第3章刚体力学基础
第3章刚体力学基础
描述质点系转动的动力学方程
z
取惯性坐标系
dt
oxyz
刚体所受的对
转轴的力矩
x
o
M r F
定义:在垂直于转轴的平 面轴内的,距外离力dF的与乘力积线到转
y z轴为固定转轴
z
M
F
F F
r
垂直转轴的外力分量产生沿
d
转轴方向的力矩, 平行于转
轴的外力分量产生的力矩被
轴承支承力的力矩所抵消
一 、作用于定轴刚体的合外力矩
相对于定轴的合外力矩
(力对转轴的力矩)
M z M iz ri Fi sin i
i
i
即作用在各质元的 力矩的 z 分量之和
二、刚体定轴转动定理
由于刚体只能绕 z 轴转动, 引起转动的力矩只有z方向,
因此转动动力学方程
Mz
dLz dt
dL M
dt
Li
Ri
m
i
v
i
oo ri
mi vi
解:
z
J z mi ri2
i
m i
x
2 i
y
2 i
i
Jy Jx
x
o
yi
ri
m
x
i
i
y
例 均质圆盘:m, R . 求以直径为轴的转动惯量 解:
J 1 mR2 4
例3-6(P181) 挂钟摆锤的转动惯量
解:
o
m1 l
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
m2 R
例 计算钟摆的转动惯量。(已知:摆锤质量为m,半 径为r,摆杆质量也为m,长度为2r)
第3章 刚体力学
说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z
s r
v r
an r 2
O
at r
dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]
理论力学第三章刚体力学
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )
得
r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件
(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
第三章-刚体力学基础
薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O
大学物理第三章刚体力学基础习题答案
方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
刚体力学基础第三章
二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1
理论力学周衍柏第三章
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
第三章 刚体力学
(5) 空间力系向一点简化 力系中每一个力都向简化中心简化得一力和力偶矩, 这些共点力和诸力偶矩可合成为一个单力和一个单 力偶矩,其作用与原力系等效。
结论:作用在刚体上的任意空间力系 F1 , F2 ......Fn ) (
l sin 0 cos 0 f N2 h l sin 0 cos2 0
2
B C
l
说明:也可用二矩式和三矩式 平衡条件求解
l
A
例2:相同的两个均质光滑球悬在结于定点O的两根 绳子上,求两球同时又支撑一个等重的均质球,求: 角与 角之间的关系。 解:(1) 本题需求角与 角的关系,
①力偶矩等于力偶中两力对任意一点力矩的矢量 和,故力偶矩的量值与取矩点无关。
证明:o点任取
M o rA F1 rB F2 (rA rB ) F1 rAB F 1 M o
结论:力偶矩是自由矢量 力的作用面不能随意移动。
2
mxc Fx 即: myc Fy mzc Fz
①
由对质心的动量矩定理(平动质心系中): dJ cx dt M cx dJ c M c 即: dJ cy dt M cy dt dJ cz dt M cz
B C
l
l
A
(3) 本题为平面力系的平衡问题
平衡条件:Fx 0, Fy 0, M z 0
Fx 0 f N1 cos 90 0 0 f N1 sin 0 Fy 0 N 2 N1 sin 90 0 P 0 N 2 P N1 cos 0 M 0 Pl cos N h N Pl sin cos / h 0 1 1 0 0 Az sin 0
第3章 刚体力学基础
1 1 mi vi2 mi ri 2 2 2 2 n 1 1 n 1 2 2 2 2 刚体的动能: Ek mi ri ( mi ri ) J 2 2 i 1 2 i 1 2
1 E k J 2 2
刚体绕定轴转动时的转动动能等于刚体的转动惯 量与角速度平方乘积的一半。
1
d J d dt
W
2
1
1 1 2 Jd J2 J12 2 2
1 2 Md ( J ) 2
2
1
合外力矩对定轴转动刚体所做的功等于刚体转动 动能的增量。这就是刚体定轴转动时的动能定理。
-------------------------------------------------------------------------------
当输出功率一定时 ,力矩与角速度成反比。 ------------------------------------------
3. 刚体定轴转动的动能定理:
W M d
1 2
Jd
1
2
2
2
-------------------------------------------------------------------------------
L=rm=mr2
2.定轴转动的角动量守恒 若
M
iz
0
则 L=J = 恒量
外力对某轴的力矩之和为零,则该物 体对同一轴的角动量守恒.
装置反向转动的双旋翼产 生反向角动量而相互抵消
-------------------------------------------------------------------------------
第三章 刚体力学
y’
y,η x
ψ
N
x,ξ
实际上,据刚才的分析, O 轴 可认为 是刚体绕 转动的角速度 ,绕ON轴 转动的角速度 ,和绕 z轴转动的角速度 的矢量
z θ
z
ψ
y
M ’
y’
sin sini sin cosj cosk
F2
d o1o2
P
O1 A
rAB
B
F1 F2 F
O2
为力偶面
F1
力偶臂:两平行力之间的垂直距离 如图所示的O1O2 力偶对任意一点P的力矩等于两平 行力对同一点P的力矩之代数和
M F2 .PO2 F1.PO1 F.O1O2
M
力偶矩:力和力偶臂的乘积,方向右手螺旋法则
二 角速度矢量 角速度:
lim
t 0
既然角位移 且与角位移的方向相同 转动瞬轴: 定点转动时某时刻的转轴
n是矢量,则角速度也是矢量,
线速度:因转动而具有的速度 线速度和角速度之间的关系:
r 为刚体内某质点到点O的位矢, 是刚体绕通过
该点某轴线的角速度
dr dn r v r dt dt
y,η
k
ψ N
cosi sinj
y
x,ξ
x’
x
cos sin sin x
sin sin cos y
x
cos z
已知 (t ) ,θ(t),ψ(t)可以求得ω,反之亦然。
二、刚体的运动微分方程 1.质心运动方程 根据质心运动定理,取质心为简化中心, d r 为刚体质心相对于 m F F 则 dt 某定点O的位矢 分量式: m C Fx x
第3章 刚体力学基础
刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R
⑤
J 1 mR2
第三章 刚体力学基础
m1
r1
r2
m2
若质量连续分布
质量为线分布
J r dm
2
质量为面分布
质量为体分布
dm dl
为质量的线密度
dm ds
为质量的面密度
dm dV
为质量的体密度
线分布
面分布
体分布
注 意
只有几何形状规则、质量连续且均匀分布的刚体,才 用积分计算其转动惯量,一般刚体则用实验求其转动惯量。
0 x
d 角速度 dt 2 d d 角加速度 2 dt dt 由于这时组成刚体的各质点均在各自的转动平面内绕轴作圆周 运动,因此前面关于质点圆周运动的全套描述方法,此处全部 可用。
d
2) 刚体定轴转动角量与线量的关系 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
2
物理意义:转动惯量是对刚体转动惯性大小的量度,其大小 反映了改变刚体转动状态的难易程度。
2. 与转动惯量有关的因素 ①刚体的质量及其分布; ②转轴的位置; ③刚体的形状。 3. 转动惯量的计算 刚体对某一转轴的转动惯量等于每个质 点的质量与这一质点到转轴的距离平方的 乘积之和。 质量离散分布的刚体
ri
0
f ji
rj
rij
f ij
二、刚体定轴转动的转动定律
如右图所示:刚体绕定轴z转动,在 刚体上任取一质元mi ,它绕z轴作 圆周运动,取自然坐标系 对mi 用牛顿第二定律:
z
fi
Or i
Fi
i
mi
i
Fi f i mi ai
cos i f i cos i ) mi ain mi ri 2
第三章 刚体力学基础 课后作业
第三章 刚体力学基础 课后作业班级 姓名 学号一、选择题1、一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A , 且向x 轴正方向移动,代表此简谐振动的旋转矢量为( )1、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A ) 只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误(C ) (1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确2、关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A ) 只有(2)是正确的 (B ) (1)、(2)是正确的(C )(2)、(3)是正确的 (D ) (1)、(2)、(3)都是正确的3、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零4、 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定5、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒二、填空题1、有甲、乙两个飞轮,甲是木制的,周围镶上铁制的轮缘。
第3章 刚体力学基础
分析细杆滑动前以 点为轴在重力矩作用下转动,细杆质心做以 点为圆心的圆周运动,根据转动定律及质心运动定律即可求出 点摩擦力 与 角关系,细杆开始滑动的临界条件为 。
(1)
(2)
式中 为圆环对 轴的转动惯量,圆环绕过中心且垂直环面的轴的转动量为 ,根据垂直轴定理
(3)
由(1)~(3)式解得
(4)
(5)
取小珠、环及地球为系统,在小珠下落过程中,外力做功为零,系统中又无非保守内力做功,所以系统的机械能守恒。设小珠落至 、 处时,相对于环的速度分别为 、 ,则有
解无滑动时,杆绕过 点的固定轴做定轴转动,由转动定律有
(1)
由平行轴定理求细杆绕 点转动时的转动惯量
(2)
无滑动时,杆绕 点转动,杆上各点做圆周运动,对质心 ,由牛顿运动定律得
(3)
(4)
杆绕 点转动,只有重力作功,机械能守恒,有
得
(5)
将式(5)代入式(3),并利用式(2),得
(6)
将式(1)代入式(4),并利用式(2),得
分析滑块与细杆碰撞角动量守恒,由此求细杆转动的 ,此后,细杆受摩擦力矩作用转速逐渐减为零,由摩擦力矩,根据角动量定理即可求出时间 。
解(1)以杆和滑块为研究系统。由于碰撞时间极短,杆所受到的摩擦力矩远小于滑块的冲力矩,故可认为合外力矩为零,因此系统的角动量守恒,即
(1)
解得
(2)碰后杆在转动过程中所受的摩擦力矩为
第3章 刚体力学基础
一、目的与要求
1.确切理解描述刚体平动和定轴转动的基本物理定义及性质,并掌握角量与线量的关系。
理论力学第三章刚体力学
电子科技大学物理电子学院 付传技
Em以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
确定刚体在空间的位置,需要几个变量?
B A
C 6个变量可以确定刚体位置
2. 刚体运动的分类 1)平动
平动的独立变量为三个
2)定轴转动
定轴转动的独立变量只有一个
世界最大的摩天轮——“伦敦眼”
3)平面平行运动
平面平行运动的独立变量有三个
4)定点转动
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
转动不改变位矢的长度,所以
rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ
由rˆ的任意性可得 AˆT Aˆ=1ˆ
这表明Aˆ的逆矩阵就是其转置。
这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
或a a
刚体力学(单行基础篇)
cos 2 α + cos 2 β + cos 2 γ = 1
所以,需要俩个独立变量描述直线位置。 刚体绕 OA 转动的角度:需要一个变量。 因此,刚体的一般运动需要六个独立变量。
二、刚体运动分类(详见力学基础相关章节)
1、刚体的平动 : 如果刚体在运动过程中,其上任一条直线始终与它的最初位置平行,这种运动称为刚体 的平行移动.独立变量为 3,可用其中任一点的坐标 x、y、z 描述 当刚体平行移动时,其上各点的轨迹形状相同;在同一瞬时,各点的速度、 加速度也分别相 同.刚体的平动可以归结为研究刚体内一点的运动. 2、定轴转动 刚体在运动过程中,其中只有一条直线保持不动, 则这种运动称为刚体绕定轴的转动,简称 转动. 这条不动的直线,称为刚体的转轴,简称轴. 独立变量为 1,用对轴的转角φ描述 3、平面平行运动 在刚体运动的过程中,刚体上的任一点始终在平行于某一固定平面的内运动。 独立变量为 3,用基点的坐标(xo,yo)及其对垂直平面过基点的轴的转角φ描述。 刚体做平面平行运动时, 刚体上垂直于固定平面的任一直线永远与固定平面垂直, 因此其上 各点的运动情况完全相同. 刚体的运动可以用一个平行于固定平面的截面在其自身平面内的运动来代表. 4、定点转动 刚体运动时, 只有一点固定不变, 整个刚体围绕着泰国这点的某一瞬时轴线转动。 独 立变量为 3,用描述轴的方向的两个角和轴线的转角描述。 5、一般运动 刚体运动时不受任何约束。 有六个独立变量
第三章 §3.1
刚体力学 刚体运动的分析
一、描述刚体位置的独立变量
1、刚体的概念 刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型, 只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。 2、确定刚体在空间的位置 能完全确定刚体位置的,彼此独立的变量个数叫刚体的自由度。 对于刚体中的任一点,需用三个独立坐标变量。 过 O 点的任一直线位置的确定,需要三个变量——方位角:α,β,γ。而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 刚体力学基础一、基本要求1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量;2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题;3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题;4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。
二、基本内容(一)本章重点和难点:重点:刚体绕定轴转动定律及角动量守恒定律。
难点:刚体绕定轴转动系统的角动量守恒定律及其应用。
(二) 知识网络结构图:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量(三)容易混淆的概念: 1.转动惯量和质量转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。
2.平动动能和转动动能平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。
(四)主要内容:1.描述刚体定轴转动的角位置θ,角位移θ∆、角速度ω和角加速度α(β)等物理量t t d d ,d d ωαθω==角量与线量的关系:2n t ωαωθr a r a r v r s ====2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。
2Jm r =⋅(1)质量连续分布的刚体:⎰=mr J d 2线分布:dl dm ⋅=λ λ-质量线分布刚体,单位长度的质量。
面分布:dS dm ⋅=σ σ- 质量面分布刚体,单位面积的质量。
体分布:dV dm ⋅=ρ ρ 质量体分布刚体,单位体积的质量。
(2)质量离散分布刚体的转动惯量:2iJ m r=⋅∑(3)平行轴定理 2C J J md =+3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。
t JJ M d d ωα==i i i M M r F ==⨯∑∑力矩:F r M⨯=力对轴的力矩大小:θsin rF M =4.刚体绕定轴转动的动能定理--合外力矩对刚体所作的功,等于刚体转动动能的增量。
2122211122W Md J J θθθωω==-⎰ 21W Md θθθ=⎰ 力矩的功221ωJ E k =刚体绕定轴转动的转动动能:对于质点、刚体组成的系统,动能定理仍然适用,系统的动能包括系统内所有质点的平动动能和刚体的转动动能。
5.刚体转动系统机械能守恒定律--当转动刚体系统内力只有保守力矩作功,其他外力矩和非保守内力矩不作功或作的总功为零,则整个系统机械能守恒。
21常量2k p c E E J mgh ω+=+= P c E mgh = 刚体的重力势能6.角动量定理与角动量守恒定律 (1)角动量—质点位矢与动量的叉积。
运动质点对某一定点的角动量:v m r p r L⨯=⨯= 刚体绕定轴转动的角动量:ωJ L =(2)角动量定理--对一固定轴,作用于系统的合外力矩的冲量矩等于系统对该轴的角动量的增量。
⎰-=12ωωJ J Mdt21t t Mdt ⎰冲量矩:力矩的时间积累效应。
(3)角动量守恒定律--若刚体所受合外力矩为零时,刚体的角动量守恒。
当0=M 时,常量==ωJ L (五)思考问答:问题1 以恒定角速度转动的飞轮上有两个点,一个点在飞轮的边缘,另一个点在转轴与边缘之间的一半处。
试问:在t ∆时间内,哪一个点运动的路程较长哪一个点转过的角度较大哪一个点具有较大的线速度、角速度、线加速度和角加速度答:刚体绕定轴转动时,刚体内的任意各点具有相同的角速度、角加速度;各点的线速度、线加速度与角量之间的关系为:2,,ωαωτr a r a r v n ===。
所以飞轮边缘处的点的运动路程较长;两点转过的角度一样大;边缘的点具有较大的线速度、线加速度,两点的角速度、角加速度一样大。
问题2 如果一个刚体所受合外力为零,其合力矩是否也一定为零如果刚体所受合外力矩为零,其合外力是否也一定为零答: 合外力为零时,其合力矩不一定为零。
合外力矩为零时,其合外力不一定为零,刚体绕定轴O 在纸平面内转动,其中12212,2F F r r ==,其合力矩M=02211=-r F r F ,但其合力03121≠=+=F F F F 。
问题3 有两个飞轮。
一个是木制的,周围镶上铁质的轮缘。
另一个是铁质的,周围镶上木制的轮缘。
若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,哪一个飞轮的动量较大答:从转动动能221ωJ E k =可知,当两者ω相同时,J 越大的飞轮,其K E 也越大。
由⎰=dm r J 2可得木制飞轮的转动惯量为:222221m 21(m 21R M M R M R R M J ⎪⎭⎫ ⎝⎛-=+=+=木总铁木铁木木)而铁制飞轮的转动惯量为:2222212121R M M R m M R m R M J ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=+=铁总木铁木铁铁由于两个飞轮的半径相同,且木铁M M 2121〉,所以铁木J J 〉,即木制的飞轮动能较大。
问题 4 如果一个质点系的总角动量等于零,能否说此质点系中每一个质点都是静止的如果一个质点系的总角动量为一常量,能否说作用在质点系上的合外力为零答:由于()v m r P r L ⨯=⨯=,所以,角动量不仅取决于矢径r 、动量v m的量值,还取决于矢径与动量之间的夹角(取向),因此,总角动量为零,可以有两种情况:第一,每一个质点的角动量都不为零,但总和为零,则每一个质点不可能静止;第二,每一个质点的角动量都为零,此时,可以使每一个质点都静止,也可以是矢径与速度相互平行。
综上可知,每一质点不一定都静止。
此外,角动量守恒的条件是合外力矩为零,而合外力不一定是零。
问题 5 下面几个物理量中,那些与原点的选择有关那些无关(1)位矢;(2)位移;(3)速度;(4)角动量。
答:位移,速度与参考系选择有关,与坐标原点选择无关;位矢、角动量既与参考系选择有关,也与坐标原点选择有关。
问题6 转动惯量的物理意义是什么,大小和什么有关答: 转动惯量的物理意义是:描述刚体作转动时保持其原运动状态的性质——转动惯性。
转动惯量的大小不仅与刚体的质量有关,也与转轴的位置有关,也就是说与刚体的总质量和相对于转轴的分布有关。
问题7 为什么在研究刚体运动时,要研究力矩的作用力矩和哪些因素有关答:一个静止的刚体能够获得平动加速度的原因是:相对它的质心而言所受的合外力不为零。
一个静止的刚体相对某一转轴能够获得角加速度的原因是:刚体所受到的相对转轴的合外力矩不为零。
因此,刚体的转动是与其受到的相对转轴的合外力矩密切相关的。
取z 轴为刚体转动的固定轴时,对转动有贡献的合外力矩是∑=izz MM ,其中i i i iz r F M θsin =,i F 是作用在刚体上的第i 个外力,在转动轴平面内的分量,而i r 是转轴(z 轴)到i F 作用点的距离,i θ是i r 与i F 间由右手定则决定的夹角。
所以,对z 轴的力矩不但与各外力在转动平面内分量的大小i F 有关,还与i F 的作用线和z 轴的垂直距离(力臂)i i i r d θsin =的值有关。
问题8 在定轴转动中,质点与刚体发生碰撞时动量是否守恒答:质点与定轴转动的刚体发生碰撞时,转轴作用于刚体的力(外力)不为零,且比较大,不能忽略,故系统的动量不守恒。
只有在合外力矩为零时,角动量守恒。
问题9 在一个系统中,如果该系统的角动量守恒,动量是否一定会守恒反之,如果该系统的动量守恒,角动量是否一定守恒答:不一定。
当作用于一个系统的合外力矩为零时,合外力(即外力的矢量和)不一定为零,所以该系统的角动量守恒时,动量不一定守恒。
同理,当对一个系统作用的合外力为零时(即外力的矢量和),合外力矩不一定为零,所以该系统的动量守恒时,角动量也不一定守恒。
三、解题方法1.刚体绕定轴转动的特征:刚体内每个质点都在与转轴垂直的平面内作圆周运动,每个质点的角速度、角加速度均相同;但因每个质点距转轴的距离不同,即作圆周运动的半径不同,故各质点的线速度,线加速度不同。
2.类比方法:与质点动力学相似,刚体绕定轴转动存在一些与质点直线运动相对应的定理和定律(刚体绕定轴转动运动学公式与质点直线运动学公式、刚体绕定轴转动定律与牛顿第二定律),利用与质点动力学类比,便于对刚体绕定轴转动定理和定律的记忆和理解。
3.解动力学问题时,定理、定律的选择技巧:到目前为止,我们已学习了牛顿运动定律、动量定理、动量守恒定律、动能定理、功能原理、机械能守恒定律、角动量守恒定律等。
我们会迂到质点平动、刚体转动、综合等问题,在解这些动力学问题时,如何选择其中的某些定理、定律来解题呢我们在解动力学问题过程中,通常是首先考虑能否用功能原理(或机械能守恒定律)求解;因功、能都是标量,而且都是状态量,可不考虑过程中发生的复杂细节。
其次,平动问题:考虑能否用动量定理或动量守恒定律求解;转动问题:考虑能否用角动量定理或角动量守恒定律求解。
因(角)动量是矢量,稍复杂一些。
再考虑能否用牛顿运动定律求解。
4.根据问题涉及物理量,确定解题路径:(1)如问题涉及到加速度,应首选动力学方法。
应用牛顿定律、转动定律以及运动学规律,可求得几乎所有的基本力学量。
(2)如问题不涉及加速度,但涉及时间,应选择(角)动量方法:考虑用动量定理和角动量定理处理问题。
(3)如问题不涉及加速度,又不涉及时间,应选择能量方法:考虑用动能定理或功能原理、机械能守恒定律处理问题。
(4)如问题不涉及加速度,又不涉及时间,且是碰撞等作用:应选择(角)动量守恒方法: 对平动问题:可首选考虑用动量守恒定律;对有转动问题:可首选考虑用角动量守恒定律处理问题。
注:1.动量守恒定律适用于平动问题;角动量守恒定律适用于转动问题。
2.分析问题要紧紧抓住运动过程和运动状态。
四、解题指导刚体转动惯量的计算(平行轴定理应用)1.如图所示,求大圆盘的实心部分对O 轴(垂直于盘面)的转动惯量。
(已知 r R 2 ,大盘质量为M ,小盘质量为m )[分析] 由于转动惯量有可加性,所以先分别求出大盘和小盘对O 轴的转动惯量,再把小盘的除去即得大盘实心部分对O 轴的转动惯量。
解:大盘对O 轴的转动惯量:2121MR J =; 小盘对O 轴的转动惯量:2223mr J =。
所以实心部分对O 轴的转动惯量为:角动量守恒定律的应用2.匀质细棒,可绕其一端的水平光滑固定轴O 转动,原来静止悬挂在竖直位置,今有一质量为m 的小球以水平速度v 与其相碰撞,如图所示,则在碰撞过程中,小球和棒组成的系统对O 点的守恒。