《过程控制课设》脱丙烷塔控制系统设计要点
丙烯丙烷分离塔及辅助设备的设计方案
![丙烯丙烷分离塔及辅助设备的设计方案](https://img.taocdn.com/s3/m/b644085e876fb84ae45c3b3567ec102de2bddf2a.png)
丙烯丙烷分离塔及辅助设备的设计方案
丙烯丙烷分离塔及辅助设备的设计方案:
1. 设备选型
根据分离塔的要求和工艺参数,选择适合的材料和设备,如
塔板、填料、冷却器、泵等。
2. 分离塔设计
根据丙烯丙烷的物理性质和分离要求,设计合适的分离塔结构、板式或填料塔,并确定塔的直径、高度和塔板的数量。
3. 辅助设备配置
配置必要的辅助设备,如冷却器、加热器、冷凝器、泵等,
以确保丙烯丙烷分离过程中的温度、压力和流体流动的稳定性。
4. 安全防护
设计相应的安全防护装置,如压力监控系统、泄漏报警系统等,确保分离塔运行过程中的安全性。
5. 自动化控制
配置适当的自动化控制系统,监控和控制丙烯丙烷分离过程
中的参数,实现自动化操作,提高生产效率。
6. 节能环保
考虑节能、环保要求,选择节能设备和清洁生产技术,减少
对环境的影响。
7. 设备维护
设计易于维护的设备结构,定期对设备进行检修和保养,延
长设备寿命,确保生产的持续进行。
以上是丙烯丙烷分离塔及辅助设备的设计方案,通过合理的选择设备和设计参数,确保分离过程的高效、稳定和安全。
抱歉,我无法完成这个要求。
脱丙烷塔进料压缩机技术方案及安全措施
![脱丙烷塔进料压缩机技术方案及安全措施](https://img.taocdn.com/s3/m/ebc3c8d4c8d376eeafaa311a.png)
脱丙烷塔进料压缩机技术方案及安全措施项目名称:使用单位:编制:技术审核:安全审核:审批:施工方案审查会签表年月日目录一、项目概述 (4)二、编制依据 (4)三、检修内容与施工工序 (4)四、检修有关注意事项 (5)五、施工程序与技术要求 (7)六、施工进度计划 ........................................ 错误!未定义书签。
七、质量目标与保证措施 (16)八、重大风险控制措施 (19)附件一、工作危害分析(JHA)记录表 .......... 错误!未定义书签。
附表二、安全检查(SCL)分析记录表..... 错误!未定义书签。
附表三、环境因素清单 ................................ 错误!未定义书签。
附表四、环境因素评价表 ............................ 错误!未定义书签。
附件五、施工物资清单 ................................ 错误!未定义书签。
附件六、检修质量控制表 ............................ 错误!未定义书签。
一、项目概述脱丙烷塔进料压缩机主要清理压缩机转子、隔板结垢,检查压缩机轴承、密封使用情况。
检修后,全面恢复设备技术性能,消除运行中存在的缺陷及隐患,使机组达到中石化设备完好标准并满足工艺要求,确保机组下周期转速、振动、轴承温度等参数达到优良标准。
二、编制依据1、丁烯装置K601压缩机说明手册2、水平剖分离心式压缩机维护检修规程(SHS03002-2004)3、变速机维护检修规程(SHS01028-2004)4、《石油化工安装工程质量检验评定标准》SHJ514-20015、《石油化工建设工程施工安全技术规范》GB50484-20086、《石油化工施工安全技术规程》SH3505-1999三、检修内容与施工工序3.1检修内容1、检查两端轴承,必要时调整或更换;2、检查干气密封,必要时更换;3、检查增速箱轴承和齿轮;4、检查电机轴承;5、检查级间密封间隙,拆、清理折流板;6、转子清理检查;7、解体检查主油泵,必要时更换轴承和密封;8、各温度和振动探头调校;9、清理润滑油、干气密封过滤器;10、清理增速箱箱底;11、清理压缩机入口过滤器;12、调整机组对中。
ASPENPLUS实例脱丁烷塔课程设计
![ASPENPLUS实例脱丁烷塔课程设计](https://img.taocdn.com/s3/m/fe32835d65ce050877321330.png)
ASPENPLUS实例脱丁烷塔课程设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(ASPENPLUS实例脱丁烷塔课程设计)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为ASPENPLUS实例脱丁烷塔课程设计的全部内容。
分离过程课程设计—-脱丁烷塔设计学院:化工与药学院专业:化学工程与工艺年级班别:XX级X班学号:XXXXXXX学生姓名:XXX指导教师:XXX目录目录 (1)任务书 (2)ASPEN PLUS模拟过程 (3)1、启动ASPEN PLUS软件 (3)2、创建简捷精馏塔模型 (4)3、绘制物流 (4)4、模块和物流命名 (5)5、输入用户名 (6)6、定义组分 (6)7、物性方程 (8)8、流股参数输入 (8)9、运行程序 (10)10、确定塔顶、塔底的物料组成以及温度 (11)11、算最小回流比,确定操作回流比,理论塔板数,进料位置 (12)12、灵明度分析 (12)参考文献 (21)设计体会 (22)任务书设计题目:已知:某石油催化裂解的脱丁烷塔的进料组成如下:进料量F=3930kmol/h,泡点进料,全塔平均操作压力700kpa 进料组成(摩尔分数):C3 =0.6361iC4 =0.1018nC4 =0.1527iC5 =0。
0254C6 =0.0509C7 =0.0102C8 =0.0127C9 =0.0102分离要求:正丁烷在塔顶的回收率不小于99%,异戊烷在塔釜中的回收率不小于85%设计内容:筛板塔1.确定塔顶、塔底的物料组成以及温度2。
求算最小回流比,确定操作回流比3.理论塔板数,进料位置ASPEN PLUS模拟过程1、启动ASPEN PLUS软件启动ASPEN PLUS软件后首先出现如下图窗口,选择Template并点击OK按钮。
脱丙烷塔施工方案
![脱丙烷塔施工方案](https://img.taocdn.com/s3/m/7b87314fbfd5b9f3f90f76c66137ee06eff94ebd.png)
脱丙烷塔施工方案一、工程概况与目标本工程旨在建设一座脱丙烷塔,以满足日益增长的化工产品需求。
工程位于XX化工厂区内,预计建成后能够有效提升产品质量和生产效率。
本方案明确了工程建设的总体目标、技术标准和施工质量要求,确保施工过程的安全、高效、经济。
二、施工流程与顺序基础施工:包括地基处理、混凝土浇筑等。
塔体安装:按照设计图纸进行塔体组装和安装。
设备安装:安装塔内各类设备,如填料、换热器、再沸器等。
管道安装:连接塔体与周边设备的管道系统。
电气与自控系统安装:包括仪表、控制柜等设备的安装与调试。
系统调试:完成所有设备安装后,进行系统调试,确保运行正常。
三、材料选择与检验所有用于工程建设的材料应符合国家标准和行业规范,具有相应的质量证明文件。
施工过程中应定期进行材料检验,确保材料质量稳定可靠。
四、设备安装与调试设备安装前应进行预检,确保设备完好无损。
安装过程中应遵循操作规程,确保安装质量。
设备安装完成后,应进行系统调试,检查设备运行是否正常,确保系统性能达到预期要求。
五、安全防护与措施施工过程中应严格遵守安全操作规程,采取必要的安全防护措施。
定期对施工现场进行检查,消除安全隐患。
施工人员应佩戴防护用品,确保人身安全。
六、质量监控与验收施工过程中应建立质量监控体系,对施工质量进行全程跟踪和控制。
每个施工环节完成后应进行验收,确保施工质量符合设计要求。
工程整体完成后,应组织专业人员进行综合验收,确保工程质量和性能达标。
七、风险评估与应对针对施工过程中可能出现的风险因素进行评估,制定相应的应对措施。
如天气变化、设备故障等突发情况发生时,应及时调整施工方案,确保施工顺利进行。
八、工程进度与管理制定详细的施工进度计划,明确各阶段的目标和时间节点。
施工过程中应加强进度管理,确保工程按计划推进。
同时,加强施工现场管理,确保施工秩序良好。
通过本施工方案的实施,我们有信心建设一座高质量、高性能的脱丙烷塔,为化工产业的发展做出贡献。
任务书3脱丙烷塔
![任务书3脱丙烷塔](https://img.taocdn.com/s3/m/bd5f99006bd97f192279e977.png)
《过程控制工程》课程设计任务书一、设计题目:脱丙烷塔控制系统设计二、设计目的:1、掌握控制系统的基本构成、原理及设计的方法和步骤。
2、掌握控制方案的设计、仪表选型的方法及管道流程图、仪表接线图、仪表安装等图的绘制方法。
3、掌握节流装置和调节阀的计算。
4、了解信号报警及联锁系统的设计和顺序控制系统的设计。
5、了解过程控制设计的设计文件构成及编制。
6、通过理论联系实际,掌握必须的工程知识,加强对学生实践动手能力和协作完成工程设计任务能力的培养。
三、设计所需数据:1、主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是丁二烯。
主要工艺流程如附图1所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力基本恒定在0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
假设该脱丙烷塔控制的主要目标是塔釜关键组分,可以再沸器的减压蒸汽流量为操纵变量构成控制系统,且此时再沸器的减压蒸汽流量是经常出现的扰动。
同时要保持塔进料稳定,以及塔釜液位与塔底A馏出物料均匀缓慢变化。
试设计自动控制,满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
2、仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
电动仪表信号传送快且距离远,易与计算机配合使用,除控制阀外,可选用电动Ⅲ型仪表或采用数字式控制仪表。
脱丙烷塔设计
![脱丙烷塔设计](https://img.taocdn.com/s3/m/ec964b24da38376bae1faeda.png)
I-C4=
10.70
198.175
0.198
197.977
L-C4=
4.94
91.494
0.000
91.494
N-C4
4.90
90.753
0.000
90.753
T-C4=
8.74
161.874
0.000
161.874
I-C5
6.82
126.313
0.000
126.313
C-C4=
0.51
90.753
/
/
/
/
T-C4=
8.74
161.874
0.000
161.874
/
/
/
/
I-C5
6.82
126.313
0.000
126.313
/
/
/
/
C-C4=
0.51
9.446
0.000
9.446
/
/
/
/
合计
100
1852.100
845.728
1006.394
15.563
830.165
692.373
137.837
表2-2 脱乙烷塔各股物料组成
组分
102D流量Kmol/h
202D流量Kmol/h
203B流量Kmol/h
C2=
0.185
0.185
0
C2
8.520
8.367
0.153
C3=
701.059
7.011
694.048
C3
135.438
0
135.438
脱戊烷塔塔顶压力自动控制系统设计-化工过程控制工程课程设计报告
![脱戊烷塔塔顶压力自动控制系统设计-化工过程控制工程课程设计报告](https://img.taocdn.com/s3/m/d7b29dcb4b35eefdc9d33354.png)
《化工过程控制工程课程设计报告》题目:脱戊烷塔塔顶压力自动控制系统设计学院:专业:班级:姓名:指导教师:年月日目录1.课程设计的目的 (1)2.课程设计题目描述和要求 (1)3.课程设计报告内容 (1)3.1工艺简介 (1)3.2控制系统设计 (2)3.3仪表选择 (3)3.3.1压力仪表的选择: (3)3.3.2控制阀的选择: (5)3.3.3电气阀门定位器的选择: (6)3.3.4仪表介绍 (8)3.4控制系统连接 (9)3.5系统投运 (9)参考书目 (11)附录:脱戊烷塔工艺图1.课程设计的目的针对脱戊烷塔顶压力自动控制系统的课题,模拟的进行完整的设计,理论联系实际,运用和巩固在《化工过程控制工程》课程和本专业其他相关课程所学习的知识,培养独立思考、分析和解决实际问题的能力。
通过本次设计使学生熟悉工程设计的思维和步骤,并了解如何进一步根据确定的设计方案合理选择自动化仪表,培养学生查阅资料,独立获取新知识、新信息的能力。
2.课程设计题目描述和要求(1)题目:脱戊烷塔塔顶压力自动控制系统设计(2)要求:1.设计符合要求的合适的控制系统:2.画出控制原理图;3.选择合适的控制、检测仪表;4.进行系统的连接和所选仪表作用方式的正确确定。
3.课程设计报告内容3.1工艺简介蒸汽裂解装置中产生的裂解气经过分离出来的碳五以后的汽油组分作为脱戊烷塔的进料,利用C5馏分与C5以后等重组分沸点不同,在脱戊烷塔中进行气液分离,使C5组分从C5以后的重组分中分离出来。
温度是影响产品质量的重要因素,因此需要设计控制方案加以控制。
只有在一定的压力下温度才能表征分离的效果因此对压力也需进行自动控制,进料从塔中部(第24块塔盘)进入。
塔顶产品为碳五馏分,送出界区,塔底产品为C6-C8汽油馏分,也送去贮罐。
脱戊烷塔压力0.08MPa(G),塔底温度111℃,再沸器采用低压蒸汽进行换热。
脱戊烷塔工艺进料为C5以上组分,塔顶产物为C5,塔底产物为C6-C8。
脱丙烷精馏塔设计设计说明
![脱丙烷精馏塔设计设计说明](https://img.taocdn.com/s3/m/4a90bd6dbceb19e8b9f6ba37.png)
可编辑修改摘要化工生产中做处理的原料、中间产物有若干组分组成的混合物,在化工、炼油、医药、食品即环境保护等工业部门,精馏过程在能量计的驱动下,气液两相多次直接接触和分离,利用气液两相各相份挥发度不同时挥发组分由液相向气相转移,实现原料混合物中各组分同时进行传质传热过程。
塔设备是一种重要的单元操作设备。
它的应用面广、量大。
据统计,塔设备无论其投资费用还是所消耗的钢材重量,在整个过程设备中的比例都相当高。
例如,在化纤装置中,塔设备投资比例为44.9%;而在年产4.5万吨丁二烯装置中,塔设备重量的比例高达54%之多。
随着石油、化工的迅速发展,塔设备的合理造型及设计将越来越受到关注和重视。
化工生产常需要进行液体混合物的分离已达到提纯或回收有用组分的目的。
互溶液体的分离有多种方法,精馏就是其中最常用的一种。
精馏塔是一种利用两组分的挥发度差异实现连续的高纯度分离的设备。
其中,回流是构成气、液两相接触传质的必要条件,也是精馏之区别于蒸馏所在。
本文设计的是脱丙烷精馏塔。
首先,根据已知的产品回收率进行了工艺计算,包括流程的确定、物料衡算、最小回流比的确定、最小理论塔板数的确定、塔板效率和实际塔板数的确定等。
然后对其结构进行了设计并得出流体力学计算结果。
综合以上设计及计算又得到塔的负荷性能图,以便对其性能有一个直观的了解。
本文最后对塔的附件进行设计并按照有关标准对其主要的部件进行强度和稳定性校核。
在完整地确定出结构和尺寸后,利用pore绘制了塔的主要零件图和塔的整体结构图。
关键词:精馏塔;工艺; 校核精品文档可编辑修改AbstractTower is an important unit operation equipment in industries such as chemical engineering, oil refining, medicine, food and environmental protection. It is used widely. According to statistics, tower equipment, regardless of their investment costs or the amount of steel or the weight of equipment in the process, accounts for very high proportion. For example, in the fiber installations, the tower facility investment ratio is 44.9%. In an annual output of 45,000 tons of butadiene units, the ratio of the weight of tower equipment is as much as 54%.With the development of the petroleum, chemical industry is developing rapidly, reasonable design of the power will become more and more concerned.Chemical production often requires the separation of liquid mixtures that have reached useful component purification or recovery purposes. There are many ways of liquid separating. Distillation is one of the most commonly used. The use of distillation column is a two-point difference in the achievement of continuous volatility of the separation of high-purity equipment. Among them, the return constitutes a gas, liquid two-phase mass transfer contact with the necessary conditions for the distillation is distilled from the host.Propane from distillation is designed in this article. First of all, the basis of known products of the process is used to calculate the recovery rate. Including the identification process, material balance, the determination of the minimum reflux ratio, the minimum theoretical plate number of the identified tray efficiency and the actual determination of the number plate. And then calculation of bear fruit designing have been carried out and reaching hydromechanics on structure. The function designing and calculating the load getting a tower above synthesis is pursued. Finally, the tower accessories are designed and proofread according to carrying out the intensity and the stability on those main components in connection with the standard the main body of a book. Overall structural drawing in the picture and tower ascertaining out structure and the dimension queen have been drawn by making use of pore.精品文档可编辑修改Key Words: distillation;technology;check精品文档可编辑修改毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
《过程控制课设》脱丙烷塔控制系统设计要点
![《过程控制课设》脱丙烷塔控制系统设计要点](https://img.taocdn.com/s3/m/6916e9a0c77da26925c5b0f4.png)
课程设计报告题目:脱丙烷塔控制系统设计学院:班级:电气08-3 姓名:学号:指导教师:摘要脱丙烷塔的主要任务是利用混合液中各组分挥发度的不同分离丙烷和丁二烯组分,并达到规定的纯度要求。
塔顶轻组分主要是丙烷,塔低重组分主要是丁二烯。
其中丙烷占 10,丁二烯占 89,其它杂质占 1。
为了满足脱丙烷塔的自动控制的质量指标、物料指标、能量平衡及约束条件等要求。
设计包括提馏段的温度与蒸汽流量的串级控制;塔顶鸭梨为被控变量,气态丙烯与去尾气管线组成分层控制;进料流量的简单均匀控制;回流罐的液位与回流管的回流量组成串级均匀控制;回流量的定制控制;以及进料、回流、塔顶、塔釜的温度检测,塔压检测,回流量的流量检测等。
关键字:串级控制,被控变量,分层控制,均匀控制,定值控制,检测。
目录第一章主要故意流程和环境特征概论 (4)第二章控制原理分析 (5)1、提馏段的温度与蒸汽流量组成串级控制 (5)2、分程控制 (7)3、单回路均匀控制回路 (7)4、液位报警系统 (8)5、温度检测系统 (8)第三章节流装置的设计计算 (10)第四章调节阀口径计算 (15)第一章主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是丁二烯。
主要工艺流程如图所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力为0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
脱丙烷塔的自动控制应满足质量指标、物料指标、能量平衡及约束条件等要求。
过程控制课程设计(脱丙烷塔控制系统设计有图)资料
![过程控制课程设计(脱丙烷塔控制系统设计有图)资料](https://img.taocdn.com/s3/m/48d846a402d276a201292e15.png)
成绩:《过程控制工程》课程设计报告题目:脱丙烷塔控制系统设计学院:计算机与电子信息学院班级:自动化姓名:学号:指导教师:起止日期:2012年12月31日~2013年01月4日目录一、设计任务书 (2)二、设计说明书 (5)1、摘要2、基本控制方案的设计与分析3、节流装置的计算4、蒸汽流量控制阀口径的计算三、参考文献 (11)四、附图 (15)一、设计题目:《脱丙烷塔控制系统设计》二、设计目的:1、掌握控制系统的基本构成、原理及设计的方法和步骤。
2、掌握控制方案的设计、仪表选型的方法及管道流程图、仪表接线图、仪表安装等图的绘制方法。
3、掌握节流装置和调节阀的计算。
4、了解信号报警及联锁系统的设计和顺序控制系统的设计。
5、通过理论联系实际,掌握必须的工程知识,加强对学生实践动手能力和独立完成工程设计任务能力的培养。
三、设计所需数据:1、主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是组分丁二烯。
主要工艺流程如图1所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力为0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
脱丙烷塔的自动控制应满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
2、仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
气体分馏装置脱丙烷塔浮压控制
![气体分馏装置脱丙烷塔浮压控制](https://img.taocdn.com/s3/m/21e6ac5dc950ad02de80d4d8d15abe23482f030f.png)
75一、概况气体分馏装置为中海油东方石化有限责任公司一期炼油项目装置,本装置的公称建设规模为60万吨/年,装置年开工按8000小时设计,装置操作弹性为60~110%,气体分馏装置主要由脱丙烷塔、脱乙烷塔和精丙烯塔组成,原料为上游催化裂化装置所产液化气经 脱硫、脱硫醇后的精制液化石油气。
塔顶碳三馏分作为为丙烯塔进料。
塔底物料混合碳四馏分做为MTBE装置的原料,脱丙烷塔重沸器热源为1.0MPa蒸汽。
(图为本装置脱丙烷塔系统)东方石化有限责任公司的气体分馏装置主要由以下几点进行节能降耗:1.塔顶采用表面蒸发式空冷,利用水的比热容较大,蒸发吸热,冷却效果好。
2.优化各塔操作,在保证分离要求的前提下尽量减少塔的回流比,减少蒸汽消耗。
3.选用高效率机泵,以降低电耗。
4.设备及管道布置尽量紧凑合理,从而较少散热损失和动力损失。
5.加强设备及管道保温,从而减少散热损失。
二、浮动压力控制精馏的原理是利用物料中各组分挥发度的不同,从而实现轻重组分之间的分离。
精馏是一种相平衡分离过程,其最基础的理论就是是汽-液相平衡原理。
在精馏塔中,为了保证每层塔板的汽液两相存在温度和浓度梯度,必须由塔顶冷凝器提供轻组分浓度高且温度较低的冷回流,由塔底重沸器提供重组分浓度高且温度较高的热回流。
不平衡的两相在进入塔板上进行传质、传热后,液相中易挥发组分部分汽化,难挥发组分浓度增加,同时吸收热量使汽相部分冷凝;汽相中难挥发组分部分冷凝,易挥发组分浓度增加,同时放出热量供给液相部分汽化。
板上汽液两相充分接触,使最终离开该板的汽相与液相在同一温度下趋于平衡,如此经过若干塔板上的传质、传热过程后即可达到对物料中各组分进行完全分离的目的。
精馏塔的压力主要取决于塔顶产品组成和产品冷凝后的温度。
这样我们在平时的操作中首先是保证塔的压力恒定,在这个条件下我们可以根据固定的塔顶温、低温及灵敏板温度来控制塔的产品质量在要求的指标范围内。
这种操作方法比较容易、可靠,有利于装置的平稳运行,但是结合相平衡原理来分析,恒压操作不能有效地节约能源、提高经济效益,我们可以从这个方向着手进行优化。
脱丙烷塔
![脱丙烷塔](https://img.taocdn.com/s3/m/b0d1a1db76eeaeaad1f33031.png)
on Base 1Const n As Integer = 3 '输出个数Const m As Integer = 3 '输入个数Const d As Integer = 100 ' 系统最大时滞Dim ts As Single '采样时间Dim tr(n) As Single '参考轨迹柔化系数Dim H(n) As Single '预测时域长度'标志位定义Dim APC_COM As IntegerDim APC_ON As IntegerDim APC_2_ON As IntegerDim T_APC_STA As IntegerDim MV_1_STA As IntegerDim MV_2_STA As IntegerDim MV_3_STA As IntegerDim DV_1_STA As IntegerDim DV_2_STA As Integer'模型参数Dim K11, K12, K13, K21, K22, K23, K31, K32, K33 As SingleDim T11, T12, T13, T21, T22, T23, T31, T32, T33 As SingleDim TAO11, TAO12, TAO13, TAO21, TAO22, TAO23, TAO31, TAO32, TAO33 As SingleDim KM11, KM12, KM13, KM21, KM22, KM23, KM31, KM32, KM33 As SingleDim TM11, TM12, TM13, TM21, TM22, TM23, TM31, TM32, TM33 As SingleDim TAOM11, TAOM12, TAOM13, TAOM21, TAOM22, TAOM23, TAOM31, TAOM32, TAOM33 As SingleDim K(n, m) As SingleDim t(n, m) As SingleDim tao(n, m) As SingleDim km(n, m) As SingleDim tm(n, m) As SingleDim taom(n, m) As Single'变量定义Dim I As IntegerDim J As IntegerDim g As IntegerDim AA(n, m) As SingleDim AAA() As SingleDim BB(n, 1) As SingleDim b(n) As SingleDim a(n, m) As SingleDim am(n, m) As SingleDim L(n, m) As SingleDim Lm(n, m) As SingleDim c(n) As SingleDim piduu1 As SingleDim piduu2 As SingleDim piduu3 As SingleDim ym(n, m) As Single '模型输出Dim ym1(n, m, d) As Single ' 模型上次输出Dim y0 As SingleDim yp0 As SingleDim yp(n) As Single ' 过程输出Dim y(n, m) As SingleDim ypav(n) As SingleDim ymm0 As SingleDim ym0(n) As SingleDim Y1(n, m, 1) As SingleDim u1(m, d) As SingleDim uu(m) As Single'力控数据通讯所需参数Dim read_datas(22) As Double '读数据数组Dim readtag As StringDim read_data As LongDim write_datas(6) As Double '写数据数组Dim writetag As StringDim write_data As LongPrivate Sub Form_Load()'过程参数K11 = 4.05: T11 = 50: TAO11 = 2K12 = 1.77: T12 = 60: TAO12 = 3K13 = 5.88: T13 = 50: TAO13 = 2K21 = 5.39: T21 = 50: TAO21 = 3K22 = 5.72: T22 = 60: TAO22 = 2K23 = 6.9: T23 = 40: TAO23 = 3K31 = 4.38: T31 = 33: TAO31 = 2K32 = 4.42: T32 = 44: TAO32 = 3K33 = 7.52: T33 = 19: TAO33 = 3K(1, 1) = K11: K(1, 2) = K12: K(1, 3) = K13: K(2, 1) = K21: K(2, 2) = K22: K(2, 3) = K23: K(3, 1) = K31: K(3, 2) = K32: K(3, 3) = K33t(1, 1) = T11: t(1, 2) = T12: t(1, 3) = T13: t(2, 1) = T21: t(2, 2) = T22: t(2, 3) = T23: t(3, 1) = T31: t(3, 2) = T32: t(3, 3) = T33tao(1, 1) = TAO11: tao(1, 2) = TAO12: tao(1, 3) = TAO13: tao(2, 1) = TAO21: tao(2, 2) = TAO22: tao(2, 3) = TAO23: tao(3, 1) = TAO31: tao(3, 2) = TAO32: tao(3, 3) = TAO33Text29.Text = Val(K(1, 1)): Text30.Text = Val(K(1, 2)): Text31.Text = Val(K(1, 3)): Text32.Text = Val(K(2, 1)): Text33.Text = Val(K(2, 2)): Text34.Text = Val(K(2, 3)): Text35.Text = Val(K(3, 1)): Text36.Text = Val(K(3, 2)): Text37.Text = Val(K(3, 3))Text38.Text = Val(t(1, 1)): Text39.Text = Val(t(1, 2)): Text40.Text = Val(t(1, 3)): Text41.Text = Val(t(2, 1)): Text42.Text = Val(t(2, 2)): Text43.Text = Val(t(2, 3)): Text44.Text = Val(t(3, 1)): Text45.Text = Val(t(3, 2)): Text46.Text = Val(t(3, 3))Text47.Text = Val(tao(1, 1)): Text48.Text = Val(tao(1, 2)): Text49.Text = Val(tao(1, 3)): Text50.Text = Val(tao(2, 1)): Text51.Text = Val(tao(2, 2)): Text52.Text = Val(tao(2, 3)): Text53.Text = Val(tao(3, 1)): Text54.Text = Val(tao(3, 2)): Text55.Text = V al(tao(3, 3))'模型参数KM11 = 4.05: TM11 = 50: TAOM11 = 2KM12 = 1.77: TM12 = 60: TAOM12 = 3KM13 = 5.88: TM13 = 50: TAOM13 = 2KM21 = 5.39: TM21 = 50: TAOM21 = 3KM22 = 5.72: TM22 = 60: TAOM22 = 2KM23 = 6.9: TM23 = 40: TAOM23 = 3KM31 = 4.38: TM31 = 33: TAOM31 = 2KM32 = 4.42: TM32 = 44: TAOM32 = 3KM33 = 7.52: TM33 = 19: TAOM33 = 3km(1, 1) = KM11: km(1, 2) = KM12: km(1, 3) = KM13: km(2, 1) = KM21: km(2, 2) = KM22: km(2, 3) = KM23: km(3, 1) = KM31: km(3, 2) = KM32: km(3, 3) = KM33tm(1, 1) = TM11: tm(1, 2) = TM12: tm(1, 3) = TM13: tm(2, 1) = TM21: tm(2, 2) = TM22: tm(2, 3) = TM23: tm(3, 1) = TM31: tm(3, 2) = TM32: tm(3, 3) = TM33taom(1, 1) = TAOM11: taom(1, 2) = TAOM12: taom(1, 3) = TAOM13: taom(2, 1) = TAOM21: taom(2, 2) = TAOM22: taom(2, 3) = TAOM23: taom(3, 1) = TAOM31: taom(3, 2) = TAOM32: taom(3, 3) = TA0M33'初始化变量For I = 1 To nFor J = 1 To mym(I, J) = 0y(I, J) = 0uu(J) = 0For g = 1 To dym1(I, J, g) = 0NextNextyp(I) = 0ypav(I) = 0ym0(I) = 0Nextpiduu1 = 0piduu2 = 0piduu3 = 0End SubPrivate Sub Timer1_Timer()'从力控读数据readtag = "T_APC_TS.pv,T_APC_H1.pv,T_APC_H2.pv,T_APC_H3.pv,T_APC_TR1.pv,T_APC_TR2.pv,T _APC_TR3.pv,TI_707_1_SP.pv,TIC_706_SP.pv,LIC_703_SP.pv,APC_COM.pv,APC_ON.pv,AP C_2_ON.pv,T_APC_STA.pv,FIC_730_MV.pv,TIC_706_MV.pv,FIC_704_MV.pv,FIC_702_DV.pv ,TIC_701_DV.pv,PID_U1.pv,PID_U2.pv,PID_U3.pv"read_data = Dbcom1.GetRealData(22, readtag, read_datas(1))Text1.Text = read_datas(1)Text2.Text = read_datas(2)Text3.Text = read_datas(3)Text4.Text = read_datas(4)Text5.Text = read_datas(5)Text6.Text = read_datas(6)Text7.Text = read_datas(7)Text14.Text = read_datas(8)Text15.Text = read_datas(9)Text16.Text = read_datas(10)Text20.Text = read_datas(11)Text21.Text = read_datas(12)Text22.Text = read_datas(13)Text23.Text = read_datas(14)Text24.Text = read_datas(15)Text25.Text = read_datas(16)Text26.Text = read_datas(17)Text27.Text = read_datas(18)Text28.Text = read_datas(19)Text17.Text = read_datas(20)Text18.Text = read_datas(21)Text19.Text = read_datas(22)'VB中变量赋值ts = Val(Text1.Text)H(1) = Val(Text2.Text)H(2) = Val(Text3.Text)H(3) = Val(Text4.Text)tr(1) = Val(Text5.Text)tr(2) = Val(Text6.Text)tr(3) = Val(Text7.Text)c(1) = Val(Text14.Text)c(2) = Val(Text15.Text)c(3) = Val(Text16.Text)APC_COM = Val(Text20.Text) APC_ON = Val(Text21.Text)APC_2_ON = Val(Text22.Text)T_APC_STA = Val(Text23.Text)MV_1_STA = Val(Text24.Text) MV_2_STA = Val(Text25.Text) MV_3_STA = Val(Text26.Text)DV_1_STA = Val(Text27.Text)DV_2_STA = Val(Text28.Text)piduu1 = Val(Text17.Text)piduu2 = Val(Text18.Text)piduu3 = Val(Text19.Text)'主程序部分For I = 1 To nb(I) = Exp(-ts / tr(I))For J = 1 To mam(I, J) = Exp(-ts / tm(I, J))Lm(I, J) = Round(taom(I, J) / ts) NextNextIf APC_COM = 1 ThenIf APC_ON = 1 ThenIf APC_2_ON = 1 Thenuu(1) = piduu1uu(2) = piduu2uu(3) = piduu3Text11.Text = uu(1)Text12.Text = uu(2)Text13.Text = uu(3)'模型计算子程序部分开始'回路一单独投用If MV_1_STA = 1 And MV_2_STA = 0 And MV_3_STA = 0 Then'********************************************ReDim AAA(1, 1) As Single'********************************************For I = 1 To 1For J = 1 To 1ym(I, J) = am(I, J) * ym1(I, J, 1) + km(I, J) * (1 - am(I, J)) * uu(J) 'ym1为y上一次的值For g = Lm(I, J) To 2 Step -1ym1(I, J, g) = ym1(I, J, g - 1)Nextym1(I, J, 1) = ym(I, J)NextNextFor I = 1 To 1y0 = 0yp0 = 0For J = 1 To 1yp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 1 To 1ymm0 = 0For J = 1 To 1AA(I, J) = km(I, J) * (1 - am(I, J) ^ H(I))ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextBB(I, 1) = c(I) - b(I) ^ H(I) * (c(I) - yp(I)) - ypav(I) + ym0(I) Next'构造新的求逆矩阵AAA(1, 1) = AA(1, 1)Call Gauss_Inv(AAA(), 1)uu(1) = AAA(1, 1) * BB(1, 1)'If T_APC_STA = 0 Then '投用前赋值' uu(1) = piduu1'End IfText8.Text = yp(1)' Text11.Text = uu(1)End If'回路二单独投用If MV_1_STA = 0 And MV_2_STA = 1 And MV_3_STA = 0 Then'********************************************ReDim AAA(1, 1) As Single'********************************************For I = 2 To 2For J = 2 To 2ym(I, J) = am(I, J) * ym1(I, J, 1) + km(I, J) * (1 - am(I, J)) * uu(J) 'ym1为y上一次的值For g = Lm(I, J) To 2 Step -1ym1(I, J, g) = ym1(I, J, g - 1)Nextym1(I, J, 1) = ym(I, J)NextNextFor I = 2 To 2y0 = 0yp0 = 0For J = 2 To 2yp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 2 To 2ymm0 = 0For J = 2 To 2AA(I, J) = km(I, J) * (1 - am(I, J) ^ H(I))ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextBB(I, 1) = c(I) - b(I) ^ H(I) * (c(I) - yp(I)) - ypav(I) + ym0(I)Next'构造新的求逆矩阵AAA(1, 1) = AA(2, 2)Call Gauss_Inv(AAA(), 1)uu(1) = AAA(1, 1) * BB(1, 1)' If T_APC_STA = 0 Then '投用前赋值' uu(2) = piduu2' End IfText9.Text = yp(2)' Text12.Text = uu(2)End If'回路三单独投用If MV_1_STA = 0 And MV_2_STA = 0 And MV_3_STA = 1 Then'********************************************ReDim AAA(1, 1) As Single'********************************************For I = 3 To 3For J = 3 To 3ym(I, J) = am(I, J) * ym1(I, J, 1) + km(I, J) * (1 - am(I, J)) * uu(J) 'ym1为y上一次的值For g = Lm(I, J) To 2 Step -1ym1(I, J, g) = ym1(I, J, g - 1)Nextym1(I, J, 1) = ym(I, J)NextNextFor I = 3 To 3y0 = 0yp0 = 0For J = 3 To 3yp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 3 To 3ymm0 = 0For J = 3 To 3AA(I, J) = km(I, J) * (1 - am(I, J) ^ H(I))ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextBB(I, 1) = c(I) - b(I) ^ H(I) * (c(I) - yp(I)) - ypav(I) + ym0(I)Next'构造新的求逆矩阵AAA(1, 1) = AA(3, 3)Call Gauss_Inv(AAA(), 1)uu(3) = AAA(1, 1) * BB(3, 1)'If T_APC_STA = 0 Then '投用前赋值' uu(3) = piduu3' End IfText10.Text = yp(3)' Text13.Text = uu(3)End If'回路一、二投用If MV_1_STA = 1 And MV_2_STA = 1 And MV_3_STA = 0 Then'********************************************ReDim AAA(2, 2) As Single'********************************************For I = 1 To 2For J = 1 To 2ym(I, J) = am(I, J) * ym1(I, J, 1) + km(I, J) * (1 - am(I, J)) * uu(J) 'ym1为y上一次的值For g = Lm(I, J) To 2 Step -1ym1(I, J, g) = ym1(I, J, g - 1)Nextym1(I, J, 1) = ym(I, J)NextNextFor I = 1 To 2y0 = 0yp0 = 0For J = 1 To 2yp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 1 To 2ymm0 = 0For J = 1 To 2AA(I, J) = km(I, J) * (1 - am(I, J) ^ H(I))ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextBB(I, 1) = c(I) - b(I) ^ H(I) * (c(I) - yp(I)) - ypav(I) + ym0(I)Next'构造新的求逆矩阵AAA(1, 1) = AA(1, 1)AAA(1, 2) = AA(1, 2)AAA(2, 1) = AA(2, 1)AAA(2, 2) = AA(2, 2)Call Gauss_Inv(AAA(), 2) '调用矩阵求逆函数'uu(1) = AAA(1, 1) * BB(1, 1) + AAA(1, 2) * BB(2, 1) '过程通道预测控制量uu(1)为回流量,uu(2)为蒸汽量uu(2) = AAA(2, 1) * BB(1, 1) + AAA(2, 2) * BB(2, 1)' If T_APC_STA = 0 Then '投用前赋值' uu(1) = piduu1' uu(2) = piduu2' End IfText8.Text = yp(1)Text9.Text = yp(2)' Text11.Text = uu(1)' Text12.Text = uu(2)End If'回路一、三投用If MV_1_STA = 1 And MV_2_STA = 0 And MV_3_STA = 1 Then'********************************************ReDim AAA(2, 2) As Single'********************************************ym(1, 1) = am(1, 1) * ym1(1, 1, 1) + km(1, 1) * (1 - am(1, 1)) * uu(1) ym(1, 3) = am(1, 3) * ym1(1, 3, 1) + km(1, 3) * (1 - am(1, 3)) * uu(3) ym(3, 1) = am(3, 1) * ym1(3, 1, 1) + km(3, 1) * (1 - am(3, 1)) * uu(1) ym(3, 3) = am(3, 3) * ym1(3, 3, 1) + km(3, 3) * (1 - am(3, 3)) * uu(3)For g = Lm(1, 1) To 2 Step -1ym1(1, 1, g) = ym1(1, 1, g - 1)Nextym1(1, 1, 1) = ym(1, 1)For g = Lm(1, 3) To 2 Step -1ym1(1, 3, g) = ym1(1, 3, g - 1)Nextym1(1, 3, 1) = ym(1, 3)For g = Lm(3, 1) To 2 Step -1ym1(3, 1, g) = ym1(3, 1, g - 1)Nextym1(3, 1, 1) = ym(3, 1)For g = Lm(3, 3) To 2 Step -1ym1(3, 3, g) = ym1(3, 3, g - 1)Nextym1(3, 3, 1) = ym(3, 3)For I = 1 To n Step 2y0 = 0yp0 = 0For J = 1 To m Step 2yp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 1 To n Step 2ymm0 = 0For J = 1 To m Step 2ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextNextAA(1, 1) = km(1, 1) * (1 - am(1, 1) ^ H(1))AA(1, 3) = km(1, 3) * (1 - am(1, 3) ^ H(1))AA(3, 1) = km(3, 1) * (1 - am(3, 1) ^ H(3))AA(3, 3) = km(3, 3) * (1 - am(3, 3) ^ H(3))BB(1, 1) = c(1) - b(1) ^ H(1) * (c(1) - yp(1)) - ypav(1) + ym0(1) BB(3, 1) = c(3) - b(3) ^ H(3) * (c(3) - yp(3)) - ypav(3) + ym0(3)'构造新的求逆矩阵AAA(1, 1) = AA(1, 1)AAA(1, 2) = AA(1, 3)AAA(2, 1) = AA(3, 1)AAA(2, 2) = AA(3, 3)Call Gauss_Inv(AAA(), 2)uu(1) = AAA(1, 1) * BB(1, 1) + AAA(1, 2) * BB(3, 1)uu(3) = AAA(2, 1) * BB(1, 1) + AAA(2, 2) * BB(3, 1)' If T_APC_STA = 0 Then '投用前赋值' uu(1) = piduu1' uu(3) = piduu3' End IfText8.Text = yp(1)Text10.Text = yp(3)' Text11.Text = uu(1)' Text13.Text = uu(3)End If'回路二、三投用If MV_1_STA = 0 And MV_2_STA = 1 And MV_3_STA = 1 Then'********************************************ReDim AAA(2, 2) As Single'********************************************ym(2, 2) = am(2, 2) * ym1(2, 2, 1) + km(2, 2) * (1 - am(2, 2)) * uu(2) ym(2, 3) = am(2, 3) * ym1(2, 3, 1) + km(2, 3) * (1 - am(2, 3)) * uu(3) ym(3, 2) = am(3, 2) * ym1(3, 2, 1) + km(3, 2) * (1 - am(3, 2)) * uu(2) ym(3, 3) = am(3, 3) * ym1(3, 3, 1) + km(3, 3) * (1 - am(3, 3)) * uu(3)For g = Lm(2, 2) To 2 Step -1ym1(2, 2, g) = ym1(2, 2, g - 1)Nextym1(2, 2, 1) = ym(2, 2)For g = Lm(2, 3) To 2 Step -1ym1(2, 3, g) = ym1(2, 3, g - 1)Nextym1(2, 3, 1) = ym(2, 3)For g = Lm(3, 2) To 2 Step -1ym1(3, 2, g) = ym1(3, 2, g - 1)Nextym1(3, 2, 1) = ym(3, 2)For g = Lm(3, 3) To 2 Step -1ym1(3, 3, g) = ym1(3, 3, g - 1)Nextym1(3, 3, 1) = ym(3, 3)For I = 2 To ny0 = 0yp0 = 0For J = 2 To myp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 2 To nymm0 = 0For J = 2 To mym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextNextAA(2, 2) = km(2, 2) * (1 - am(2, 2) ^ H(2))AA(2, 3) = km(2, 3) * (1 - am(2, 3) ^ H(2))AA(3, 2) = km(3, 2) * (1 - am(3, 2) ^ H(3))AA(3, 3) = km(3, 3) * (1 - am(3, 3) ^ H(3))BB(2, 1) = c(2) - b(2) ^ H(2) * (c(2) - yp(2)) - ypav(2) + ym0(2) BB(3, 1) = c(3) - b(3) ^ H(3) * (c(3) - yp(3)) - ypav(3) + ym0(3)'构造新的求逆矩阵AAA(1, 1) = AA(2, 2)AAA(1, 2) = AA(2, 3)AAA(2, 1) = AA(3, 2)AAA(2, 2) = AA(3, 3)Call Gauss_Inv(AAA(), 2)uu(2) = AAA(1, 1) * BB(2, 1) + AAA(1, 2) * BB(3, 1)uu(3) = AAA(2, 1) * BB(2, 1) + AAA(2, 2) * BB(3, 1) ' If T_APC_STA = 0 Then '投用前赋值' uu(2) = piduu2' uu(3) = piduu3'' End IfText9.Text = yp(2)Text10.Text = yp(3)' Text12.Text = uu(2)' Text13.Text = uu(3)End If'所有回路全部投用If MV_1_STA = 1 And MV_2_STA = 1 And MV_3_STA = 1 ThenFor I = 1 To nFor J = 1 To mym(I, J) = am(I, J) * ym1(I, J, 1) + km(I, J) * (1 - am(I, J)) * uu(J) 'ym1为y上一次的值For g = Lm(I, J) To 2 Step -1ym1(I, J, g) = ym1(I, J, g - 1)Nextym1(I, J, 1) = ym(I, J)NextNextFor I = 1 To ny0 = 0yp0 = 0For J = 1 To myp(I) = yp0 + y(I, J)yp0 = yp(I)ypav(I) = y0 + y(I, J) + ym(I, J) - ym1(I, J, 1)y0 = ypav(I)NextNextFor I = 1 To nymm0 = 0For J = 1 To mAA(I, J) = km(I, J) * (1 - am(I, J) ^ H(I))ym0(I) = ymm0 + (1 - am(I, J) ^ H(I)) * ym(I, J)ymm0 = ym0(I)NextBB(I, 1) = c(I) - b(I) ^ H(I) * (c(I) - yp(I)) - ypav(I) + ym0(I)NextCall Gauss_Inv(AA(), n) '调用矩阵求逆函数'uu(1) = AA(1, 1) * BB(1, 1) + AA(1, 2) * BB(2, 1) + AA(1, 3) * BB(3, 1) '过程通道预测控制量uu(1)为回流量,uu(2)为蒸汽量,uu(3)为塔底采出量uu(2) = AA(2, 1) * BB(1, 1) + AA(2, 2) * BB(2, 1) + AA(2, 3) * BB(3, 1)uu(3) = AA(3, 1) * BB(1, 1) + AA(3, 2) * BB(2, 1) + AA(3, 3) * BB(3, 1)'If T_APC_STA = 0 Then '投用前赋值' End IfText8.Text = yp(1)Text9.Text = yp(2)Text10.Text = yp(3)End If'子程序部分结束End If '子控制器切除标志位End If '紧急切除标志位End If '通讯状态标志位End SubPrivate Sub Timer2_Timer()'向力控送数据writetag = "T_APC_YOUT1.pv,T_APC_YOUT2.pv,T_APC_YOUT3.pv,T_APC_U1.pv,T_APC_U2.pv,T_A PC_U3.pv"write_datas(1) = Val(Text8.Text)write_datas(2) = Val(Text9.Text)write_datas(3) = Val(Text10.Text)write_datas(4) = Val(Text11.Text)write_datas(5) = Val(Text12.Text)write_datas(6) = Val(Text13.Text)write_data = Dbcom1.SetRealData(6, writetag, write_datas(1))For I = 1 To nFor J = 1 To ma(I, J) = Exp(-ts / t(I, J))L(I, J) = Round(tao(I, J) / ts)NextNextIf APC_COM = 1 ThenIf APC_ON = 1 ThenIf APC_2_ON = 1 Then' 过程计算子程序部分开始'回路一单独投用If MV_1_STA = 1 And MV_2_STA = 0 And MV_3_STA = 0 Theny(1, 1) = a(1, 1) * Y1(1, 1, 1) + K(1, 1) * (1 - a(1, 1)) * u1(1, L(1, 1))Y1(1, 1, 1) = y(1, 1)For g = L(1, 1) To 2 Step -1u1(1, g) = u1(1, g - 1)Nextu1(1, 1) = uu(1)End If'回路二单独投用If MV_1_STA = 0 And MV_2_STA = 1 And MV_3_STA = 0 Theny(2, 2) = a(2, 2) * Y1(2, 2, 1) + K(2, 2) * (1 - a(2, 2)) * u1(2, L(2, 2))Y1(2, 2, 1) = y(2, 2)For g = L(2, 2) To 2 Step -1u1(2, g) = u1(2, g - 1)Nextu1(2, 2) = uu(1)End If'回路三单独投用If MV_1_STA = 0 And MV_2_STA = 0 And MV_3_STA = 1 Theny(3, 3) = a(3, 3) * Y1(3, 3, 1) + K(3, 3) * (1 - a(3, 3)) * u1(3, L(3, 3))Y1(3, 3, 1) = y(3, 3)For g = L(3, 3) To 2 Step -1u1(3, g) = u1(3, g - 1)Nextu1(3, 3) = uu(3)End If'回路一、二投用If MV_1_STA = 1 And MV_2_STA = 1 And MV_3_STA = 0 ThenFor I = 1 To 2For J = 1 To 2y(I, J) = a(I, J) * Y1(I, J, 1) + K(I, J) * (1 - a(I, J)) * u1(J, L(I, J))Y1(I, J, 1) = y(I, J)For g = L(I, J) To 2 Step -1u1(J, g) = u1(J, g - 1)Nextu1(J, 1) = uu(J)NextNextEnd If'回路一、三投用If MV_1_STA = 1 And MV_2_STA = 0 And MV_3_STA = 1 ThenFor I = 1 To 3 Step 2For J = 1 To 3 Step 2y(I, J) = a(I, J) * Y1(I, J, 1) + K(I, J) * (1 - a(I, J)) * u1(J, L(I, J))Y1(I, J, 1) = y(I, J)For g = L(I, J) To 2 Step -1u1(J, g) = u1(J, g - 1)Nextu1(J, 1) = uu(J)NextNextEnd If'回路二、三投用If MV_1_STA = 0 And MV_2_STA = 1 And MV_3_STA = 1 ThenFor I = 2 To 3For J = 2 To 3y(I, J) = a(I, J) * Y1(I, J, 1) + K(I, J) * (1 - a(I, J)) * u1(J, L(I, J))Y1(I, J, 1) = y(I, J)For g = L(I, J) To 2 Step -1u1(J, g) = u1(J, g - 1)Nextu1(J, 1) = uu(J)NextNextEnd If'所有回路全部投用If MV_1_STA = 1 And MV_2_STA = 1 And MV_3_STA = 1 ThenFor I = 1 To nFor J = 1 To my(I, J) = a(I, J) * Y1(I, J, 1) + K(I, J) * (1 - a(I, J)) * u1(J, L(I, J))Y1(I, J, 1) = y(I, J)For g = L(I, J) To 2 Step -1u1(J, g) = u1(J, g - 1)Nextu1(J, 1) = uu(J)NextNextEnd If'子程序部分结束End If '子控制器切除标志位End If '紧急切除标志位End If '通讯状态标志位。
脱丙烷塔计算
![脱丙烷塔计算](https://img.taocdn.com/s3/m/cdaf19376d85ec3a87c24028915f804d2b168788.png)
ቤተ መጻሕፍቲ ባይዱ脱丙烷塔计算
计算依据《FP翅片小波纹填料工艺计算》FP-5A已知条件:
G=1934.1kg/hr
L=50871kg/hr
Pg=
Pl=
计算过程:
(一)1.计算流动参数Ф
(二)1.计算干因子
F=u(Pg)1/2=0.163077
u= (G/3600)/(π/4)·D2·Pg=
2计算填料层高度
查图1知每米理论板数NTSM=3.5m
Z=NTS/NTSM=
取7m
3计算塔釜空间高度在塔釜中间设一挡板
H=
扩径为Dm1m8Wt/π·Dc2=H8m其中t停留时间hr,w塔釜物料流率m3/hr0.024869m/s1.13(G/3600·Cg(Pg(Pl-Pg)1/2)1/2=0.505361m0.020250.0274m7.7492m
Ф=L/G(Pg/Pl)=1/243kg/m3452.206kg/m38.110683
0.03 校正系数为0.92最大气体负荷因子Cg.max 查图4知未经校正Cg.max=
则 Cg.max=
3适宜气体负荷因子Cg
Cg=(0.75-0.80)Cg.max=
4计算塔径
Dc= 1.13(Ac)1/2=
初选塔径为800mm
水洗塔、脱丙烷塔施工方案
![水洗塔、脱丙烷塔施工方案](https://img.taocdn.com/s3/m/679f186b0622192e453610661ed9ad51f01d5485.png)
水洗塔、脱丙烷塔施工方案
简介
本文旨在描述水洗塔和脱丙烷塔的施工方案,从施工流程、注意事项、质量控制等方面进行详细阐述。
施工流程
1.准备工作
–确认施工图纸和相关资料的准确性。
–调配所需人员和设备。
2.基础施工
–进行基础地面的清理、排除障碍物。
–按照设计要求浇筑基础混凝土。
3.主体结构搭建
–按照施工图纸,搭建水洗塔、脱丙烷塔的主体结构。
–确保结构的稳固性和安全性。
4.设备安装
–将水洗塔和脱丙烷塔的设备安装到对应位置。
–连接管道、电气线路等。
5.试运行
–在完成安装后,进行设备的调试和试运行。
–确保设备运行正常。
注意事项
•施工过程中要注意安全,严格遵守相关操作规程。
•对设备和结构的质量要进行严格检查,确保符合标准要求。
•施工过程中要随时与设计单位沟通,及时解决问题。
质量控制
•设立专门质量检验小组,对关键节点进行抽检。
•每个施工阶段结束时组织技术人员进行验收,确保质量合格。
总结
水洗塔和脱丙烷塔施工是一个复杂的过程,需要工程技术人员密切合作,严格遵守规程,确保施工质量和安全。
通过本文的描述,相信能为相关人员提供有效的指导,顺利完成施工任务。
脱丙烷塔操作指导
![脱丙烷塔操作指导](https://img.taocdn.com/s3/m/2679acebb8f67c1cfad6b893.png)
2#裂解装置在较长一段时期内处于低负荷操作,班组对高负荷下的系统操作显得不够熟悉。
对于2#裂解装置,由于操作滞后对系统的影响比1#装置要大许多,因此我们要充分认识到操作的困难性和苛刻性,并及时进行调整。
高压脱丙烷塔TB401在高负荷状态下运行会出现瓶颈问题:第一、在高负荷下高压脱丙烷塔TB401当前只投一台再沸器,盘油调节阀FV24002几乎要接近全开(目前新增脱丙烷塔再沸器EB-401C正在施工中,等施工完毕后投两台再沸器并运,第三台备用)。
当液相进料在超过35t/h时,TB-401塔的分离效果会比较差,塔釜轻组分偏多,容易造成低压脱丙烷塔系统和脱丁烷塔系统超压。
所以在高负荷状态下,应联系急冷岗位尽量提高盘油温度,以保证TB401灵敏板温度控制在38-40℃,塔釜温度保持在80-83℃;同时要密切注意TB401塔釜分析仪表C2组分的变化,如果仪表有较大的偏差必须马上通知仪表进行处理。
第二、在提高高压脱丙烷塔再沸用量时,必须要注意塔顶的C4组分不能超标,塔顶温度控制在-5℃以下,否则过多重组分带入碳二加氢系统,会影响催化剂活性和寿命。
第三、在进行裂解炉切炉、投料负荷及COT改变、液相干燥器切换排液等操作时,应密切注意TB401液相进料量变化,在确保TB401状态正常前提下进行前述操作。
此项工作值班长必须跟踪前后系统变化,协调前后岗位的合作,保证系统的平稳运行。
第四、如果出现TB402、TB530超压的情况,塔顶冷剂量不能无限的增加,要确保压缩机的安全运行。
主操必须冷静分析原因,塔顶冷凝器换热效果不好、或者是进料轻组分过多、或者是塔釜再沸量过大等等,针对相应的情况作出正确的调整。
第五、TB402超压调整措施:当发生低压脱丙烷塔TB401塔压超高、回流罐VB-402液位偏低时,高压脱丙烷塔TB401由于少了自VB402的这股回流(FV24009),TB401的顶温会迅速上升。
此时,应加大自VB401的这股回流FV24006(VB401液位时可通过EB409冷剂进行调节)。
脱丙烷塔设计概要
![脱丙烷塔设计概要](https://img.taocdn.com/s3/m/9754391076c66137ee0619c3.png)
题目:
80 万吨/年气体分离装置工艺设计 ——脱丙烷塔设计计算
学
生
XXX
学号
0000000
班
别
化工 11-8 班
专
业
化学工程与工艺
指导教师
XX
日
期 年
7 月 13 日
目录
一、总论 ...............................................................................................................................................................1 1.1 综述.......................................................................................................................................................1 1.2 设计依据...............................................................................................................................................2
一、总论
1.1 综述 气体分离设备是为国民经济基础产业(钢铁、有色冶炼、石化、化肥、城市煤气化等)
二、工艺流程物料衡算 .......................................................................................................................................4 三、塔设备设计计算 ...........................................................................................................................................8
脱戊烷塔提留段温度自动控制系统设计
![脱戊烷塔提留段温度自动控制系统设计](https://img.taocdn.com/s3/m/dea67cc48bd63186bcebbc60.png)
目录1.课程设计目的 (1)2.课程设计题目和要求 (1)3.课程设计内容 (1)3.1工艺流程简介及工艺对自动控制的要求 (1)3.2控制方案的选择 (2)3.3各种自动化仪表的选型 (5)3.4控制系统连接 (10)3.5控制系统的投运与整定 (11)4.总结 (12)参考文献 (13)附录 (14)1.课程设计目的针对脱戊烷塔提留段温度自动控制系统的课题,模拟的进行完整的设计,理论联系实际,运用和巩固在《化工过程控制工程》课程和本专业的其他相关课程所学习的知识,培养独立思考、分析和解决实际问题的能力。
通过本次设计使学生熟悉工程设计的思维方式和步骤,并了解如何进一步根据确定的设计方案合理选择自动化仪表,培养学生查阅资料,独立获取新知识、新信息的能力。
2.课程设计题目和要求题目:脱戊烷塔提留段温度自动控制系统设计要求:(1)设计符合要求的合适的控制系统;(2)画出控制原理图;(3)选择合适的控制、检测仪表;(4)进行系统的连接和所选仪表作用方式的正确确定。
3.课程设计内容3.1工艺流程简介及工艺对自动控制的要求来自于裂解汽油的C5馏分含有一些非常有用的化工原料,它们是异戊二烯(IS P)环戊二烯(CPD)(通常以二聚体形式存在:即双环戊二烯(DCPD)、戊间二烯(PIP),2甲基一2一丁烯、1一戊烯等。
从这些原料出发可以合成许多高附加值的产品,一些大公司己经从全球性的角度来看待,考虑C5馏分综合利用。
C5馏分的化工利用可以分为燃料和化工两大方面。
化工利用比燃料利用(如裂解C5,一段加氢作调合汽油,C5/C6烷烃异构化后作无铅汽油等)的经济效益更好,是当今C5,利用的重点,也是C5利用的商机所在。
以分离提纯后的C5 各组分为原料,可以生产品种繁多的石细化学品,特种化学品,精细化学品和医药化学品。
随着新的下游产品不断开拓,C5 烃系列产品的市场会越来越景气。
这无疑将推动碳五馏分的综合利用上一个新的台阶。
脱碳塔指标控制
![脱碳塔指标控制](https://img.taocdn.com/s3/m/976e140432687e21af45b307e87101f69e31fb34.png)
脱碳塔指标控制
摘要:
一、脱碳塔指标控制概述
1.脱碳塔的作用
2.脱碳塔指标的重要性
3.脱碳塔指标控制的目的
二、脱碳塔指标控制方法
1.控制系统设计
2.控制参数选择
3.控制策略实施
三、脱碳塔指标控制应用
1.工业生产案例
2.环保效果分析
3.未来发展趋势
正文:
脱碳塔指标控制是保证脱碳塔正常运行的关键环节,对提高生产效率、降低能耗和保证产品质量具有重要意义。
本文首先介绍了脱碳塔指标控制的基本概念,然后详细阐述了脱碳塔指标控制的方法和应用,最后对未来发展趋势进行了展望。
脱碳塔是一种广泛应用于工业生产中的设备,主要作用是去除气体中的二氧化碳,以满足生产需要。
脱碳塔指标控制是为了保证脱碳塔在最佳状态下运
行,达到最佳脱碳效果。
控制系统设计是脱碳塔指标控制的基础,主要包括传感器选型、信号处理和控制算法等方面。
控制参数选择是脱碳塔指标控制的关键,需要根据生产工艺和设备特性来确定合适的控制参数。
控制策略实施是脱碳塔指标控制的核心,主要包括比例- 积分- 微分(PID)控制、模糊控制和神经网络控制等。
在实际应用中,脱碳塔指标控制取得了显著的效果。
例如,在某化工厂的生产过程中,通过脱碳塔指标控制,实现了生产过程的自动化,提高了生产效率,降低了能耗,保证了产品质量。
此外,脱碳塔指标控制还有助于减少二氧化碳排放,有助于环保。
未来,随着工业生产自动化程度的提高,脱碳塔指标控制将不断发展,更加智能化、高效化。
例如,可以利用大数据和人工智能技术,实现对脱碳塔的预测性维护,提高设备的可靠性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告题目:脱丙烷塔控制系统设计学院:班级:电气08-3 姓名:学号:指导教师:摘要脱丙烷塔的主要任务是利用混合液中各组分挥发度的不同分离丙烷和丁二烯组分,并达到规定的纯度要求。
塔顶轻组分主要是丙烷,塔低重组分主要是丁二烯。
其中丙烷占 10,丁二烯占 89,其它杂质占 1。
为了满足脱丙烷塔的自动控制的质量指标、物料指标、能量平衡及约束条件等要求。
设计包括提馏段的温度与蒸汽流量的串级控制;塔顶鸭梨为被控变量,气态丙烯与去尾气管线组成分层控制;进料流量的简单均匀控制;回流罐的液位与回流管的回流量组成串级均匀控制;回流量的定制控制;以及进料、回流、塔顶、塔釜的温度检测,塔压检测,回流量的流量检测等。
关键字:串级控制,被控变量,分层控制,均匀控制,定值控制,检测。
目录第一章主要故意流程和环境特征概论 (4)第二章控制原理分析 (5)1、提馏段的温度与蒸汽流量组成串级控制 (5)2、分程控制 (7)3、单回路均匀控制回路 (7)4、液位报警系统 (8)5、温度检测系统 (8)第三章节流装置的设计计算 (10)第四章调节阀口径计算 (15)第一章主要工艺流程和环境特征概况脱丙烷塔的主要任务是切割C3和C4混合馏分,塔顶轻关键组分是丙烷,塔釜重关键是丁二烯。
主要工艺流程如图所示:第一脱乙烷塔塔釜来的釜液和第二蒸出塔的釜液混合后进入脱丙烷塔,进料为气液混合状态,液化率为0.28。
进料温度为32℃,塔顶温度为8.9℃,塔釜温度为72℃。
塔内操作压力为0.75MPa(绝压)。
采用的回流比约为1.13。
冷凝器由0℃丙烯蒸发制冷,再沸器加热用的0.15 MPa(绝压)减压蒸汽由来自裂解炉的0.6 MPa(绝压)低压蒸汽与冷凝水混合制得的。
和其他精馏塔一样,脱丙烷塔也是一个高阶对象,具有对象通道多、内在机理复杂、变量间相互关联、动态响应慢、控制要求高等特点。
脱丙烷塔的自动控制应满足质量指标、物料指标、能量平衡及约束条件等要求。
脱丙烷塔所处的环境为甲级防爆区域,工艺介质为多种烃类混合物,沸点低、易挥发、易燃、易爆,生产装置处于露天,低压、低温。
主导风向由西向东。
仪表选型说明所选仪表应具有本质安全防爆性能等特点,电动Ⅲ型仪表在安全性、可靠性等方面已能满足要求。
电动仪表信号传送快且距离远,易与计算机配合使用,除控制阀外,最好全部选用电动Ⅲ型仪表。
采用安全栅,可构成本质安全防爆系统。
第二章控制原理分析1、提馏段的温度与蒸汽流量组成串级控制下图是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。
为了保证生产过程顺利进行,需要把提馏段温度θ。
保持恒定。
为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。
从调节阀的做到温度θ发生变化,需要相继通过很多热容积。
实践证明,加热蒸汽压力的波动对θ的影响很大。
此外,还有来自液相加料方面的各种干扰,包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。
很明显当加热蒸汽压力波动较大时,如果采用如图2-1所示的简单单回路温度控制系统,调节品质一般不能满足生产要求。
由于存在这些扰动故考虑串级控制系统。
串级控制系统与单回路控制系统相比有一个显著的区别,即其在结构上多了一个副回路,形成了两个闭环。
串级控制系统在结构上与电力传动自动控制系统中的双环系统相同,就其主回路(外环)来看是一个定值控制系统,而副回路(内环)则为一个随动系统。
以加热炉串级控制系统为例,在控制过程中,副回路起着对炉出口温度的“粗调”作用,而主回路则完成对炉出口温度的“细调”任务。
与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。
其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统有如下几点的改善:①改善了被控过程的动态特性,提高了系统的工作频率。
②对二次扰动有很强的克服能力。
③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。
综上所述,根据系统工艺要求,决定在系统设计中采用闭环串级控制方式。
设计方框图:采用如图所示的提馏段温度串级控制系统。
副调节器QC2根据加热蒸汽流量信号控制调节阀,这样就可以在加热蒸汽压力波动的情况下,仍能保持蒸汽流量稳定。
但副调节器QC2的给定值则受主调节器θC1的控制,后者根据温度θ改变蒸汽流量给定值Qr,从而保证在发生进料方面的扰动的情况下,仍能保持温度θ满足要求。
用这个方法以非常有效地克服蒸汽压力波动对于温度θ的影响,因为流量自稳定系统的动作很快,蒸汽压力变化所引起的流量波动在2至3s以内就消除了,而这样短暂时间的蒸汽流量波动对于温度θ的影响是很微小的。
2、分程控制一般来说,一台调节器的输出仅操纵一只调节阀,若一只调节器去控制两个以上的阀并且是按输出信号的不同区间去操作不同的阀门,这种控制方式习惯上称为分程控制。
图表示了分程控制系统的简图。
图中表示一台调节器去操纵两只调节阀,实施(动作过程)是借助调节阀上的阀门定位器对信号的转换功能。
例如图中的A、B两阀,要求A阀在调节器输出信号压力为0.02~0.06MPa变化时,作阀得全行程动作,则要求附在A阀上的阀门定位器,对输入信号0.02~0.06MPa时,相应输出为0.02~0.1MPa,而B阀上的阀门定位器,应调整成在输入信号为0.06~0.1 MPa时,相应输出为0.02~0.1MPa。
按照这些条件,当调节器(包括电/气转换器)输出信号小于0.06MPa时A阀动作,B阀不动;当输出信号大于0.06MPa时,而B阀动作,A阀已动至极限;由此实现分程控制过程。
分程控制可以应用于调节塔顶压力中,以塔顶压力为被控变量,气态丙烯与去尾气管线组成的分程控制。
要保证反应的顺利进行,塔顶的压力恒定也是一个重要的参数。
影响此压力的是再沸器的气态丙烯流量以及回流罐的压力。
为了扩大控制阀的可调范围,改善控制系统的品质,满足工艺要求,以塔顶压力恒定为主要控制目的,当操纵变量气态丙烯流量的改变不足于控制塔顶压力时,调节去尾气管线上的流量,以达到控制塔顶压力。
3、单回路均匀控制回路均匀控制是指一种控制方案所起的作用而言,因为就方案的结构看,有时像一个简单液位(或压力)定值控制系统,有时又像一个液位与流量(或压力与流量)的串级控制系统。
根据工艺要求,塔的进料为单管传输,流量较平稳,回路扰动不大,控制要求不高。
为了保证液位稳定在一定的的范围内,从而保证生产的正常进行,可采用均匀控制的方案。
从经济和控制效果的角度综合考虑进料回路可选用简单均匀控制方案。
4、液位报警系统采用ON\OFF输出方式用电极点做液位检测,在液体中给予一定的电视,当导线触到水时电势发生改变。
并且采用单片机进行报警控制。
如图,采用继电器和发光二极管进行液位报警指示。
5、温度检测系统根据要求,我们需要对进料温度、回流物温度、塔顶、塔底的温度进去检测。
所以我们需要设计一多点温度检测系统以达到多点的温度检测要求。
如图,由一台上位机,和下位机多点温度数据采集,组成两级分布式多点温度测量的巡回检测系统。
通过上位机控制下位机进行现场温度采集。
温度值既可以送回主控机进行数据处理,由显示器显示,也可以由下位机单独工作,实时显示当前各点的温度值,对各点进行控制。
第三章节流装置的设计计算本课程设计要求标准节流装置设计计算需编制计算机程序实现,程序设计流程框图如下图所示。
标准节流装置设计计算原始数据 用途 200-RG2305介质名称 压缩富气介质状态 气体最大量 12000m3/h正常量 2200m3/h最小量 1200m3/h操作温度 40℃操作压力 1.5MPa量程比 10:11. 辅助计算① 计算流量标尺因被测介质为液体,应求出质量流量。
根据流量标尺取标准流量为6000Kg/h ,即为1.6666Kg/s 。
② 计算差压上限再根据公式1214241ρπεβP d Cq m ∆-=计算P ∆其中C=0.6,1ε=1,β=0.5,d=20D ×β,m q 代17.5000Kg/s ,全部代入得P ∆=135078.47a P因国产差变的系列值为1.0,1.6,2.5,4.0,6.0×10n ,取P ∆=160000.00a P③ 求雷诺数ReD=μπD gm4=001139.0*100446.0*141592654.3455.16*4=183127.498360④ 求A2 A2= 1D2Re ρμP D ∆ =677*47.135078*2*100446.0498360.183127*001139.0 =0.1535482. 计算初值① 求1β设: 0C =∞C =0.6060,0ε=1令 1X =002εC A =0.2533795413又 1β=25.021211⎥⎦⎤⎢⎣⎡+X X=0.4955983337② 求1ε因被测介质为液体,所以11=ε③ 求1C1C =0.5959+0.0312β12.1—0.1840β18+0.0029β12.5(106/ReD )0.75故1C =0.5959+0.0312×(0.4955983337)2.1—0.1840×(0.4955983337)8+0.0029×(0.4955983337) 2.5×(106/183127.498360)0.75=0.6041653582因此 1δ=1112εC X A -=0.0004648607④ 精确度判断所以 211A E δ==0.00302746173. 进行迭代计算,设定第二个假定值X2 X2=112εC A=0.25414896762β=25.022221⎥⎦⎤⎢⎣⎡+X X=0.49630472082ε=12C =0.5959+0.03121.22β—0.184082β +0.00295.22β()75.06/10eD R=0.6041854730因此 2δ =2A —2X 2C 2ε=-0.0000051122所以 0000332936.02=E4. 进行迭代计算,设定第三个假定值3X ,利用快速收敛弦截法公式(n=3起用)1212223δδδ--⨯-=X X X X =0.254140598125.0232331⎥⎦⎤⎢⎣⎡+=X X β=0.49629704453ε=1()75.065.23831.233/100029.01840.00312.05959.0eD R C βββ+-+==0.6041852546因此 33323εδC X A -==0.0000000001所以 0000000005.03=E由于 3E =0.0000000005精确度达到要求。