中考数学必备公式大全

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学常用公式和定理大全

1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,

.无限不环

循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.

2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.

3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.

4、把一个数写成±a ×10n

的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105

,0.000043=4.3×10ˉ5

. 5、乘法公式(反过来就是因式分解的公式): ①(a +b )(a -b )=a 2

-b 2

.扩展:

(

)(

)

1

1

1

11

1-=--±-=

-±n n n n n n n n n n

②(a ±b )2

=a 2

±2ab +b 2

.扩展:2

1122

2

±+=⎪⎭⎫ ⎝

±a a a a 或 2

112

22

⎪⎭⎫ ⎝

⎛±=+a a a a

同理:2

1122

2

±+=⎪⎭

⎫ ⎝⎛

±x x x x 或 2112

22 ⎪⎭⎫ ⎝⎛±=+x x x x ③(a +b )(a 2

-ab +b 2

)=a 3

+b 3

.④(a -b )(a 2

+ab +b 2

)=a 3

-b 3

;a 2

+b 2

=(a +b )2

-2ab ,(a -b )2

=(a +b )2

-4ab .

公式拓展:⑥3333222222()3333336x y z x y z x y xy y z yz x z xz xyz ++=+++++++++

⑦3332223()()x y z xyz x y z x y z xy yz xz ++-=++++---

⑧42242222()()x x y y x xy y x xy y ++=++-+

⑨(1)

123(1)2

n n n n ++++⋅⋅⋅+-+=

⑩2135(23)(21)n n n +++⋅⋅⋅+-+-= ⑾246(22)2(1)n n n n +++⋅⋅⋅+-+=+

6、幂的运算性质:

①a m ×a n =a m +n .如:a 3×a 2=a 5 ; ②a m ÷a n =a m -n .如: a 6

÷a 2

=a 4

③(a m )n

=a mn

.如:(a 3

)2

=a 6

,(3a 3

)3

=27a 9

, ④(ab )n =a n b n .⑤()n

=a ˉ

n b n

⑥a ˉn

1n a

,特别:()ˉn =()n .如:(-3)ˉ1=-,5ˉ2

==,()ˉ

2

=()2

=;

⑦a 0

=1(a ≠0).如:(-3.14) 0

=1,(-)0

=1.

7、二次根式:①()2

=a (a ≥0),②=丨a 丨,③

×

,④=

(a >0,b ≥0).如:①(3)2

=45.②=6.③a <0时,

=-

a .④

的平方根=4的平方根=±2.(平方根、立方根、算术平方根

的概念)

注:①如果一个数的平方是a ,那么,这个数就在于叫a 的平方根(或叫二次方根)。a 叫被开方数。开平方中被开方数a 必须大于等于零。

②正数的平方根有两个,它们的绝对值相等,符号相反(它们是互为相反的数)。这两个根中的正数根,叫做算术平方根。零的算术平方根是零。负数没有平方根。

③如果一个数的立方等于a ,那么这个数就叫a 的立方根。3开立方的根指数。正数、负数和零都能开立方,正数的立方根是正数;负数的立方根是负数;

零的立方根是零。

8、一元二次方程:对于方程:ax 2

+bx +c =0:

①求根公式是x

=2b a

-±,其中△=b 2

-4ac 叫做根的判别式.

当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;

当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x 1和x 2,并且二次三项式ax 2

+bx +c 可分解为a (x -

x 1)(x -x 2).

③以a 和b 为根的一元二次方程是x 2

-(a +b )x +ab =0.

9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线及y 轴的交点的纵坐标即一次函数在y 轴上的截距).当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当

b =0时,y =kx (k ≠0)又叫做正比例函数(y 及x 成正比例),图象必过原点.

补充:斜率:

1

212tan x x y y k --==α b

①直线的斜截式方程,简称斜截式: y 11

21

2)()(tan y x x x x x y y b x b kx y +---=+=+=α③由直线在x 轴和y 轴上的截距确定的直线的截距 式方程,简称截距式:1=+

b

y a

x ④设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+ 若12//l l ,则有

1212//l l k k ⇔=且12b b ≠。 若

12121l l k k ⊥⇔⋅=-

相关文档
最新文档