备战中考数学知识点过关培优易错试卷训练∶直角三角形的边角关系附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学知识点过关培优易错试卷训练∶直角三角形的边角关系附答案

一、直角三角形的边角关系

1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,

【答案】(1)∠BPQ=30°;

(2)该电线杆PQ的高度约为9m.

【解析】

试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;

(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.

试题解析:延长PQ交直线AB于点E,

(1)∠BPQ=90°-60°=30°;

(2)设PE=x米.

在直角△APE中,∠A=45°,

则AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,33

米,

∵AB=AE-BE=6米,

则3

解得:3

则BE=(33+3)米.

在直角△BEQ中,QE=

3

3

BE=

3

3

(33+3)=(3+3)米.

∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).

答:电线杆PQ的高度约9米.

考点:解直角三角形的应用-仰角俯角问题.

2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.

(1)求证:△ABC∽△BCD;

(2)求x的值;

(3)求cos36°-cos72°的值.

【答案】(1)证明见解析;(2)

15

2

-+

;(3)

58

16

【解析】

试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;

(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;

(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.

试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,

∴∠ABC=∠C=72°,

∵BD平分∠ABC,

∴∠ABD=∠CBD=36°,

∵∠CBD=∠A=36°,∠C=∠C,

∴△ABC∽△BCD;

(2)∵∠A=∠ABD=36°,

∴AD=BD,

∵BD=BC,

∴AD=BD=CD=1,

设CD=x ,则有AB=AC=x+1,

∵△ABC ∽△BCD , ∴AB BC BD CD =

,即111x x

+=, 整理得:x 2+x-1=0, 解得:x 1=

15-+,x 2=15--(负值,舍去), 则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,

∵BD=CD ,

∴E 为CD 中点,即DE=CE=154

-+, 在Rt △ABE 中,cosA=cos36°=15

15144151AE AB -++

==-++, 在Rt △BCE 中,cosC=cos72°=15

1541EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.

3.如图,反比例函数() 0k y k x

=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.

(1)求k 的值及点B 的坐标;

(2)求tanC 的值.

【答案】(1)2k =,()1,2B --;(2)2.

【解析】

【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0k y k x

=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;

(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.

【详解】(1)∵点A (1,a )在2y x =上,

∴a =2,∴A (1,2),

把A (1,2)代入 k y x =

得2k =, ∵反比例函数()0k y k x

=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,

∴()1

2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,

∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1

tanC tan AOD =∠===.

相关文档
最新文档