4计量经济学-违背基本假定问题

合集下载

4.1 多重共线性(计量经济学)

4.1 多重共线性(计量经济学)
第四章 经典单方程计量经济学模型:
放宽基本假定的模型
说明
• 经典多元线性模型在满足若干基本假定的条件下, 应用普通最小二乘法得到了无偏、有效且一致的 参数估计量。
• 在实际的计量经济学问题中,完全满足这些基本 假定的情况并不多见。不满足基本假定的情况, 称为基本假定违背。
• 对截面数据模型来说,违背基本假定的情形主要 包括:
•逐步回归法(Stepwise forward Regression)
– 以Y为被解释变量,逐个引入解释变量,构成回归 模型,进行模型估计。
– 根据拟合优度的变化决定新引入的变量是否独立。 • 如果拟合优度变化显著,则说明新引入的变量是 一个独立解释变量;
• 如果拟合优度变化很不显著,则说明新引入的变 量与其它变量之间存在共线性关系。
§4.1 多重共线性 Multicollinearity
一、多重共线性 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
1、多重共线性
Yi 0 1Xi1 2 Xi2 k Xik i i 1, 2, , n
实际上:正态性假设的违背
• 李子奈(2011):计量经济学模型方法论 – 当存在模型关系误差时,如果解释变量是随机的,随 机误差项的正态性将得不到保证。 – 当模型遗漏了显著的变量,如果遗漏的变量是非正态 的随机变量,随机误差项将不具有正态性。 – 如果待估计的模型是原模型经过函数变换得到的,随 机误差项将不再服从正态分布。 – 当模型存在被解释变量的观测误差,如果观测误差相 对于随机误差项的标准差特别大、样本长度又特别小, 随机误差项的正态性假设会导致显著性水平产生一定 程度的扭曲。 – 当模型存在解释变量观测误差时,一般情况下,随机 误差项的正态性假设都是不能成立的;只有在回归函 数是线性的,且观测误差分布是正态的特殊情形下, 随机误差项的正态性才成立。

计量经济学 第三章:违背假设问题及参数估计方法

计量经济学 第三章:违背假设问题及参数估计方法

2.D-W检验 D-W检验适合于一阶自相关检验,构造统计量
d
2 e e t t 1 t 2 n
et
t 1
n
2
n et et 1 2(1 ˆ) 则:d 21 t 2n 2 et t 1 0d 4
e 0 1 f ( X ) 2 f ( K )
四、存在异方差模型的估计方法(Eviews权重法) 1.解释变量的某种(函数)形式作为权数
Eviews6.0权数为: 1 f ( x)
1 f ( x) 标准差的倒数 2 方差的倒数 1 f ( x) Eviews7.2权数: 标准差 f ( x) 2 f 方差 ( x)
采用时间序列数据的模型往往存在序列相关
三、序列相关检验
检验方法主要有: 图示法 D-W检验 LM检验 例3-3(表3-3),进出口对于国内生产总值的影响 1.图示法 ①估计原模型,得到残差; ②构造残差与残差滞后期之间的散点图; ③若存在线性关系,则存在序列相关。 另外,也可以构造残差与时间序列t的散点图,通过 分析随时间序列的规律性判断是否存在序列相关。
2.加权最小二乘法的权数为: 1 ei ◇消除异方差的经验做法: 指数模型能够有效地减弱异方差现象; 多个解释变量优先考虑用残差序列作为权数。
例3-1(表3-1),能源消费问题 ◇原模型为: ECt 0 1GDPt t ◇原模型参数估计结果为: ˆ 87307.06 0.6 t
t t t 1 2 t 2 s t s
s 0

E ( t ) s E ( t s ) 0
s 0
2 2s Var ( t ) Var ( t s ) 2 1 s 0 2 s Cov( t , t s ) 1 2

计量经济学简答题整理

计量经济学简答题整理

简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。

对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。

2、统计推断检验。

3、计量经济学检验。

4、模型预测检验。

三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。

(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。

(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。

(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。

四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。

为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。

例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。

称为最小二乘法则。

为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。

可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。

计量经济学第二章(第一部分)

计量经济学第二章(第一部分)

i= 1


该准则消除了正负误差抵消,其缺点是:
不能保证找到的直线具有无偏性。如:
+2 -1
-1
+3
0 0
3 Yi -Yˆ i = 4
3
2
Yi -Yˆ i =6
i=1
i=1
3
3
2
Yi -Yˆ i = 3
Yi -Yˆ i =9
i=1
i=1
33 计量经济学
(3)使得
13 计量经济学
Y i01X iui,i1,2n,..., 同

其中 0,1 称为回归参数;u为随机误差 项; X称为解释变量;Y称为被解释变量。 “一元”是指:只有一个解释变量;
14 计量经济学
Y i01X iui,i1,2n,..., 同

“线性”包含:
被解释变量与间 解为 释线 变性 量关系
量Y的影响;
16 计量经济学
同 上
(2)变量观测值的观测误差的影响; (3)模型数学形式的设定误差影响; (4)其它随机因素的影响。
17 计量经济学
同 上
2、随机误差项u的特性
(1)对被解释变量Y的影响方向,有正有负;
(2)由于代表次要因素,因此,对Y的总平
均影响可视为零;
(3)对被解释变量Y的影响是非趋势的,是
假定2、3统称为高斯-马尔可夫假定。
23 计量经济学
假定4 cov(Xi,ui)=Exiui=0 ,


i=1,2,…,n且X为确定性变量,而非 4
随机变量。
如果解释变量X是确定性变量而非随机变 量该假定自动成立,即EXi=Xi ,EXiui= XiEui= 0 。该假定表明X与u不相关。因 为在模型中u包含了除X对Y的影响外其它 因素对Y的影响,因此应与X对Y的影响分 开。

违背模型基本假设汇总

违背模型基本假设汇总
2
建立违背基本假定回归模型存在的基本问题:
OLS法是否还适用?所得参数的OLS估计
量是否还具有优良的统计性质?变量显著性t 检验和方程显著性F检验还有效吗?
如果OLS法失效,有哪些补救措施? 如何检验模型是否违背基本假定条件?
本章主要讨论不满足基本假定中的某一条, 而其余假定条件均成立时,多元线性回归模型参 数的有效估计和检验问题。
6
一、 多重共线性的概念
在计量经济学中所谓的多重共线性,包括 完全的多重共线性和不完全的多重共线性 对于线性回归模型
Yi 0 1X1i 2 X 2i k X ki u(i i 1, 2, , n)
即 Y X u
7
完全的多重共线性:解释变量 X1, X 2 ,, X k 之间存在完全的多重共线性是指 Rank(X ) k 1 ,
12
➢实际经济问题中的多重共线性
一般地,产生多重共线性的主要原因有以下三个 方面:
(1)经济变量相关的共同趋势
时间序列样本:经济繁荣时期,各基本经济变 量(收入、消费、投资、价格)都趋于增长;衰退时 期,又同时趋于下降。
横截面数据:生产函数中,资本投入与劳动力
投入往往出现高度相关情况,大企业二者都大,小企
4.E+11 3.E+11
GDP
4.E+11
GDP
3.E+11
2.E+11
2.E+11
1.E+11
0.E+00 80 82 84 86 88 90 92 94 96 98 00 02
1.E+11
0.E+#43;11
GDP(-1) 15
3.E+11 4.E+11

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

2.下列计量经济学方程哪些是正确的?哪些是错误的?为什么?
(1)Yi=α+βXi,i=1,2,…,n;
(2)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(3)Yi=α+βXi+μi,i=1,2,…,n;

∧∧
(4)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(5)Yi=α+βXi,i=1,2,…,n;
2 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
www.10Leabharlann
假定随机扰动项满足条件零均值、条件同方差、条件序列丌相关性以及服从正态分布。 (2)违背基本假设的计量经济学仍然可以估计。虽然 OLS 估计值丌再满足有效性,但 仍然可以通过最大似然法等估计方法或修正 OLS 估计量来得到具有良好性质的估计值。

4.线性回归模型 Yi=α+βXi+μi,i=1,2,…,n 的零均值假设是否可以表示为
1
n
n i 1
i

0 ?为什么?
n
1 0 答:线性回归模型 Yi=α+βXi+μi 的零均值假设丌可以表示为
i

n i1
原因:零均值假设 E(μi)=0 实际上表示的是 E(μi∣Xi)=0,即当 X 取特定值 Xi 时,
3.一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是否就 丌可以估计?
答:(1)针对普通最小二乘法,一元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于自变量的基本假设: 假定自变量具有样本变异性,且在无限样本中的方差趋于一个非零的有限常数。 ③关于随机干扰项的基本假设:

财务管理4第四章经典单方程计量经济学模型放宽基本假定的模型

财务管理4第四章经典单方程计量经济学模型放宽基本假定的模型
考察从事农业经营的收入(X1)和其他收入(X2) 对中国农村居民消费支出(Y)增长的影响:
ln Y 0 1 ln X 1 2 ln X 2
表 4.1.1 中国 2001 年各地区农村居民家庭人均纯收入与消费支出相关数据(单位:元)
从事农业经营 其他收入
从事农业经营 其他收入
人均消费
的收入
加权最小二乘法的基本思想:
加权最小二乘法是对原模型加权,使之变成一 个新的不存在异方差性的模型,然后采用OLS估 计其参数。
Wiei2
Wi [Yi
(ˆ0
ˆ1 X1
ˆ k
Xk
2
)]
在采用OLS方法时:
对较小的残差平方ei2赋予较大的权数, 对较大的残差平方ei2赋予较小的权数。
例如,如果对一多元模型,经检验知:
~
F(n
2
c
k
1,
n
2
c
k
1)
2
⑤给定显著性水平,确定临界值F(v1,v2), 若F> F(v1,v2), 则拒绝同方差性假设,表明 存在异方差。 当然,还可根据两个残差平方和对应的子样 的顺序判断是递增型异方差还是递减异型方差。
3、怀特(White)检验
怀特检验不需要排序,且适合任何形式的异方差 怀特检验的基本思想与步骤(以二元为例):
山西
1221.6
609.8 1346.2 广 西
1475.16
883.2 1088.0
内蒙古
1554.6
1492.8 480.5 海 南
1497.52
919.3 1067.7
辽宁
1786.3
1254.3 1303.6 重 庆
1098.39

计量经济学第四章习题

计量经济学第四章习题

地区 农业总产 农作物种植

面积
湖北 921.6 省
7155.9
湖南 874.0 省
7886.2ຫໍສະໝຸດ 广东 960.0 省4808.0
广 西 623.1
6368.2
海南 省
重庆 市
四川 省
贵州 省
云南 省
西藏
170.9 333.0 987.7 317.7 516.9 26.6
826.9 3435.3 9387.5 4695.0 5890.0 231.2
试问:
(1) 当设定模型为 相关?
时,是否存在序列
(2) 若按一阶自相关假设,试用杜宾两步法与广义最小 二乘法估计原模型。
(3) 采用差分形式与作为新数据,估计模型,该模型是 否存在序列相关?
15. 对于线性回归模型:,已知为一阶自回归形式:,要 求:证明的估计值为:
16. 某上市公司的子公司的年销售额与其总公司年销售额的 观测数据如下:
1550
2400
24350
10
1500
2600
26860
11. 2004年全国31个省市自治区农业总产值(亿元)和农作物 播种面积(万亩)数据(数据来源:《中国统计年鉴 2005》)如下表所示:
地区
北京 市
天津 市
河北 省
山西 省
内蒙 古
辽宁 省
吉林 省
黑龙 江
上海 市
江苏 省
浙江 省
安徽 省
农业总产 值
(1) (2)
(3)
19. 为研究劳动力在制造业中所占比率的变动趋势,根据美 国1949~1964年的年度数据,得以下两种回归模型结 果:
模型A: 模型B: 其中:Y为劳动力比率,t为时间。括号中的数字是t检验 值。要求:

计量经济学简答

计量经济学简答
答:(1)计算DW值
(2)给定a,由n和k的大小查DW分布表,得临界值dL和dU
(3)比较、判断
若0<D.W.<dL,存在正自相关
dL<D.W.<dU,不能确定
dU <D.W.<4-dU,无自相关
4-dU <D.W.<4-dL,不能确定
4-dL <D.W.<4 , 存在负自相关
分布滞后模型使用OLS法存在以下问题:(1)对于无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计σ。(2)对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后期之间可能存在高度线性相关,即模型可能存在高度的多重共线性。
5、计量经济学模型主要有哪些应用领域?各自的原理是什么?
答:计量经济学模型主要有以下几个方面的用途:
⑴。结构分析,其原理是弹性分析、乘数分析与比较分析;
⑵。经济预测,其原理是模拟历史,从已经发生的经济活动中找出变化规律;
⑶。政策评价,是对不同政策执行情况的“模拟仿真”;
⑷。检验与发展经济理论,其原理是如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据。
5、简述变量显著性检验的步骤。
答:(1)对总体参数提出假设: H0:b1=0, H1:b110。
(2)以原假设H0构造t统计量,并由样本计算其值:
(3)给定显著性水平a,查t分布表得临界值t a/2(n-2)
(4)比较,判断
若 |t|> t a/2(n-2),则拒绝H0 ,接受H1 ;

计量经济学课件-违背基本假定问题(1)

计量经济学课件-违背基本假定问题(1)
Cov(μ) E(μμ) 2 W
w1
W
w2
wn
D 1Y D 1Xβ D 1μ
Y*
X

μ *
W是一對稱正定矩 陣,存在一可逆矩 陣D使得W=DD’
E(μ*μ* ) E(D 1μμD 1 ) D 1E(μμ)D 1
I D 1 2ΩD 1 D 1 2DDD1
2
βˆ *
(X*X* )1 X*Y*
共同的思路:
• 由於異方差性是相對於不同的解釋變數觀測值, 隨機誤差項具有不同的方差。那麼檢驗異方差 性,也就是檢驗隨機誤差項的方差與解釋變數 觀測值之間的相關性及其相關的“形式”。
• 問題在於用什麼來表示隨機誤差項的方差?一 般的處理方法:首先採用OLS估計,得到殘差 估計值,用它的平方近似隨機誤差項的方差。
• In view of our description of the source of the disturbances, the conditions of the central limit theorem will generally apply, at least approximately, and the normality assumption will be reasonable in most settings. Except in those cases in which some alternative distribution is assumed, the normality assumption is probably quite reasonable.
• 仍然採用OLS,但對OLS估計量的標準差進行 修正。
• 與不附加選擇的OLS估計比較,參數估計量沒 有變化,但是參數估計量的方差和標準差變化 明顯。

第五章 计量经济学检验违背基本假设的情况

第五章 计量经济学检验违背基本假设的情况

4.逐步回归法
以Y为被解释变量,逐个引入解释变量,构成
回归模型,进行模型估计。根据拟合优度的变化 决定新引入的变量是否可以用其它变量的线性组 合代替,而不作为独立的解释变量。 如果拟合优度变化显著,则说明新引入的变量 是一个独立解释变量;
如果拟合优度变化很不显著,则说明新引入的 变量不是一个独立解释变量,它可以用其它变量 的线性组合代替,也就是说它与其它变量之间存 在共线性关系。
四、克服多重共线性的方法
1、第一类方法:排除引起共线性的变量
找出引起多重共线性的解释变量,将它排除出去, 是最为有效的克服多重共线性问题的方法。
注意: 剩余解释变量参数的经济含义和数值都发生了变化。
2、第二类方法:差分法 对于以时间序列数据为样本、以直接线性关系
为模型关系形式的计量经济学模型,将原模型变 换为差分模型 Yi=1 X1i+2 X2i++k Xki+ i 可以有效地消除存在于原模型中的多重共线性。 一般讲,增量之间的线性关系远比总量之间的 线性关系弱得多。
本章内容
多重共线性(Multicollinearity) 异方差性(Heteroscedasticity) 自相关(Autocorrelation)
第一节 多重共线性 ( Multi-Collinearity )
多重共线性的概念 多重共线性的后果 多重共线性的检验 克服多重共线性的方法
2 越强(即 R k . 越大),则由于多重共线性,该系数估计的方差就越大。
一种最普遍的情形是,解释变量之间是高度相关,而不是 确切相关的。在这种情形下,回归模型仍然保持那些常见的性质, 但是出现了一些潜在的统计问题: 1. 数据扰动存在巨大影响。 2. 虽然模型的整体效果比较好( R 较大),但参数b不显著。 3. 导致参数估计“变性”(符号不合理)。 4.解释变量前的参数并不反映各自与被解释变量之间的结构 关系,而是反映它们对被解释变量的共同影响。

计量经济学第二章(第三部分)

计量经济学第二章(第三部分)

为WLS估计量。
32
计量经济学 第二章C
(2)利用加权最小二乘法处理异方差 假设已知 varui 2 f(X i ) ,
5451.91
6797.71 7869.16 5483.73 5382.91 5853.72
同 上
海南
重庆 四川
349.44
442.50 381.47
5838.84
6721.09 6360.47
宁夏
新疆
437.72
406.72
5544.17
6395.04
22
计量经济学 第二章C
实例7
同 上
可支配收入按升序排序之后,去掉中间的5 个值,将剩余的26个值均分。
判断模型可能存在 复杂型异方差
14
计量经济学 第二章C
同 上
(2)以残差平方 e 2 为纵轴,某个解释变 量X为横轴,画出残差序列分布图。
15
计量经济学 第二章C
分布图
e
(1)
2
e2
(2) x x
同 上
判断模型基本不 存在异方差
e2
(3) x (4)
e2
x
(2)—(4)可能存在 异方差
16
计量经济学 第二章C
第三部分 违背基本假定 的诸问题
1
计量经济学 第二章C
同 上
异方差性 序列相关性 多重共线性 随机解释变量
2
计量经济学 第二章C
Ⅰ、异方差性
一、异方差性
若出现 var ui
2 i
, i=1,2,…,n 时,
即对不同的样本点,误差项的方差不再
是一个常数,而是随i的不同而不同,则 认为产生了异方差。 此时, ui ~ N (0, i2 )

计量经济学习题及答案

计量经济学习题及答案

计量经济学习题一、名词解释1、普通最小二乘法:为使被解释变量的估计值与观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之。

2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和。

TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度(自变量个数—1)=回归方差,度量由自变量的变化引起的因变量变化部分;ESS度量实际值与拟合值之间的差异程度,称为残差平方和。

RSS除以自由度(n-自变量个数—1)=残差(误差)方差,度量由非自变量的变化引起的因变量变化部分。

3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科。

而且必须指出,这些经济计量模型是具有随机性特征的。

4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目(包扩常数项),即之。

5、序列相关性:模型的随机误差项违背了相互独立的基本假设的情况。

6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量。

这种估计方法称为工具变量法.8、时间序列数据:按照时间先后排列的统计数据。

9、截面数据:发生在同一时间截面上的调查数据。

10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系.11、异方差:对于线性回归模型提出了若干基本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性.12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素。

《计量经济学》第三版课后题答案解析李子奈

《计量经济学》第三版课后题答案解析李子奈

第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。

计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。

4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。

样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n 越大,t 分布表中的临界值越小。

4违背基本假定的情况自相关性

4违背基本假定的情况自相关性
10
三 序列相关性的后果
11
1 参数估计量非有效
OLS参数估计量仍具无偏性 OLS估计量不具有有效性 在大样本情况下,参数估计量仍然不具有渐 近有效性,这就是说参数估计量不具有一致性
12
2 变量的显著性检验失去意义
在关于变量的显著性检验中,当存在序列相 关时,参数的OLS估计量的方差增大,标准差也 增大,因此实际的 t 统计量变小,从而接受原
n
(et et1)2 /(n 1)
t2 n
(et e )2 / n
t2
该统计量被称为冯诺曼比。当样本容量足够大时 (大于30),该统计量近似服从正态分布。计算该 统计量的值,将它与具有正态分布的理论分布值进 行比较,如果大于临界值,表示不存在序列相关, 如果小于临界值,表示存在序列相关。
21
19
对各方程估计并进行显著性检验,如果存在 某一种函数形式,使得方程显著成立,则说明原 模型存在序列相关性。
具体应用时需要反复试算。
回归检验法的优点是: 一旦确定了模型存在序列相关性,也就
同时知道了相关的形式; 它适用于任何类型的序列相关性问题的
检验。
20
(2) 冯诺曼比检验法 冯诺曼比检验法在于构造统计量
t t1 t , 1 1
其中,被称为一阶自相关系数。
5
二 实际经济问题中的序列相关性
6
为什么会出现序列相关性?下面通过两个例子加 以说明。
例如,建立行业生产函数模型,以产出量为被解释变量, 资本、劳动、技术为解释变量,选择时间序列数据作为 样本观测值。于是有:
Qt f (Kt , Lt ,Tt ) t t 1,2, ,n
假设 i 0 的可能性增大, 检验就失去意义。

《计量经济学(第二版)》习题解答(第1-3章)

《计量经济学(第二版)》习题解答(第1-3章)

《计量经济学(第二版)》习题解答第一章1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答:(1)利用计量经济模型定量分析经济变量之间的随机因果关系。

(2)随机关系、因果关系。

1.2 试述计量经济学与经济学和统计学的关系。

答:(1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的具体应用,同时可以实证和发展经济理论。

(2)统计数据是建立和评价计量经济模型的事实依据,计量经济研究是对统计数据资源的深层开发和利用。

1.3 试分别举出三个时间序列数据和横截面数据。

1.4 试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。

1.5 试结合一个具体经济问题说明计量经济研究的步骤。

1.6 计量经济模型主要有哪些用途?试举例说明。

1.7 下列设定的计量经济模型是否合理,为什么?(1)ε++=∑=31i iiGDP b a GDPε++=3bGDP a GDP其中,GDP i (i =1,2,3)是第i 产业的国内生产总值。

答:第1个方程是一个统计定义方程,不是随机方程;第2个方程是一个相关关系,而不是因果关系,因为不能用分量来解释总量的变化。

(2)ε++=21bS a S其中,S 1、S 2分别为农村居民和城镇居民年末储蓄存款余额。

答:是一个相关关系,而不是因果关系。

(3)ε+++=t t t L b I b a Y 21其中,Y 、I 、L 分别是建筑业产值、建筑业固定资产投资和职工人数。

答:解释变量I 不合理,根据生产函数要求,资本变量应该是总资本,而固定资产投资只能反映当年的新增资本。

(4)ε++=t t bP a Y其中,Y 、P 分别是居民耐用消费品支出和耐用消费品物价指数。

答:模型设定中缺失了对居民耐用消费品支出有重要影响的其他解释变量。

按照所设定的模型,实际上假定这些其他变量的影响是一个常量,居民耐用消费品支出主要取决于耐用消费品价格的变化;所以,模型的经济意义不合理,估计参数时可能会夸大价格因素的影响。

计量经济学期末考试重点

计量经济学期末考试重点

第一章绪论1、什么是计量经济学?由哪三组组成?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。

统计学、经济理论和数学三者结合起来便构成了计量经济学。

2、计量经济学的内容体系,重点是理论计量和应用计量和经典计量经济学理论方法方面的特征答:1)广义计量经济学和狭义计量经济学 2)初、中、高级计量经济学3)理论计量经济学和应用计量经济理论计量经济学是以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。

除了介绍计量经济模型的数学理论基础、普遍应用的计量经济模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验方法,应用了广泛的数学知识。

应用计量经济学则以建立与应用计量经济学模型为主要内容,强调应用模型的经济学和经济统计学基础,侧重于建立与应用模型过程中实际问题的处理。

本课程是二者的结合。

4)、经典计量经济学和非经典计量经济学经典计量经济学(Classical Econometrics)一般指20世纪70年代以前发展并广泛应用的计量经济学。

经典计量经济学在理论方法方面特征是:⑴模型类型—随机模型;⑵模型导向—理论导向;⑶模型结构—线性或者可以化为线性,因果分析,解释变量具有同等地位,模型具有明确的形式和参数;⑷数据类型—以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量;⑸估计方法—仅利用样本信息,采用最小二乘方法或者最大似然方法估计模型。

经典计量经济学在应用方面的特征是:⑴应用模型方法论基础—实证分析、经验分析、归纳;⑵应用模型的功能—结构分析、政策评价、经济预测、理论检验与发展;⑶应用模型的领域—传统的应用领域,例如生产、需求、消费、投资、货币需求,以及宏观经济等。

5)、微观计量经济学和宏观计量经济学3、为什么说计量经济学是经济学的一个分支?(4点和综述)答:(1)、从计量经济学的定义看(2)、从计量经济学在西方国家经济学科中的地位看(3)、从计量经济学与数理统计学的区别看(4)、从建立与应用计量经济学模型的全过程看综上所述,计量经济学是一门经济学科,而不是应用数学或其他。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Gleiser
选择关于变量X的不同的函数形式,对方程进行估计并 进行显著性检验,如果存在某一种函数形式,使得方程 显著成立,则说明原模型存在异方差性。
• 帕克检验常用的函数形式:
i f ( X ji ) 2 X e ji
~ 2 ) ln 2 ln X ln(e i ji i
在同方差假设下
辅助回归 可决系数 渐近服从
辅助回归解释变量 的个数
36
• 说明: • 辅助回归仍是检验与解释变量可能的组合的显 著性,因此,辅助回归方程中还可引入解释变 量的更高次方。 • 如果存在异方差性,则表明确与解释变量的某 种组合有显著的相关性,这时往往显示出有较 高的可决系数以及某一参数的t检验值较大。 • 在多元回归中,由于辅助回归方程中可能有太 多解释变量,从而使自由度减少,有时可去掉 交叉项。
例4.1.3: 以某一行业的企业为样本建立企业生产函 数模型 Yi=Ai1 Ki2 Li3eI 被解释变量:产出量Y,解释变量:资本K、劳动L、 技术A。 • 每个企业所处的外部环境对产出量的影响被包含 在随机误差项中。 对于不同的企业,它们对产出量的影响程度不同, 造成了随机误差项的异方差性。 随机误差项的方差并不随某一个解释变量观测值 的变化而呈规律性变化,呈现复杂型。
35
4、布罗施-帕甘(Breusch-Pagan)检验
5、怀特(White)检验
Yi 0 1 X 1i 2 X 2i i
建立辅助 回归模型
以二元模型为例
2 2 2 ~ ei 0 1 X1i 2 X 2i 3 X1i 4 X 2i 5 X1i X 2i i
如果在 OLS 法下, R2 与 F 值较大,但 t 检验值较小,说明
各解释变量对Y的联合线性作用显著,但各解释变量间存在 共线性而使得它们对 Y 的独立作用不能分辨,故 t 检验不显
著。
8
多重共线性检验 2、判明存在多重共线性的范围
(1) 判定系数检验法
使模型中每一个解释变量分别以其余解释变量为解释变 量进行辅助回归(Auxiliary Regression),并计算相应的拟 合优度。 如果某一种回归Xji=1X1i+2X2i+LXLi的判定系数较大, 说明Xj与其他X间存在共线性。
可以构造F检验:FFra bibliotek R2 j . /( k 1) (1 R ) /(n k )
2 j.
~ F (k 1, n k )
(2) 排除变量法(Stepwise Backward Regression )
在模型中排除某一个解释变量Xj,估计模型; 如果拟合优度与包含Xj时十分接近,则说明Xj 与其它解释变量之间存在共线性。
i的方差呈现单调递增型变化
23
例4.1.2: 以绝对收入假设为理论假设、以截面数 据为样本建立居民消费函数: Ci=0+1Yi+I 将居民按照收入等距离分成n组,取组平均数为样 本观测值。 • 一般情况下,居民收入服从正态分布:中等收入 组人数多,两端收入组人数少。而人数多的组平均 数的误差小,人数少的组平均数的误差大。 样本观测值的观测误差随着解释变量观测值的不 同而不同,往往引起随机项的异方差性,且呈U形, 是复杂型的一种。 24
– 单调递增型: i2随X的增大而增大 – 单调递减型: i2随X的增大而减小 – 复 杂 型: i2与X的变化呈复杂形式
21
22
3、实际经济问题中的异方差性
例4.1.1:截面资料下研究居民家庭的储蓄行为 Yi=0+1Xi+i
Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入
高收入家庭:储蓄的差异较大; 低收入家庭:储蓄则更有规律性,差异较小。
32
~2 e i
~2 e i
X 同方差 递增异方差
X
~2 e i
~2 e i
X 递减异方差 复杂型异方差
X
33
2、帕克(Park)检验与戈里瑟(Gleiser)检验
• 基本思想:尝试建立方程:
Park
~2 f (X ) e i ji i
~ | f ( X ) |e i ji i
17
4.2
异方差性
一、异方差的概念
二、异方差性的后果
三、异方差性的检验
四、异方差的修正
五、例题
18
一、异方差的概念
19
1、异方差
Yi 0 1 X ii 2 X 2i k X ki i
Var(i ) 2
i 1,2,, n
Homoscedasticity 同方差性
13
2、第二类方法:减小参数估计量的方差 • 多重共线性的主要后果是参数估计量具有较大
的方差。 • 采取适当方法减小参数估计量的方差,虽然没 有消除模型中的多重共线性,但确能消除多重共 线性造成的后果。 • 例如,增加样本容量,可使参数估计量的方差 减小。
14
五、案例——中国粮食生产函数
15
• 步骤
(2)估计多重共线性的范围,即判断哪些变量
之间存在共线性。
5
实际经济问题中的多重共线性
1. 经济变量相关的共同趋势 2. 模型设定不谨慎 3. 样本资料的限制
6
多重共线性的后果
7
多重共线性检验 1、检验多重共线性是否存在
(1)对两个解释变量的模型,采用简单相关系数法
求出 X1 与 X2 的简单相关系数 r ,若 |r| 接近 1 ,则说 明两变量存在较强的多重共线性。 (2)对多个解释变量的模型,采用综合统计检验法
• 假设6. 随机干扰项满足正态分布
2
本章说明
• 基本假定违背主要 包括:
– 解释变量之间存在多重共线性; – 随机误差项序列存在异方差性; – 解释变量是随机变量且与随机误差项相关的随机解 释变量问题; – 模型设定有偏误;
• 计量经济检验:对模型基本假定的检验
3
4.1
多重共线性
一、多重共线性的概念
37
四、异方差的修正 —加权最小二乘法
38
1、WLS的思路
• 加权最小二乘法是对原模型加权,使之变成一
个新的不存在异方差性的模型,然后采用OLS估 计其参数。
2 ˆ ˆ ˆ W e Wi [Yi ( 0 1 X 1 k X k )] 2 i i
在采用OLS方法时:
若在统计上是显著的,表明存在异方差性。
34
3、戈德菲尔德-匡特(Goldfeld-Quandt)检验
• G-Q检验以F检验为基础,适用于样本容量较大、 异方差递增或递减的情况。
• 先将样本一分为二,对子样①和子样②分别作回 归,然后利用两个子样的残差平方和之比构造统 计量进行异方差检验。 • 由于该统计量服从F分布,因此假如存在递增的 异方差,则F远大于1;反之就会等于1(同方差) 或小于1(递减方差)。
Var (i ) i2
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)。
20
2、异方差的类型
• 同方差:i2 = 常数,与解释变量观测值Xi无关;
异方差:i2 = f(Xi),与解释变量观测值Xi有关。 • 异方差一般可归结为三种类型:
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y的预测 误差变大,降低预测精度,预测功能失效。
29
三、异方差性的检验 Detection of Heteroscedasticity
30
检验思路: • 由于异方差性是相对于不同的解释变量观测值, 随机误差项具有不同的方差。那么检验异方差 性,也就是检验随机误差项的方差与解释变量 观测值之间的相关性及其相关的“形式”。 • 问题在于用什么来表示随机误差项的方差?一 般的处理方法:首先采用OLS估计,得到残差 估计值,用它的平方近似随机误差项的方差。
第四章:放宽基本假定的 经典单方程计量经济学模型
1
关于模型关系的假设(与一元回归模型基本相同)
• 假设1. 回归模型设定是正确的。 • 假设2. 解释变量具有变异性
• 假设3. 各自变量之间不存在严格线性相关性(无完全 多重共线性)
• 假设4. 随机干扰项具有条件零均值性
• 假设5. 随机干扰项具有条件同方差及不序列相关性
–以粮食产量作为被解释变量,以影响粮食产量的主 要因素农业化肥施用量、粮食播种面积、成灾面积 、农业机械总动力、农业劳动力为解释变量,建立 中国粮食生产函数模型; –用OLS法估计模型; –检验简单相关系数;
–找出最简单的回归形式;
–采用逐步回归方法得到最终模型。
16
• 当模型存在共线性,将某个共线性变量去掉, 剩余变量的参数估计结果将发生变化,而且经 济含义有发生变化; • 严格地说,实际模型由于总存在一定程度的共 线性,所以每个参数估计量并不真正反映对应 变量与被解释变量之间的结构关系。
对较小的残差平方ei2赋予较大的权数;
对较大的残差平方ei2赋予较小的权数。
39
2、异方差稳健标准误法(HeteroscedasticityConsistent Variances and Standard Errors)
• 应用软件中推荐的一种选择。适合样本容量足 够大的情况。
• 仍然采用OLS,但对OLS估计量的标准差进行 修正。 • 与不附加选择的OLS估计比较,参数估计量没 有变化,但是参数估计量的方差和标准差变化 明显。 • 即使存在异方差、仍然采用OLS估计时,变量 的显著性检验有效,预测有效。
25
二、异方差性的后果
26
1、参数估计量非有效
• OLS估计量仍然具有无偏性,但不具有有效性。
相关文档
最新文档