∴KH =PH -PK =8-1=7,∴P 1T =KH =7,即照明灯P 1距离水面的高度为7米.(3)解:当整个水面AB 都被灯光照到时,①如图:当C 与A 重合,F 与B 重合时,由(2)可得P 1T =KH =7∴AT =AH -TH =12-5=7,∴AT =P 1T =7,∴∠P 1AT =45°,∵∠CP 1D =90°,即∠AP 1D =90°,∴△AP 1D 是等腰直角三角形,∴AD =2AT =14,即CD =14;∴DB =AB -AD =24-14=10,同理可得BE =14,即FE =14,∴DE =EF -DB =14-10=4,∴这两个灯照在水面AB 上的重叠部分的水面宽度为4m ;②如图:当E 与A 重合,D 与B 重合,∵AT =P 1T =7m =P 2M ,P 1P 2=10∴AM=AT+TF=17,∴AP2=AM2+P2M2=172+72=338,∵cos∠P2AM=AMAP2=AP2AF,∴17338=338AF,∴AF=33817,根据对称性可得∶BC=338 17,∴CF=AF+BC-AB=33817+33817-24=26817,∴这两个灯照在水面AB上的重叠部分的水面宽度为26817m.综上所述,这两个灯照在水面AB上的重叠部分的水面宽度为4m或26817m.2.将一小球放在长方体盒子中,小球的一部分露在盒外,其截面如图所示,已知EF=8,CD=8,则此小球的半径是()A.3B.4C.5D.6【答案】B【分析】本题主要考查了垂径定理,矩形的判定与性质及勾股定理的知识,解题的关键是正确作出辅助线构造直角三角形.取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,由垂径定理求出MF=4,设OF=x,则OM=8-x,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】解:如图,取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=8,∵MN⊥AD,EF=8,∴MF=4.设OF=x,则OM=8-x,∴在Rt△MOF中,OM2+MF2=OF2,即8-x2+42=x2,解得:x=5,故选B.3.如图是一个在建隧道的横截面,它的形状是以点O为圆心的圆的一部分,OM是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,且CD=8m,EM=8m,则⊙O的半径为( )m.A.5B.6.5C.7.5D.8【答案】A 【分析】本题主要考查了垂径定理,勾股定理的运用,理解垂径定理:垂直于弦的直径平分弦,平分弦所在的弧是解答关键.连接OC ,根据垂径定理得到EM ⊥CD ,CM =DM =12CD ,再勾股定理得到OC 2=CM 2+OM 2来求解.【详解】解:连接OC ,∵M 是⊙O 中弦CD 的中点,CD =8m ,∴EM ⊥CD ,CM =DM =12CD =4m .设⊙O 的半径为xm ,则OE =OC =x m ,∴OM =EM -OE =8-x m .∵OC 2=CM 2+OM 2,即:x 2=42+8-x 2,解得:x =5,即⊙O 的半径为5m .故选:A .4.某地欲搭建一桥,桥的底部两端间的距离AB =L 称跨度,桥面最高点到AB 的距离CD =h 称拱高,当L 和h 确定时,有两种设计方案可供选择;①抛物线型;②圆弧型.已知这座桥的跨度L =20米,拱高h =5米.(1)如图1,若设计成抛物线型,以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立坐标系,求此函数表达式;(2)如图2,若设计成圆弧型,求该圆弧所在圆的半径;(3)现有一艘宽为15米的货船,船舱顶部为方形,并高出水面2.2米.从以上两种方案中,任选一种方案,判断此货船能否顺利通过你所选方案的桥?并说明理由.【答案】(1)y =-120x 2+5(2)12.5米(3)①若设计成抛物线型时,货船不能顺利通过该桥;②若设计成圆弧型时,货船能顺利通过该桥;理由见解析【分析】(1)根据题意设抛物线的解析式为y =a (x +10)(x -10),将点(0,5)代入,求出a 的值,即可确定函数的解析式;(2)设圆心为O ,连接OC 交AB 于E 点,连接AO ,在Rt △AEO 中,AO 2=102+(OA -5)2,解得AO =12.5,即可求该圆弧所在圆的半径12.5米;(3)①若设计成抛物线型时,当x =7.5时,y =3516,由3516米<2.2米,可知货船不能顺利通过该桥;②若设计成圆弧型时,设EG =7.5米,过点G 作FH ⊥AB 交弧BC 于点F ,过点O 作OH ⊥FH 交于H 点,连接OF ,在Rt △OHF 中,12.52=7.52+FH 2,求出FH =10米,可得FG =2.5米,再由2.5米>2.2米,即可判断货船能顺利通过该桥.【详解】(1)解:∵AB =20,∴A (-10,0),B (10,0),∵h =5,∴C (0,5),设抛物线的解析式为y =a (x +10)(x -10),∴-100a =5,解得a =-120,∴抛物线的解析式为y =-120x +10 x -10 =-120x 2+5,即y =-120x 2+5;(2)解:设圆心为O ,连接OC 交AB 于E 点,连接AO ,∵AB =20,∴AE =10,∵h =5,∴CE =5,在Rt △AEO 中,AO 2=AE 2+OE 2,∴AO 2=102+(OA -5)2,解得AO =12.5,∴该圆弧所在圆的半径12.5米;(3)解:①若设计成抛物线型时,当x =7.5时,y =-120x 2+5=-120×7.52+5=3516,∵3516米<2.2米,∴货船不能顺利通过该桥;②若设计成圆弧型时,设EG =7.5米,过点G 作FH ⊥AB 交弧BC 于点F ,过点O 作OH ⊥FH 交于H 点,连接OF ,∴OH =EG =7.5米,在Rt △OHF 中,OF 2=OH 2+FH 2,∴12.52=7.52+FH 2,∴FH=10米,∵GH=OE=12.5-5=7.5米,∴FG=2.5米,∵2.5米>2.2米,∴货船能顺利通过该桥.【点睛】本题考查二次函数的应用,垂径定理,勾股定理,熟练掌握二次函数的图象及性质,圆的性质,垂径定理,勾股定理是解题的关键.【题型02:点与圆的位置关系的判定】5.在⊙O所在平面内有一点P,若OP=6,⊙O半径为5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断【答案】B【分析】本题考查了点与圆的位置关系,由点到圆心的距离d与圆的半径r进行判定,掌握点与圆的位置关系的判定方法是解题的关键.根据题意,点到圆心的距离d与圆的半径r,当d>r时,点在圆外;当d=r 时,点在圆上;当d<r时,点在园内;由此即可求解.【详解】解:设点到圆心的距离为d,圆的半径为r,∴d=6,r=5,∵d>r,∴点P在⊙O外,故选:B.6.在Rt△ABC中,∠C=90°,BC=5,AC=12,以点B为圆心,12为半径画圆,则点A与⊙B的位置关系是()A.点A在⊙B外B.点A在⊙B上C.点A在⊙B内D.无法确定【答案】A【分析】本题考查了点与圆的位置关系,利用勾股定理求得AB=13边的长,然后通过比较AB与半径的长即可得到结论,解题的关键是确定圆的半径和点与圆心之间的距离之间的大小关系.【详解】解:∵在Rt△ABC中,∠C=90°,BC=5,AC=12,∴AB=BC2+AC2=52+122=13,∵AB=13>12,∴点A在⊙B外,故选:A.7.若⊙O的直径为4cm,点A到圆心O的距离为2cm,则点A与⊙O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定【答案】B【分析】本题考查了点与圆的位置关系.根据题意得出d=r,从而即可得出答案.【详解】解:∵⊙O的直径为4cm,所以半径为2cm,点A到圆心O的距离为2cm,∴d=r,∴点A与⊙O的位置关系为:点A在圆上,故选:B.8.若⊙O的半径为6,圆心O的坐标为0,0,则点P与⊙O的位置关系是,点P的坐标为3,4()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【答案】A【分析】本题考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d<r时,点在圆内是解答此题的关键.先根据勾股定理求出OP的长,再与圆的半径相比较即可.【详解】解:∵圆心O的坐标为(0,0),点P的坐标为(3,4),∴OP=32+42=5.∵⊙O的半径为6,且6>5,∴点P在圆内.故选:A【题型03:直线与圆的位置关系的判定】9.已知⊙O的半径为2,直线l上有一点M.若OM=2,则直线l与⊙O的位置关系是()A.相交B.相离或相交C.相离或相切D.相交或相切【答案】D【分析】本题考查了直线和圆的位置关系,熟练掌握直线和圆的位置关系与数量之间的联系是解题的关键.直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【详解】解:因为垂线段最短,所以圆心到直线的距离小于等于2.此时和半径2的大小不确定,则直线和圆相交、相切都有可能.故选:D.10.已知⊙O的半径为3cm,圆心O到直线l的距离为2cm,则l与⊙O的交点个数为()A.0B.1C.2D.3【答案】C【分析】本题主要考查了圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.圆的半径为r圆心到直线的距离为d,当d>r时,圆与直线相离,直线与圆没有交点,当d=r时,圆与直线相切,直线与圆有一个交点,当d<r时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径为3cm,圆心O到直线l的距离d,为2cm,∴d<r,∴圆与直线l相交,直线l与圆有两个交点,故选:C.11.在平面直角坐标系xOy中,以点3,4为圆心,4为半径的圆一定()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离【答案】C【分析】本题主要考查对直线与圆的位置关系,坐标与图形性质等知识点的理解和掌握,能熟练地运用直线与圆的位置关系定理进行判断是解此题的关键,首先画出图形,根据点的坐标得,到圆心到x轴的距离是4,到y轴的距离是3,根据直线与圆的位置关系,即可求出答案.【详解】解:圆心到x轴的距离是4,到y轴的距离是3,∴圆与x轴相切,与y轴相交,故选:C.12.已知平面内有⊙O与直线AB,⊙O的半径为3cm,点O到直线AB的距离为3cm()A.相切B.相交C.相离D.不能判断【答案】A【分析】本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.根据点O到直线AB的距离与圆的半径大小作比较即可.【详解】解:∵点O到直线AB的距离为3cm,且⊙O的半径为3cm,∴点O到直线AB的距离等于⊙O的半径,∴直线AB与⊙O的位置关系是相切,故选:A.【题型04:切线判定与性质综合】13.如图,CD是Rt△ABC斜边上的中线,以CD为直径作⊙O,分别交AC、BC于点M、N,过点M作ME⊥AB,交AB于点E.(1)求证:ME是⊙O的切线;(2)若CD=5,AC=8,求ME的长.【答案】(1)见解析(2)ME=2.4【分析】本题考查了切线的判定,相似三角形的判定与性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,解题的关键是熟练掌握基本知识.(1)连接OM,先证出OM∥AD,再证明ME⊥OM即可;(2)由平行线分线段成比例定理可求AM=4,由直角三角形斜边中线的性质可求AB=2CD=10,由勾股定理求出BC的长,然后证明△AME∽△ABC即可求解.【详解】(1)解:连接OM,∵CD是Rt△ABC斜边上的中线,∴CD=AD=BD,∴∠1=∠A,∵OC=OM,∴∠1=∠2∴∠2=∠A,∴OM∥AD,∵ME⊥AB,∴ME⊥OM,又OM是⊙O的半径,∴ME是⊙O的切线.(2)解:∵OM∥AD,∴CM AM =OC OD,∵OC=OD,∴AM=CM=12AC=4,∵CD是Rt△ABC斜边上的中线.∴CD=12AB,∴AB=2CD=10,在Rt△ABC中,BC=AB2-AC2=102-82=6,∵ME⊥AB,∴∠AEM=90o,∴∠AEM=∠ACB又∵∠A=∠A,∴△AME∽△ABC∴AM ME =AB BC,∴4 ME =106,∴ME=2.4.14.如图,已知O是△ABC边AB上的一点,以O为圆心、OB为半径的⊙O与边AC相切于点D,且BC=CD,连接OC,交⊙O于点E,连接BE并延长,交AC于点F.(1)求证:BC 是⊙O 切线;(2)求证:OA ⋅AB =AD ⋅AC ;(3)若AC =16,tan ∠BAC =43,F 是AC 中点,求EF 的长.【答案】(1)见解析(2)见解析(3)7225【分析】(1)连接OD ,由切线的性质可知∠ODC =90°.证明△OBC ≌△ODC 得出∠OBC =∠ODC =90°,即OB ⊥CB ,说明BC 是圆O 的切线;(2)证明△AOD ∽△ACB 得出AO AC =AD AB ,整理得AO ⋅AB =AC ⋅AD ;(3)设AB =3x ,则BC =4x .由勾股定理求出x 的值,得出AB =485,BC =645.由tan ∠BAC =OD AD =43,可设OD =4y ,则OB =4y ,AD =3y ,即可求出OA =5y ,从而得出AB =9y =485,解出y 的值,即可求出OB =6415,即⊙O 半径为6415.由直角三角形斜边中线的性质得出AF =CF =BF =12AC =8,结合等边对等角,得出∠ABF =∠BAF ,进而可证△OBE ∽△FBA ,得出BE AB =OB BF ,代入数据,即可求出BE =12825,最后由EF =BF -EF 求解即可.【详解】(1)证明:如图,连接OD ,∵AC 与圆O 相切于点D ,∴OD ⊥AC ,即∠ODC =90°,∵BC =CD ,BC =DC ,CO =CO ,∴△OBC ≌△ODC SSS ,∴∠OBC =∠ODC =90°,即OB ⊥CB ,∴BC 是圆O 的切线;(2)证明:∵OD ⊥AC ,∴∠ADO =90°.∵∠OBC =90°,∴∠ADO =∠ABC .又∵∠BAC =∠DAO ,∴△AOD ∽△ACB ,∴AO AC =AD AB,∴AO ⋅AB =AC ⋅AD ;(3)解:∵∠OBC =90°,∴tan ∠BAC =BC AB=43,设AB =3x ,则BC =4x .∵AB 2+BC 2=AC 2,∴(3x )2+(4x )2=162,解得:x =165(舍去负值),∴AB =485,BC =645.∵OD ⊥AC ,∴tan ∠BAC =OD AD=43,设OD =4y ,则OB =4y ,AD =3y ,∴OA =OD 2+AD 2=5y ,∴AB =OA +OB =9y =485,解得:y =1615,∴OB =6415,即⊙O 半径为6415.∵F 是AC 中点,∴AF =CF =BF =12AC =8,∴∠ABF =∠BAF .∵OB =OE ,∴∠OBE =∠OEB ,∴∠ABF =∠BAF =∠OBE =∠OEB ,∴△OBE ∽△FBA ,∴BE AB =OB BF ,即BE 485=64158,解得:BE =12825,∴EF =BF -EF =8-12825=7225.【点睛】本题考查切线的性质与判定,三角形全等的判定与性质,三角形相似的判定和性质,等腰三角形的性质,直角三角形斜边中线的性质,勾股定理,解直角三角形等知识.在解圆的相关题型中,连接常用的辅助线是解题关键.15.如图,在四边形ABCD 中,AO 平分∠BAD .点O 在AC 上,以点O 为圆心,OA 为半径,作⊙O 与BC 相切于点B ,BO 延长线交⊙O 于点E ,交AD 于点F ,连接AE ,DE .(1)求证:CD 是⊙O 的切线;(2)若AE =DE =8,求AF 的长.【答案】(1)见解析(2)AF =43【分析】本题考查了圆的切线的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质,圆周角等知识,掌握圆的相关性质是解题关键.(1)连接OD,根据圆的切线的性质,得到∠CBO=90°,根据角平分线的定义以及等边对等角的性质,得到∠OAB=∠ABO=∠OAF=∠ODA,进而得出∠BOC=∠DOC,推出△BOC≌△DOC SAS,得到∠CBO=∠CDO=90°,即可证明结论;(2)根据同弧所对的圆周角相等,得到∠DAE=∠ABO,进而得出∠BAO=∠OAD=∠DAE,再根据直径所对的圆周角是直角,得出∠BAO=∠OAD=∠DAE=∠ABO=30°,∠AFE=90°,由30度角所对的直角边等于斜边一半,得到EF=12AE=4,再结合勾股定理求解即可.【详解】(1)证明:如图,连接OD.∵BC为圆O的切线,∴∠CBO=90°.∵AO平分∠BAD,∴∠OAB=∠OAF.∵OA=OB=OD,∴∠OAB=∠ABO=∠OAF=∠ODA,∵∠BOC=∠OAB+∠OBA,∠DOC=∠OAD+∠ODA,∴∠BOC=∠DOC.在△COB和△COD中,CO=CO∠COB=∠COD OB=OD,∴△BOC≌△DOC SAS,∴∠CBO=∠CDO=90°.∴CD是⊙O的切线.(2)解:∵AE=DE,∴AE =DE ,∴∠DAE=∠ABO,∵∠BAO=∠OAD=∠ABO.∴∠BAO=∠OAD=∠DAE.∵BE是直径,∴∠BAE=90°,∴∠BAO=∠OAD=∠DAE=∠ABO=30°,∴∠AFE=90°.在Rt△AFE中,AE=8,∠DAE=30°,∴EF=12AE=4.∴AF=AE2-EF2=82-42=43.16.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D(点D与点A不重合),交BC于点E,过点E作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)如图1,若CF=1,BE=3;求⊙O的半径;(3)如图2,连接AE,OD,交点为H,当AH=EH=m时,求线段EG的长.【答案】(1)见解析(2)92(3)2m【分析】(1)连接OE,AE,由圆周角定理可得∠AEB=90°,即AE⊥BC,再根据等腰三角形性质可得∠CAE=∠BAE,由半径相等和等边对顶角得出∠BAE=∠AEO,推出∠CAE=∠AEO,根据平行线的判定可得OE∥AC,由EG⊥AC得出EG⊥半径OE,再运用切线的判定即可证得结论;(2)先证得△CEF∽△CAE,得出CECF =ACCE,求得AC=CE2CF=321=9=AB,即可求得答案;(3)先证得△AOD是等边三角形,可得∠ADO=∠AOD=∠DAO=60°,∠DAE=∠OAE=12∠BAC= 30°,再利用直角三角形性质可得∠AGE=90°-∠FAG=90°-60°=30°,推出∠EAG=∠AGE,进而得出EG=AE=AH+EH=m+m=2m.【详解】(1)证明:连接OE,AE,∵AB是⊙O的直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴∠CAE=∠BAE,∵OA=OE,∴∠BAE=∠AEO,∴∠CAE=∠AEO,∴OE∥AC,∵EF⊥AC,∴EF⊥OE,∵OE为⊙O的半径,∴FG是⊙O的切线;(2)解:∵AB=AC,AE⊥BC,∴BE=EC=3,∠AEC=90°,∵EF⊥AC,∴∠CFE=∠AEC=90°,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴CE CF =ACCE,∴AC=CE2CF =321=9,∵AB=AC,∴AB=9,∵AB是⊙O的直径,∴⊙O的半径为92;(3)解:如图2,连接OE,∵OA=OE,AE=EH,∴OH⊥AE,∴∠OHA=90°,∴∠OHA=∠AEB,∴OD∥BC,∴∠ADO=∠ACB,∠AOD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠ADO=∠AOD,∴AD=OA,又∵OD=OA,∴AD=OA=OD,∴△AOD是等边三角形,∴∠ADO=∠AOD=∠DAO=60°,∴∠DAE=∠OAE=12∠BAC=30°,∵FG⊥AC,∴∠AFG=90°,∴∠AGE=90°-∠FAG=90°-60°=30°,∴∠EAG=∠AGE,∴EG=AE=AH+EH=m+m=2m.【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,等腰三角形性质,等边三角形的判定和性质,平行线的判定和性质,相似三角形的判定和性质等,解题的关键是学会添加常用辅助线,构造基本图形解决问题,属于中考常考题型.【题型05:圆周角定理】17.如图,点A、B、C在⊙O上,∠ACB=55°,则∠AOB的度数是()A.80°B.90°C.100°D.110°【答案】D 【分析】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.【详解】解:∵∠ACB =55°,∴由圆周角定理得:∠AOB =2∠ACB =110°,故选:D .18.如图,已知点A ,B ,C 在⊙O 上,且∠AOB =2∠BOC ,若∠CAB =20°,则∠ACB 的度数为()A.40°B.50°C.60°D.80°【答案】A 【分析】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.根据圆周角定理即可得到结论.【详解】解:∵BC =BC,∠CAB =20°,∴∠BOC =2∠CAB =40°,∵∠AOB =2∠BOC ,∴∠AOB =80°,∵AB =AB∴∠ACB =12∠AOB =40°.故选:A .19.如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点.若∠BCD =35°,则∠ABD 的大小为()A.35°B.45°C.55°D.65°【答案】C 【分析】此题主要考查的是圆周角定理及其推论;半圆(弧)和直径所对的圆周角是直角;同弧所对的圆周角相等.由于AB 为⊙O 的直径,由圆周角定理可知∠ADB =90°,则∠A 和∠ABD 互余,欲求∠ABD 需先求出∠A 的度数,已知同弧所对的圆周角∠BCD =35°的度数,则∠A =∠BCD =35°,由此得解.【详解】解∶连接AD ,如图∵AB 为⊙O 的直径,∴∠ADB =90°,即∠A +∠ABD =90°;又∵同弧所对的圆周角相等,∴∠A =∠BCD =35°∴∠ABD =90°-∠A =90°-35°=55°故选∶C .20.如图,AC 为⊙O 的直径,点B ,D 在⊙O 上,∠ABD =60°,CD =2,则AD 的长为()A.2B.22C.23D.4【答案】C 【分析】本题考查圆周角定理及勾股定理,根据同弧所对圆周角相等及直径所对圆周角是直角得到∠ACD =∠ABD =60°,∠ADC =90°,根据CD =2得到AC =2CD =4,最后根据勾股定理求解即可得到答案【详解】解:∵AC 为⊙O 的直径,∴∠ADC =90°,∵AD =AD,∠ABD =60°,∴∠ACD =∠ABD =60°,∴∠DAC =90°-60°=30°,∵CD =2,∴AC =2CD =4,∴AD =42-22=23,故选:C .【题型06:圆内接四边形】21.如图,四边形ABCD 内接于⊙O ,若∠BOD =100°,则∠C 的度数为()A.50°B.100°C.130°D.150°【答案】C 【分析】本题考查的是圆内接四边形的性质,圆周角定理,熟知圆内接四边形的对角互补是解答此题的关键.先根据圆周角定理求出∠A 的度数,再由圆内接四边形的性质求出∠BCD 的度数即可.【详解】解:∵BD =BD ,∠BOD =100°,∴∠A =12∠BOD =50°.∴∠BCD =180°-50°=130°.故选:C .22.如图,四边形ABCD 内接于⊙O ,点C 是BD 的中点,∠A =40°,则∠CBD 的度数为()A.20°B.25°C.30°D.35°【答案】A 【分析】根据内接四边形的性质得出∠C 的度数,再由点C 为弧BD ⏜的中点得出CD =BC ,最后利用等腰三角形的性质得出结果.本题考查了弧、弦、圆心角的关系,圆内接四边形的性质,解题的关键是根据题意得出∠C 的度数和CD =BC .【详解】解:∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-40°=140°,∵点C 为BD 中点,即CD =BC ,∴CD =CB ,∴∠CDB =∠CBD =(180°-140°)÷2=20°,故选A .23.如图,四边形ABCD 内接于⊙O ,连接BD .若AC =BC ,∠ADC =125°,则∠BDC 的度数是()A.60°B.55°C.45°D.35°【答案】B 【分析】此题考查圆内接四边形的性质、圆周角定理的推论等知识.根据圆内接四边形的性质得到∠ABC =55°,则AC 的度数是110°,根据AC =BC 得到BC的度数是110°,利用圆周角定理的推论即可得到∠BDC 的度数.【详解】解:∵四边形ABCD内接于⊙O,∠ADC=125°,∴∠ABC=180°-∠ADC=180°-125°=55°,∴AC 的度数是110°,∵AC =BC ,∴BC 的度数是110°,×110°=55°,∴∠BDC=12故选:B24.如图,在⊙O的内接四边形ABCD中,AB=AD,∠E=130°,则∠C的度数为°.【答案】100【分析】本题考查的是圆内接四边形的性质,等边对等角的知识,熟知圆内接四边形的对角互补是解答此题的关键.连接BD,先根据圆内接四边形的性质求出∠ABD的度数,再由等边对等角的性质以及三角形内角和的定理求出∠BAD的度数,由圆内接四边形的性质即可得出结论.【详解】解:如图,连接BD,∵四边形ABDE是圆内接四边形,∠E=130°,∴∠ABD=180°-130°=50°.∵AB=AD,∴∠ADB=∠ABD=50°.∴∠BAD=180°-2×50°=80°,∵四边形ABCD是圆内接四边形,∴∠C=180°-80°=100°.故答案为:100°【题型07:三角形的内切圆级切线长】25.如图,在Rt△ABC中,∠C=90°,其内切圆分别与AC、AB、BC相切于点D、E、F,若AE=4,BE=6,则CD的长为()【答案】A【分析】本题考查三角形的内切圆,切线长定理、勾股定理等知识.根据切线长定理得:AD=AE=4,BF =BE=6,CD=CF,再利用勾股定理列方程可得CD的长.【详解】解:∵Rt△ABC的内切圆分别与AC、AB、BC相切于点D、E、F,AE=4,BE=6,∴AD=AE=4,BF=BE=6,CD=CF,∵∠C=90°,∴AC2+BC2=AB2,∴4+CD2=4+62,2+CD+6解得:CD=-12(舍)或2,故选:A.26.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是()A.1.5B.2C.2.5D.3【答案】B【分析】本题考查了切线长定理的应用;由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=5-3=2.故选:B.27.如图,在一张Rt△ABC纸片中,∠ACB=90°,BC=3,AC=4,O是它的内切圆.小明用剪刀沿着⊙O的切线DE剪下一块三角形ADE,则△ADE的周长为()【答案】B【分析】本题考查了三角形的内切圆,勾股定理,切线的性质、切线长定理等知识,解决本题的关键是掌握切线的性质和切线长定理.设DE与⊙O相切于点M,切设△ABC的内切圆切三边于点F、H、G,连接OF、OH、OG,则∠OGC=∠OHC=90°,OH=OG,设⊙O的半径为r,证得四边形OHCG是正方形,则OH=OG=CH=CG=r,根据DE是⊙O的切线,可得MD=DF,EM=EG,求出AB=AC2+BC2=5,再求出内切圆的半径r =1,进而可得△ADE的周长.【详解】解:如图,设DE与⊙O相切于点M,切设△ABC的内切圆切三边于点F、H、G,连接OF、OH、OG,则∠OGC=∠OHC=90°,OH=OG,设⊙O的半径为r,∴∠OGC=∠OHC=∠GCH=90°,OH=OG,∴四边形OHCG是正方形,∴OH=OG=CH=CG=r,∵DE是⊙O的切线,∴MD=DF,EM=EG∵∠ACB=90°,BC=3,AC=4,∴AB=AC2+BC2=5,由切线长定理可知AF=AG,BF=BH,CH=CG=r,∴AB=AF+BF=AG+BH=AC-CG+BC-CH=AC+BC-2r,∴r=AC+BC-AB=1,2∴CG=1,∴AG=AC-CG=4-1=3,∴△ADE的周长=AD+DM+EM+AE=AD+DF+EG+AE=AF+AG=2AG=6.故选:B.28.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=8,则△PCD的周长为.【答案】16【分析】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,关键是把△PCD的周长转化为已知切线相关的线段计算.根据切线长定理得到PB=P A=8,CA=CE,DB=DE,再根据三角形的周长公式计算即可.【详解】解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,P A=8,∴PB=P A=8,CA=CE,DB=DE,∴△PCD的周长=PC+CD+PD,=PC+CE+DE+PD,=PC+CA+PD+DB,=P A+PB,=16.故答案为:16.29.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AD边于点E,若△CDE的周长为12,则四边形ABCE周长为.【答案】14【分析】根据正方形的性质,得到AB⊥BC,AB⊥AD,AB=CD,推出DA,CB均为圆O的切线,根据切线长定理,推出AE=FE,CF=BC,推出正方形的边长为4,设设AE=EF=x,则DE=4-x,CE=4+ x,勾股定理求出x的值,再根据周长公式进行求解即可.【详解】解:∵以正方形ABCD的AB边为直径作半圆O,∴AB⊥BC,AB⊥AD,AB=BC=AD=CD,∠D=90°,∴DA,CB均为圆O的切线,∵过点C作直线切半圆于点F,交AD边于点E,∴AE=FE,CF=BC,∵△CDE的周长为12,∴CE+DE+CD=CF+EF+DE+CD=AE+BC+DE+CD=AD+BC+CD=12,∴AD=BC=CD=4,∴CF=4,设AE=EF=x,则DE=4-x,CE=4+x,在Rt△CDE中,由勾股定理得CE2=CD2+DE2,∴4+x2,2=42+4-x解得x=1,∴AE=EF=1,CE=5,∴四边形ABCE周长=AE+CE+AB+BC=1+5+4+4=14,故答案为:14.【点睛】本题考查了正方形的性质、圆的切线判定、切线长定理、勾股定理等知识点,利用正方形的性质和圆的切线的判定得出AD、BC均为圆O的切线是解题关键.30.如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD⋅DB=24,则AB的长=.【答案】10【分析】本题考查三角形的内切圆与内心,切线长定理、勾股定理等知识,解题的关键是学会利用参数,构建方程解决问题.连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,由AC2+BC2=AB2,由此即可解决问题;【详解】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∴可以假设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48-8,∴a+b=10,∴AB=10.故答案为:10.【题型08:三角形的外接圆】31.如图,在△ABC中,∠A=60°,BC=43cm,则△ABC的外接圆的直径是cm.【答案】8【分析】本题考查三角形的外接圆和外心,根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.【详解】解:设圆的圆心为点O,则△ABC的外接圆如图,连接OB,OC,过点作OD⊥BC,∵在△ABC中,∠A=60°,BC=43cm,∴∠BOC =120°,∵OD ⊥BC∴∠ODB =90°,∠BOD =60°,BD =23,∠OBD =30°,∴OB =23sin60°∴OB =4cm ,即△ABC 外接圆的直径是8cm ,故答案为:8.【变式8-1】已知O 是△ABC 的内心,∠BAC =70°,P 为平面上一点,点O 恰好又是△BCP 的外心,则∠BPC 的度数为( )A .50°B .55°C .62.5°D .65°【答案】C【分析】本题考查了三角形的内心和三角形外心的性质,三角形内角和定理,利用三角形内心的性质得OB 、OC 分别是∠ABC 、∠ACB 的角平分线,进而求出∠BOC 的大小,再利用三角形外心的性质得出∠BPC 等于∠BOC 的一半,即可得出答案,牢记以上知识点得出各角之间的关系是解题的关键.【详解】解:连接OB 、OC ,∵O 是△ABC 的内心,,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12∠ABC +∠ACB ,∵∠BAC =70°,∴∠ABC +∠ACB =180°-70°=110°,∴∠OBC +∠OCB =12∠ABC +∠ACB =55°,∴∠BOC =180°-55°=125°,∵点O 又是△BCP 的外心,∴∠BPC =12∠BOC =12×125°=62.5°,故选:C .32.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫作格点,A ,O 两点皆在格点上,在此方格纸上另找两格点B ,C ,使得△ABC 的外心为O ,则BC 的长为()A.4B.5C.10D.25【答案】D【分析】本题考查三角形的外接圆与外心,勾股定理,关键是掌握三角形的外心的性质.三角形外心的性质:三角形的外心到三角形三顶点的距离相等,由此得到OB=OC=OA,从而确定B、C的位置,然后利用勾股定理计算即可.【详解】解:B,C的位置如解图所示,连接OA,OB,OC,∵△ABC的外心为O,∴OB=OC=OA由图可知OA=12+32=10.∴OB=OC=10∴BC=22+42=25,故选:D.33.如图,O是△ABC的外心,∠ABC=42°,∠ACB=72°,则∠BOC=()A.123°B.132°C.114°D.无法确定【答案】B【分析】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理及三角形内角和定理.先利用三角形内角和计算出∠BAC= 66°,在利用三角形外心的性质和圆周角定理得到∠BOC的度数.【详解】解:∵∠ABC=42°,∠ACB=72°,∴∠A=180°-∠ABC-∠ACB=180°-42°-72°=66°,∴∠BOC=2∠A=2×66°=132°,故选:B.。

圆中考常考题型

圆中考常考题型

圆中考常考题型摘要:1.圆的概述2.圆的性质3.常考题型及解题方法4.总结与建议正文:一、圆的概述圆是几何学中的一种基本图形,它是由一条闭合的曲线组成,其上所有点到某一固定点的距离相等。

这个固定点被称为圆心,距离被称为半径。

圆可以根据其半径和圆心的位置进行分类,如以圆心为中心,半径为R 的圆可以表示为(x-a)+(y-b)=R。

二、圆的性质圆具有许多重要的性质,如:1.圆的周长:C=2πR,其中R 为半径,π为圆周率。

2.圆的面积:S=πR。

3.圆的切线:与圆相切且与圆只有一个公共点的直线称为圆的切线。

4.圆的割线:过圆上一点且与圆相交的直线称为圆的割线。

5.圆的同心圆:与已知圆有共同圆心的圆称为同心圆。

6.圆的公切线:与两个圆都相切的直线称为公切线。

三、常考题型及解题方法在中考数学中,圆的题型丰富多样,主要包括以下几种:1.求圆的周长、面积及半径解法:根据圆的性质,直接套用公式进行计算。

2.求圆的切线、割线长度解法:利用切线、割线与半径的关系进行计算。

3.判断两圆的位置关系解法:根据两圆的半径大小和圆心距进行判断,如外离、外切、相交、内切、内含等。

4.求圆与直线的交点解法:利用解析几何中的公式,如点到直线距离公式、直线与圆的位置关系等。

5.圆与圆的位置关系及应用解法:根据两圆的位置关系,利用公式进行计算,如求公共弦、公共切线等。

四、总结与建议对于圆的题型,我们要熟练掌握圆的性质和公式,并能灵活运用到实际问题中。

在做题过程中,要注重分析题目,找到问题的关键点,运用相应的知识点进行解答。

(完整版)初中圆题型总结

(完整版)初中圆题型总结

圆的基本题型纵观近几年全国各地中考题,圆的相关看法以及性质等一般以填空题,选择题的形式观察并占有必然的分值;一般在 10 分- 15 分左右,圆的相关性质,如垂径定理,圆周角,切线的判断与性质等综合性问题的运用一般以计算证明的形式观察;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有特别重要的地位,别的与圆相关的本质应用题,阅读理解题,研究存在性问题仍是热门考题,应引起注意 . 下面究近来几年来圆的相关热门题型,举例解析以下。

一、圆的性质及重要定理的观察基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关系 .(3) 圆周角定理及推论(4)圆内接四边形性质【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的均分线 CE 交⊙ O于 E ,连接 OE .求证: E 为弧 ADB的中点;(2)若是⊙ O的半径为 1,CD 3 ,①求 O 到弦 AC 的距离;②填空:此时圆周上存在个点到直线 AC 的距离为1.2【解析】(1)Q OC OE ,E OCEC又OCE DCE ,E DCE .A BO HOE ∥ CD .E D 又 CD AB ,AOE BOE 90o.E 为弧 ADB的中点.(2)①Q CD AB , AB 为⊙ O的直径,CD 3 ,1CD 3.又 OC CH33 .CH 1 ,sin COB 22 2 OC 1 2 COB 60o,BAC 30o.作 OP AC 于 P ,则 OP 1OA 1 .2 2②3.【谈论】本题综合观察了利用垂径定理和勾股定理及锐角三角函数求解问题的能力 . 运用垂径定理时,需增加辅助线构造与定理相关的“基本图形”.几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解相关弦心距半径相关问题时 , 常常增加的辅助线是连半径或作出弦心距, 把垂径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间d 2a 2的关系为 r 2 . 依照此公式 , 在 a 、r、d 三个量中 , 知道任何两个量即可2以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 .【例】(安徽芜湖)如图,已知点 E 是圆 O上的点,2B、C分别是劣弧 AD 的三均分点,BOC 46o,则 AED 的度数为.【解析】由B、C 分别是劣弧AD 的三均分点知,圆心角∠∠∠AOB= BOC= COD,又 BOC 46o,因此∠AOD=138o.依照同弧所对的圆周角等于圆心角的一半。

中考数学圆与扇形题型归纳

中考数学圆与扇形题型归纳

中考数学圆与扇形题型归纳在中考数学中,圆与扇形是一个重要的知识点,也是考试中经常出现的题型。

圆与扇形的相关题目通常会涉及到圆的基本性质、圆周角定理、弧长公式、扇形面积公式等知识点。

下面我们就来对中考数学中圆与扇形的常见题型进行归纳和总结。

一、圆的基本性质1、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

2、圆的直径和半径直径是通过圆心且两端都在圆上的线段,直径等于半径的两倍。

3、圆的弦和弧连接圆上任意两点的线段叫做弦,圆上任意两点间的部分叫做弧。

4、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线;圆也是中心对称图形,其对称中心是圆心。

在中考中,经常会考查圆的基本性质的应用,例如:已知圆的半径求直径,或者已知圆的直径求半径;已知弦长和圆心到弦的距离求圆的半径等。

二、圆周角定理圆周角定理:同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

圆周角定理是圆中一个非常重要的定理,在解决与圆相关的角度问题时经常会用到。

例如:已知圆中某条弧所对的圆心角的度数,求圆周角的度数;或者已知圆周角的度数,求圆心角的度数等。

三、弧长公式弧长公式:$l =\frac{n\pi r}{180°}$(其中$l$表示弧长,$n$表示圆心角度数,$r$表示圆的半径)弧长公式在计算圆中弧的长度时经常用到。

例如:已知圆的半径和圆心角的度数,求弧长;或者已知弧长和圆心角的度数,求圆的半径等。

四、扇形面积公式扇形面积公式:$S =\frac{n\pi r^2}{360°}$(其中$S$表示扇形面积,$n$表示圆心角度数,$r$表示圆的半径)或者$S =\frac{1}{2}lr$(其中$l$表示弧长,$r$表示圆的半径)扇形面积公式在计算圆中扇形的面积时经常用到。

例如:已知圆的半径和圆心角的度数,求扇形面积;或者已知扇形面积和圆心角的度数,求圆的半径等。

中考圆专题知识点总结

中考圆专题知识点总结

中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。

圆的周长叫做圆的周长,圆的面积叫做圆的面积。

圆的半径为r,圆的直径为d。

二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。

- 弧长:弧的长度,记作L。

- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。

3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。

圆周角的度数等于它所对的圆心角的两倍。

5. 切线和切点:切线是与圆只有一个交点的直线。

切线与圆相切的点叫做切点。

6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。

- 对应弧:两个圆相交的弧的对应部分。

- 交角:两个相交弧的交角。

7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。

切线和割线的切点到圆心的连线和圆的半径相垂直。

三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。

2. 圆周角的度数等于所对的弧的度数。

3. 圆心角的度数等于所对的弧的度数。

四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。

2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。

3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。

五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。

2. 圆的面积和周长问题:求圆的面积和周长。

3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。

4. 切线和切点的问题:计算切线和切点的位置以及相关长度。

5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。

九年级《圆》经典例题分析总结

九年级《圆》经典例题分析总结

《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。

九年级上册圆题型归纳

九年级上册圆题型归纳

九年级上册圆题型归纳一、圆的基本概念相关(5题)题1:已知圆的半径为5cm,求圆的周长和面积。

解析:圆的周长公式为C = 2π r,面积公式为S=π r^2,其中r = 5cm。

周长C=2π×5 = 10π cm≈ 10×3.14=31.4cm面积S=π×5^2=25π cm^2≈25× 3.14 = 78.5cm^2题2:在圆O中,弦AB的长为8,圆心O到弦AB的距离为3,求圆O的半径。

解析:设圆O的半径为r,圆心O到弦AB的距离为d = 3,弦长AB=8。

根据垂径定理,半弦长、圆心到弦的距离与圆的半径构成直角三角形。

半弦长为(AB)/(2)=(8)/(2) = 4由勾股定理r^2=d^2+<=ft((AB)/(2))^2r=√(3^2)+4^{2}=√(9 + 16)=√(25)=5题3:已知圆O的直径为10,点A在圆O上,求∠ AOB的度数(其中O为圆心,B为圆上另一点且AB为圆的弦)。

解析:因为圆O的直径为10,则半径r = 5。

当AB为直径时,∠ AOB=180^∘;当AB为非直径的弦时,0^∘<∠AOB<180^∘。

由于题目没有更多关于AB弦的信息,所以仅能得出∠ AOB的取值范围是0^∘<∠ AOB≤slant180^∘题4:圆O中,弧AB所对的圆心角为60^∘,半径为6,求弧AB的长。

解析:弧长公式l=(nπ r)/(180)(n为圆心角度数,r为半径)已知n = 60^∘,r=6弧AB的长l=(60π×6)/(180)= 2π题5:判断:相等的圆心角所对的弧相等。

()解析:错误。

在同圆或等圆中,相等的圆心角所对的弧相等。

如果没有同圆或等圆这个前提条件,即使圆心角相等,所对的弧长也不一定相等。

二、与圆的切线相关(5题)题1:直线l与圆O相切于点A,圆O的半径为3,若OA与直线l的夹角为30^∘,求圆心O到直线l的距离。

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,rd d CBAO即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、圆的题型归纳
1. 直线与圆的位置关系:直线与圆可以相切、相交、外切、内切。

2. 圆的性质:取点到圆心的距离相等;圆两点到圆心的连线,长度相等,角度相等;圆周上的点,到圆心两条连线的比值相等。

3. 圆心角:圆心角及其扇形的面积,与圆上两点的距离有关。

4. 关于圆的全等:两个半径相等的圆,它们的圆心角两端的线段的角度也相等;重心相等的圆,它们的圆心角也是相等的。

5. 关于圆的切线:圆上的点到圆心连线,为切线;圆上两点连线为切线;任一点到圆心的连线与任一点到圆上另外一点的连线的夹角为切线。

二、解题技巧
1. 图形分析法:根据题意绘制出合理的几何图形,对圆形的部分应尽量详细地描绘出来,综合分析各个部分的相互关系,以此判断圆形的计算结果。

2. 数字分析法:根据数据来分析圆形的特性,比如圆的半径是给定的,那么可以根据圆的性质和圆心角来推算其他参数的值;又如圆心角的角度是已知的,则可以推算出其它参数的值。

3. 结论法:圆周上的点,所到圆心的连线的比值都是相同的;圆心角的扇形面积和它的的圆心角的角度有关。

这些基本性质可以在解题中灵活地运用,通过比较不同扇形的面积来判断其可行的解,从
而推断出解题的具体值。

中考数学圆题型大归纳

中考数学圆题型大归纳

中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。

下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。

二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。

三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。

以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。

在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。

祝你学业有成,考试顺利!。

(完整)圆知识梳理+题型归纳附答案_(详细知识点归纳+中考真题),推荐文档

(完整)圆知识梳理+题型归纳附答案_(详细知识点归纳+中考真题),推荐文档

,那么这个圆柱的侧面积
是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁
厘米,那么此圆锥的底面半径的
会议在重庆市的召开,小区管委会决定在这个米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,
元,则建造这些花台共需资金 ( )
的距离
,那么圆的面积为 ( )
的长为 ( )
,顺次连结五个圆心得到五边
米,那么这个油桶的侧面积为 ( )
平方米
厘米,围成这样的冰淇淋纸筒所
旋转一周得到另一个圆锥,其表面积为
长为 
厘米,则这个圆锥的侧面积是 ( )
平方厘米,则这个圆柱的底面半径是 ( )
厘米的弦,则圆心到此弦的距离为 (
分别相切于点
的度数为 (
是优弧上
平方厘米
厘米,
,,,的度数
,=,若
的大小
分成两部分的线段长分别为2和6,那
________.
厘米,的长等于⊙,则的长是
的中点,延长
,则弦CD的长
厘米,那么这个扇形的面积为_________.
,是以长为半径的弧,是以
,交于点
厘米,则扇形的半径是
米的汤姆沿着
是⊙O的弦,且
,弦
 13.C 14.D 15.D 
,∴ =,。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

初三圆的练习题典型总结

初三圆的练习题典型总结

初三圆的练习题典型总结初三数学学习中,圆是一个重要的概念,涉及到的内容包括圆的周长、面积、弧长、扇形面积等。

在备考中,经常会遇到涉及圆的练习题,做好这部分题目的典型总结,可以帮助我们更好地掌握圆的相关知识,提高解题的能力。

一、圆的基本概念在开始总结练习题之前,我们首先回顾一下圆的基本概念。

圆是一个平面内到定点距离都相等的点的集合,这个定点叫做圆心,到圆心的距离叫做半径。

圆内半径相等的弧互相对应,称为圆周角。

圆内距离圆心相等的弧互相对应,称为等弧。

掌握了这些基本概念,我们才能更好地理解和解答练习题。

二、圆的周长和面积1. 计算圆的周长圆的周长公式为C = 2πr,其中r为半径。

当给出半径时,只需将其代入公式中计算即可。

在做题时,需要注意单位的转换,并保留合适的精度。

2. 计算圆的面积圆的面积公式为A = πr²,通过将半径代入公式中计算即可。

同样需要注意单位的转换和精度的控制。

三、弧长和扇形面积1. 计算圆弧的长度当给出圆心角的度数或弧度时,可以通过计算圆的周长与圆心角的比例关系,得到弧长的计算公式。

具体的计算方法要根据题目中给出的信息来确定。

2. 计算扇形的面积扇形是由圆心角和圆的弧长组成的一部分圆。

扇形的面积计算公式为A = 1/2r²θ,其中θ为圆心角的度数或弧度。

在计算时,需要注意单位的转换和精度的控制。

四、综合运用与解答技巧在练习解答圆的题目时,以下几点是需要注意的:1. 仔细阅读题目,理解题意。

2. 画图、标注,帮助更好地理解和解题。

3. 利用已知条件,分析问题。

4. 灵活运用相应的公式和定理。

5. 注意精度控制,保留合适的小数位数或计算结果。

6. 检查答案,确保解题过程正确并得到准确的结果。

通过练习题的总结,我们可以发现圆的相关知识是有一定规律可循的,熟练掌握其中的计算方法和解题思路,可以帮助我们在考试中更加得心应手。

因此,我们在学习中应该注重对圆的练习题进行分类总结,积极总结解题思路和技巧,并多加练习,在实践中不断提高自己的解题能力。

中考圆的常见题型总结

中考圆的常见题型总结

中考圆的常见题型总结中考圆的常见题型总结圆是中考数学中的一个重要概念,掌握圆的性质和相关题型能有效提高数学成绩。

下面将对中考圆的常见题型进行总结。

常见题型一:圆的基本性质题1. 求圆的面积和周长:圆的面积公式为:S = πr²圆的周长公式为:C = 2πr2. 求圆心角的度数:圆心角所对的弧与圆周所对的角相等,所以可以用圆心角的度数去表示弧的度数。

常见题型二:圆的位置关系题1. 判断关系:a. 外切圆和内切圆的位置关系:两个相切的圆,内切圆的圆心在外切圆的圆心的同一直线上。

b. 相交关系:两个相交的圆在两个交点的位置关系,可以根据边长和半径等关系进行求解。

c. 同圆关系:两个同圆的圆是重合的,即它们的半径相等。

d. 不交相离:两个完全不相交的圆,它们的位置关系为不交相离。

2. 判断位置:判断一个点在圆的内部、外部还是圆上,可以通过求这个点到圆心的距离是否等于圆的半径来判断。

常见题型三:弧和扇形的性质题1. 弧段公式:已知圆的半径和弧长,可以用弧长公式计算圆心角的度数。

2. 扇形面积公式:已知扇形中心角的度数和半径,可以用扇形面积公式计算扇形的面积:S = (θ/360°)πr²常见题型四:切线和切点的性质题1. 切线的定义:切线是与圆只有一个交点的直线。

2. 切点的性质:切点与切线垂直,切点到圆心的距离等于半径。

常见题型五:菱形和正方形的圆内接问题1. 菱形的性质:菱形的四个角都是直角,因此可以通过对角线的性质判断是否为菱形。

2. 正方形的性质:正方形是一种特殊的菱形,它的四条边相等且四个角都是直角。

常见题型六:圆锥、圆台和球的性质题1. 圆锥的性质:圆锥是一个底面是圆而侧面是圆锥曲线的立体。

求圆锥的体积公式为:V = (1/3)πr²h求圆锥的侧面积公式为:S = πrl2. 圆台的性质:圆台是一个底面是圆而顶面平行于底面的立体。

求圆台的体积公式为:V = (1/3)π(R² + r² + Rr)h求圆台的侧面积公式为:S = π(R + r)l3. 球的性质:求球的体积公式为:V = (4/3)πr³求球的表面积公式为:S = 4πr²以上是中考圆的常见题型总结,通过对这些题目的分析和解答,可以有效提高对圆的理解和掌握,并且能够在中考数学中灵活运用。

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本题型纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;一般在10分-15分左右,圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有非常重要的地位,另外与圆有关的实际应用题,阅读理解题,探索存在性问题仍是热门考题,应引起注意.下面究近年来圆的有关热点题型,举例解析如下。

一、圆的性质及重要定理的考查基础知识链接:(1)垂径定理;(2)同圆或等圆中的圆心角、弦、弧之间的关系.(3)圆周角定理及推论 (4)圆内接四边形性质【例1】(江苏镇江)如图,AB 为⊙O 直径,CD 为弦,且CD AB ⊥,垂足为H . (1)OCD ∠的平分线CE 交⊙O 于E ,连结OE .求证:E 为弧ADB 的中点; (2)如果⊙O 的半径为1,3CD =, ①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为12. 【解析】(1)OC OE =Q ,E OCE ∴∠=∠ 又OCE DCE ∠=∠,E DCE ∴∠=∠. OE CD ∴∥.又CD AB ⊥,90AOE BOE ∴∠=∠=o . E ∴为弧ADB 的中点.(2)①CD AB ⊥Q ,AB 为⊙O 的直径,3CD =1322CH CD ∴==.又1OC =,332sin 1CH COB OC ∴∠===.60COB ∴∠=o , 30BAC ∴∠=o .作OP AC ⊥于P ,则1122OP OA ==.②3.ABDE O CH【点评】 本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的能力.运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”. 几何上把圆心到弦的距离叫做弦心距,本题的弦心距就是指线段OD 的长.在圆中解有关弦心距半径有关问题时,常常添加的辅助线是连半径或作出弦心距,把垂径定理和勾股定理结合起来解题.如图,⊙O 的半径为r ,弦心距为d ,弦长a 之间的关系为2222a r d ⎛⎫=+ ⎪⎝⎭.根据此公式,在a 、r 、d 三个量中,知道任何两个量就可以求出第三个量.平时在解题过程中要善于发现并运用这个基本图形. 【例2】 (安徽芜湖)如图,已知点E 是圆O 上的点,B 、C 分别是劣弧AD 的三等分点, 46BOC ∠=o , 则AED ∠的度数为 .【解析】由B 、C 分别是劣弧AD 的三等分点知,圆心角∠AOB=∠BOC=∠COD, 又46BOC ∠=o ,所以∠AOD=138º.根据同弧所对的圆周角等于圆心角的一半。

从而有AED ∠=69º. 点评 本题根据同圆或等圆中的圆心角、圆周角的关系。

【强化练习】【1】.如图,⊙O 是ABC 的外接圆,60BAC ∠=︒,AD ,CE 分别是BC ,AB 上的高,且AD ,CE 交于点H ,求证:AH=AO(1)如图,在⊙O 中,弦AC ⊥BD ,OE ⊥AB ,垂足为E ,求证:OE=12CD(2)如图,AC ,BD 是⊙O 的两条弦,且ACBD ,⊙O 的半径为12,求AB 2+CD 2的值。

【2】(第25题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.二、直线与圆的位置关系基础知识链接:1、直线与圆的位置关系有三种:⑴如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离.⑵如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,此时这条直线叫做圆的切线,这个公共点叫做切点.⑶如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线,这两个公共点叫做交点.2、直线与圆的位置关系的判定;3、弦切角定理弦切角等于它所夹的弧对的圆周角;4. 和圆有关的比例线段(1)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等;(2)推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项;(3)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(4)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

5. 三角形的内切圆(1)有关概念:三角形的内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形;6、圆的切线的性质与判定。

【例1】(甘肃兰州)如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==o ,,求BD 的长.【解析】(1)证明:连接OA ,DA Q 平分BDE ∠,BDA EDA ∴∠=∠. OA OD ODA OAD =∴∠=∠Q ,.OAD EDA ∴∠=∠. OA CE ∴∥.AE DE ⊥Q ,9090AED OAE DEA ∴∠=∠=∠=o o ,. AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD Q 是直径,90BCD BAD ∴∠=∠=o. 3060DBC BDC ∠=∠=o o Q ,,120BDE ∴∠=o . DA Q 平分BDE ∠,60BDA EDA ∴∠=∠=o . 30ABD EAD ∴∠=∠=o .在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=o o ,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==o o ,,. DE Q 的长是1cm ,BD ∴的长是4cm .【点评】证明圆的切线,过切点的这条半径为必作辅助线.即经过半径的外端且DE CBOAD E CBOAOEDCB AOFCBA垂直于这条半径的直线是圆的切线.【例2】(广东茂名)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E,连结AD 、BD . (1)求证:∠ADB =∠E ;(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径.(4分) 【解析】(1)在△ABC 中,∵AB =AC , ∴∠ABC =∠C .∵DE ∥BC ,∴∠ABC =∠E , ∴∠E =∠C . 又∵∠ADB =∠C , ∴∠ADB =∠E .(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线.理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . 又∵DE ∥BC ,∴ AD ⊥ED . ∴ DE 是⊙O 的切线.(3)连结BO 、AO ,并延长AO 交BC 于点F ,则AF ⊥BC ,且BF =21BC =3.又∵AB =5,∴AF =4.设⊙O 的半径为r ,在Rt△OBF 中,OF =4-r ,OB =r ,BF =3, ∴ r 2=32+(4-r )2 解得r =825,∴⊙O 的半径是825. 【点评】 本题综合运用了等腰三角形的性质,圆的切线判定,解题最关键是抓住题中所给的已知条件,构造直角三角形,探索出不同的结论.【例4】 已知:如图7,点P 是半圆O 的直径BA 延长线上的点,PC 切半圆于C点,CD ⊥AB 于D 点,若PA :PC =1:2,DB =4,求tan ∠PCA 及PC 的长。

OEDC B A图7证明:连结CB∵PC切半圆O于C点,∴∠PCA=∠B∵∠P=∠P,∴△PAC∽△PCB∴AC:BC=PA:PC∴∵AB是半圆O的直径,∴∠ACB=90°又∵CD⊥AB∴∴AB=AD+DB=5∵∴【例5】已知:如图8,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D。

求证:(1)AC是⊙D的切线;(2)AB+EB=AC分析:(1)欲证AC与⊙D相切,只要证圆心D到AC的距离等于⊙D的半径BD。

因此要作DF⊥AC于F(2)只要证AC=AF+FC=AB+EB,证明的关键是证BE=FC,这又转化为证△EBD ≌△CFD。

证明:(1)如图8,过D作DF⊥AC,F为垂足∵AD是∠BAC的平分线,DB⊥AB,∴DB=DF∴点D到AC的距离等于圆D的半径∴AC是⊙D的切线(2)∵AB⊥BD,⊙D的半径等于BD,∴AB是⊙D的切线,∴AB=AF∵在Rt△BED和Rt△FCD中,ED=CD,BD=FD∴△BED≌△FCD,∴BE=FC∴AB+BE=AF+FC=AC小结:有关切线的判定,主要有两个类型,若要判定的直线与已知圆有公共点,可采用“连半径证垂直”的方法;若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法。

此例题属于后一类【例6】已知:如图9,AB为⊙O的弦,P为BA延长线上一点,PE与⊙O相切于点E,C为中点,连CE交AB于点F。

求证:分析:由已知可得PE2=PA·PB,因此要证PF2=PA·PB,只要证PE=PF。

即证∠PFE=∠PEF。

证明一:如图9,作直径CD,交AB于点G,连结ED,∴∠CED=90°∵点C为的中点,∴CD⊥AB,∴∠CFG=∠D∵PE为⊙O切线,E为切点∴∠PEF=∠D,∴∠PEF=∠CFG∵∠CFG=∠PFE,∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB证明二:如图9-1,连结AC、AE图9-1∵点C是的中点,∴,∴∠CAB=∠AEC∵PE切⊙O于点E,∴∠PEA=∠C∵∠PFE=∠CAB+∠C,∠PEF=∠PEA+∠AEC∴∠PFE=∠PEF,∴PE=PF∵PE2=PA·PB,∴PF2=PA·PB【例7】(1)如图10,已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O 于F(不与B重合),直线l交⊙O于C、D,交BA延长线于E,且与AF垂直,垂足为G,连结AC、AD图10 图10-1 求证:①∠BAD=∠CAG;②AC·AD=AE·AF(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其它条件不变。

①请你在图10-1中画出变化后的图形,并对照图10标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由。

证明:(1)①连结BD∵AB是⊙O的直径,∴∠ADB=90°∴∠AGC=∠ADB=90°又∵ACDB是⊙O内接四边形∴∠ACG=∠B,∴∠BAD=∠CAG②连结CF∵∠BAD=∠CAG,∠EAG=∠FAB∴∠DAE=∠FAC又∵∠ADC=∠F,∴△ADE∽△AFC∴,∴AC·AD=AE·AF(2)①见图10-1②两个结论都成立,证明如下:①连结BC,∵AB是直径,∴∠ACB=90°∴∠ACB=∠AGC=90°∵GC切⊙O于C,∴∠GCA=∠ABC∴∠BAC=∠CAG(即∠BAD=∠CAG)②连结CF∵∠CAG=∠BAC,∠GCF=∠GAC,∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,∠E=∠ACG-∠CAE∴∠ACF=∠E,∴△ACF∽△AEC,∴∴AC2=AE·AF(即AC·AD=AE·AF)说明:本题通过变化图形的位置,考查了学生动手画图的能力,并通过探究式的提问加强了对学生证明题的考查,这是当前热点的考题,希望引起大家的关注。

相关文档
最新文档