航空电子设备:LRRA无线电高度表
电子仪表系统3无线电仪表
第十三章 电子仪表系统-无线电仪表
二、自动定向机(ADF)
自动定向机(ADF)与地面NDB(Non-Directional Beacon:无 方向信标)配合进行无线电导航。可以测量飞机飞行过程中 与地面NDB台之间的相对方位角。
3
第十三章 电子仪表系统-无线电仪表 4
第十三章 电子仪表系统-无线电仪表
1、早期皮肌炎患者,还往往 伴有全身不适症状,如-全身肌肉 酸痛,软弱无力,上楼梯时感觉 两腿费力;举手梳理头发时,举 高手臂很吃力;抬头转头缓慢而 费力。
第十三章 电子仪表系统-无线电仪表
三、无线电磁指示器(RMI)
无线电磁指示器是可以无线电磁指示器(RMI)接收从甚 高频全向信标台(VOR)和自动定向机(ADF) 接收机送来的 数字式方位数据,使用方位数据去置定方位指针的位置,指 示出地面VOR和NDB台的方位角度,而且也指示出飞机磁航向。
4、自动定向机的调谐和显示
(1)ADF指示器的显示
NDB导航台
QDM210°
Nm MH170°
QDM210°
HDG
5
第十三章 电子仪表系统-无线电仪表
皮肌炎图片——皮肌炎的症状表现
皮肌炎是一种引起皮肤、肌肉 、心、肺、肾等多脏器严重损害 的,全身性疾病,而且不少患者 同时伴有恶性肿瘤。它的1症状 表现如下:
10Βιβλιοθήκη 第十三章 电子仪表系统-无线电仪表
五、水平状态指示器(HSI)
水平状态指示器显示的是有关导航设备、机场及计划的飞 机航路的示意图,而且还可以在这些地面特征上面显示气象 雷达的图像。水平状况指示器将0-360°的磁航向标在表盘上, 并且以一个十字代表飞机,飞机机头所指即为飞机当前磁航 向。
飞机低无线电高度表系统故障-精品文档
飞机低无线电高度表系统故障飞机低无线高度表(LRRA系统是飞机仪表中的重要组成部分,对于确保飞机安全飞行意义重大。
然而在飞行过程中,由于机组人员的疏忽,或者其他客观因素的影响,会导致低无线电高度表系统出现故障,甚至还会引发其他故障的出现,严重威胁飞机的安全运行。
因此,加强对飞机低无线电高度表系统故障的研究显得尤为重要。
一、飞机低无线高度表系统原理飞机低无线高度表(LRRA系统是用来检测飞机与地面垂直距离的一种机载无线电设备,它是飞机重要飞行器仪表构成之一,属于调频式无线高度表,测量范围一般在0-2500 英尺之间,通常是在航空器飞行高度降低和准备着陆阶段使用。
B737NG飞机上,一般都会有两套LRRA系统,收发机、发射天线、接收天线以及显示装置共同组成LRRA系统。
发射机的发射天线向地面发射出由三角波调制出的调频波,这是一种较高频的连续波,大约为4300MHZ调频波经过地面反射之后由接受天线来接收,收发机再把接收的调频波及从发射机耦合来的发射波进行混频,由于飞机高度与输出的差频有关,用频率计数器测算出差额,之后再通过相关换算,就可以得到飞机离地面的高度。
二、飞机低无线电高度表系统故障通过上述对B737NG飞机LRRA系统工作原理的简单分析,可以得知当LRRA系统出现故障时,很可能还会引发以下某个单一或者并发故障的发生:首先,两侧无线高度表数值会出现较大差异;其次,相互接近的两个通道自动驾驶方式不能使用;再次,在接近过程中,其中一侧的飞行员飞行指示杆显示出意外丢失,并且无线高度表数值显示错误;最后,当飞机起飞后,在接近或者复飞的过程中,可能会出现非常态下的预警提示;此外,当飞机在接近过程中,飞行方式的信号牌会呈现出非正确形式的自动油门显示。
飞机在飞行过程中,一旦出现了以上某一个或者几个故障,首先需要运用具有相关性因素的故障隔离程序及自动检查功能,明确出飞机出现故障是否是由于飞机低无线高度表操作失误而引起的,然后再对飞机低无线高度表系统进行全面排查。
飞机导航系统(机电)机电设备维修 电子设备维修 电子设备舱 机务专用 教育
2、雷达系统
• 包括LRRA(无线电高度表):测高 • DME(测距机):测距 • WXR(气象雷达):飞机周围环境 监测
3、交通管制与警告系统
• 包括 ATC(空中交通管制):空中交通管 制应答机和地面交通管制台 • TCAS(交通警告与防撞系统) • GPWS(近地警告系统)
• IRS(惯性基准系统):提供飞机姿态、 航向、飞机当前位置等信息
二、ILS的系统组成
• ILS系统包括三个分系统:
– 提供横向引导的航向信标(localizer)系统 – 提供垂直引导的下滑信标(glidealope)系统 – 提供距离的指点信标(marker beacon)
航向和下滑信标产生的引导信号
1、航向信标(航向台)
• 航向信标工作频率为108.10—111.95 MHz, 共有40个波道。
• 发射机发射信号通过方向性天线阵沿跑 道中心线两侧发射两束水平交叉的辐射 波瓣,左波瓣90Hz调制,右波瓣被 150Hz调制。交汇处位于跑道水平中心 线上。
2、下滑信标(下滑台)
• 工作频率329.15-335MHZ ,间隔 150KHZ。共有40个频道。 • 两个波瓣信号。上波瓣90Hz调制,右波 瓣被150Hz调制。交汇处形成2.5-3度 下滑道。
飞机导航系统
• 导航是指引导飞机从某地沿预定的航线 安全、准确的飞达目的地的过程。 • 按照机载设备功能分为:无线电导航系统、 雷达系统、交通管制与警告系统、惯性基 准系统和飞行管理系统。
1、无线电导航系统
• 功用:利用来自地面台或空中的无线电 信号帮助驾驶员引导飞机沿正确航路飞 行。 • 包括ADF(自动定向机) • VOR(甚高频全向信标) • ILS(仪表着陆系统):引导飞机 安全着陆。由航向、下滑、指点信标系 统组成。
飞机低无线电高度表系统故障分析
飞机低无线电高度表系统故障分析
丁世渊
【期刊名称】《自动化应用》
【年(卷),期】2012(000)004
【摘要】介绍波音737NG飞机低无线电高度表(LRRA)系统原理,分析故障现象和原因,结合实践经验,提出减少LRRA系统故障发生率的措施。
%The system principle of low range radio altimeter (LRRA) system of Boeing 737NG is introduced. The phenomenon and reason of malfunction is analyzed. Combined with practical experience, the measurement of reducing LRRA system malfunction is introduced.
【总页数】2页(P22-22,33)
【作者】丁世渊
【作者单位】国航工程技术分公司重庆维修基地,重庆401120
【正文语种】中文
【中图分类】V241.423
【相关文献】
1.飞机低无线电高度表系统故障分析 [J], 张天宇
2.某型飞机座舱盖系统气密压力低故障分析 [J], 张玎;宋丹;邹刚;唐元恒;郭刚
3.Y12飞机无线电系统及其常见故障分析 [J], 颜丽杭
4.低无线电高度表常见故障分析 [J], 张涛;
5.飞机低无线电高度表系统故障 [J], 吕越;
因版权原因,仅展示原文概要,查看原文内容请购买。
航空电子设备 无线电高度表
Travel Time △t
For 300ft
t3
△T
t1
t2
Time
Travel Time For Given Altitude
Figure 12.1
Civil Aviation Flight University of China 5
NBAA 2003
6
LRRA Theory
NBAA 2003
Consequently, during the time interval △T, the transmitter frequency has changed froቤተ መጻሕፍቲ ባይዱ f1 to f2. The frequency difference for given altitude is equal to △F(=f2-f1 ) which is proportionate to △T.
Civil Aviation Flight University of China 3
Radio Altimeter ( RA)
NBAA 2003
Each R/T unit transmits RF signal to the ground through a dedicated transmit antenna. The reflected RF signals are received by a dedicated receive antenna and routed to the R/T unit for altitude computation.
During this time travel, the frequency being currently transmitted has changed. At the time of reception of the reflected frequency f1, the current transmitted frequency is now f2,.
《无线电高度表》课件
抗干扰能力
抗干扰能力
无线电高度表在测量过程中容易受到各种电 磁干扰的影响,因此需要具备较好的抗干扰 能力。无线电高度表通常采用抗干扰技术, 如频域滤波、时域滤波等,以减小干扰对测 量结果的影响。
干扰抑制
无线电高度表还应具备干扰抑制功能,能够 自动识别和排除干扰信号,确保测量的准确 性和可靠性。干扰抑制技术可以通过数字信
VS
详细描述
脉冲调频式无线电高度表结合了脉冲式和 调频式的优点,既能够通过测量电波的往 返时间计算目标的高度,又能够通过比较 发射和接收的电波频率差来提高抗干扰能 力和测量精度。这种类型的高度表结构复 杂,成本较高,但性能优异,适用于各种 复杂环境和气象条件下的高度测量。
其他类型的无线电高度表
总结词
总结词
通过测量电波的频率差来计算目标的高度。
详细描述
调频式无线电高度表通过发射电波,然后接收反射回来的电波,比较发射和接收的电波频率差,从而 得到目标的高度。这种类型的高度表抗干扰能力强,精度较高,但结构相对复杂,成本较高。
脉冲调频式无线电高度表
总结词
结合了脉冲式和调频式的优点,提高了 测量精度和抗干扰能力。
工作原理
无线电高度表通过向地面发射无线电 波,并测量反射回来的时间来计算飞 机距离地面的高度。
无线电高度表的重要性
01
02
03
安全保障
无线电高度表能够提供飞 机与地面之间的准确高度 信息,有助于避免飞行事 故,提高飞行安全。
导航辅助
在复杂的气象条件下,无 线电高度表能够帮助飞行 员判断飞机所处的高度位 置,辅助导航。
技术交流与转让
通过国际技术交流与合作,推动 无线电高度表技术的转让和传播 ,促进全球范围内的技术进步和 应用推广。
低无线电高度表常见故障探析
低无线电高度表常见故障探析摘要本文对航空飞机上低无线电高度表工作方式进行了全面分析,在此基础上论述了低无线电高度表的几种常见故障,并对如何处理这些故障进行了总结【关键词】低无线电高度表故障过程1 低无线电高度表常见故障1.1 低无线电高度表工作方式低无线电高度表(LRRA)系统测量地面到飞机的垂直高度,测量范围在-20-2500FT之间,由于主要用于起飞、复飞、进近和着陆阶段的数据计算和提供显示,要有极高的准确性和可靠性无线电高度表有两套收发机,每套收发机有一对自己的接收和发射天线,收发机通过发射连续波的射频调频信号到地面再反射回飞机,信号经过的时间代表着飞机到地面的垂直距离,现在我们飞机上使用的一般都是等差频接收机。
收发机的工作方式为寻找模式,跟踪模式,无线电高度计算模式寻找模式:当频差如果不是25HZ,那么系统就自动工作在寻找模式上,高度处理器让斜率发生器去改变发射机发射的锯齿波的斜率进而改变发射频率,频率差连续改变,频率差通过电门S1送到鉴频器,鉴频器一直工作直到找到25HZ 跟踪模式:如果频差等于25HZ,那么鉴频器就使高度处理器连接到跟踪模式上,跟踪鉴频器输出值和25HZ比较差频,如果出现小的偏差,那么就稍稍的改变锯齿波的斜率,直到频差改变到25HZ高度计算模式:计数器接收锯齿波的样本,并测量周期T,当在跟踪模式下,锯齿波的周期就代表飞机的高度1.2 无线电高度表给PSEU用于计算航段每个FCC用本边的无线电高度表的信号用于进近的控制和低高度的飞行计算自动油门用无线电高度来计算起飞复飞和自动油�T平飘预位的计算DEU用无线电高度表的数值用于显示WXR用无线电高度表的数据来开启和关闭PWS功能GPWS用无线电高度表的数据来进行近地警告的逻辑计算FDAU用无线电高度表数据来记录高度TCAS用无线电高度表数据来设置灵敏度等级1.3 如果无线电高度表提供了错误或无效的高度数据,飞行可能受到的影响(1)无线电高度表出现故障旗,数值不正确(2)双通道自动驾驶进近不能使用(3)进近时一侧飞行员的飞行指引消失(4)起飞、进近中或复飞过程中触发非正常的形态警告,如起落架构型警告(5)进近阶段飞行方式信号牌出现非正常的自动油门RETARD方式显示,油门杆移动到慢车位(6)进近过程中高度报告不全或没有高度报告所以无线电高度表对飞行安全的影响很大,一旦故障会引起一系列的不安全后果2 故障分析及过程现在我公司737NG机队无线电高度表故障频发,给公司运行带来了很大压力,下面我总结了三种常见多发故障,及相应的故障的处理方法第一种多发故障是空中或地面出现RA故障旗,地面收发机有时工作又恢复正常,测试有可能无故障,这种情况一般是和无线电高度表收发机或天线有关,我们可以简单的通过对收发机前面板进行自测试和对调无线电高度表收发机来进行故障隔离和判断第二种多发故障就是进近条件下一侧的飞行指引消失,可靠性数据显示这个故障随着B737NG飞机机龄增大,出现的也越来越多,占现在无线电高度表故障将近30%,情况也相对复杂在正常情况下如果机组接通了F/D开关,F/D指引会在PFD显示其中如果在第6种条件LOC截获的情况下RA信号消失超过两秒,就会造成相应一侧的飞行指引消失。
飞行器无线电高度表安全操作及保养规程
飞行器无线电高度表安全操作及保养规程随着科技的不断进步,飞行器无线电高度表在飞行过程中扮演着至关重要的角色。
了解其安全操作及保养规程不仅保证了飞行的安全,同时也能延长设备的使用寿命。
简介飞行器无线电高度表是一种可以实时反映飞机当前高度的设备,由飞行员通过其仪表盘进行观测。
其主要功能是提醒驾驶员当前高度,确保安全航行。
在多数机型中,无线电高度仪常常用红色线条标记高度警戒线(radar altitude),绿色线条标记决断高度(decision height),黄色线条标记最低下降高度(minimum descent altitude),这些高度数值都是依据各个机型的性能参数和飞机类型所确定出来的。
安全操作规程1. 维护飞行器无线电高度表是精密仪器,必须得到良好的维护才能发挥最佳性能。
在使用过程中,需要注意以下几点:•经常检查无线电高度表的完整性,确保其不会受到损坏。
•注意不要强行更改其参数,因为这很可能会导致设备工作失败。
•勿将设备使用在高温、低温、静电等环境下,以免对设备造成不可逆的损害。
•不要拆卸设备,这会严重损坏设备的性能,严重损害设备的寿命。
2. 操作在使用无线电高度表时,需要注意以下规程:•检查高度警戒线、决断高度和最低下降高度三条标线是否正常,如果标线发生异常必须及时报告机长。
•在起飞时务必检查高度仪是否工作正常。
•在着陆时,在合适的时机将高度仪调到适当的位置,确保着陆过程中可以随时观察。
•在升降机使用过程中,注意不要将它放置在笔直的角度上;如发现设备异常,应及时停止使用。
3. 故障排除在发现无线电高度表出现故障时,需要及时处理。
常见的故障有:•无线电高度表指示不准确•无线电高度表指示不清晰•无线电高度表不工作在出现这些故障时可以参考以下操作来进行排除:•尝试重启无线电高度表,然后再检查是否正常。
•检查无线电高度表的插头,确认是否成功插入。
•检查无线电高度表的电缆是否损坏,若损坏尽快更换。
第7章无线电高度表
亮
中国民航大学 CAUC
7.3 典型无线电高度表
EADI上高度显示
跑道升起标志:飞机在起飞和着陆阶段向驾驶员提供代 表飞机同跑道中心线二者空间位置的关系。 水平:LOC,垂直:LRRA
中国民航大学 CAUC
7.3 典型无线电高度表
中国民航大学 CAUC
7.3 典型无线电高度表
EADI 在进近着陆阶段显示RA和DH。 主要显示内容: 上升的跑道符号
由于当飞机高度增加时电波往返传播时间Δ t增加,因此需增大调频波 的调制周期TM才能保持差频Fb不变。反之,当飞机高度减小时,电波 往返传播时间Δ t也减小,因此需减小调频波的调制周期。所以这种高 度表实际上是用调制周期TM的大小来测量高度的。
中国民航大学 CAUC
7.3 典型无线电高度表
2、发射信号特性 发射频率是线性锯齿波调频的连续波,发射信号的中心频率是4300MHz, 频移是123MHz,发射信号的调制周期随飞机高度变化(250us~50ms)。 高度越高,调制周期越长,保持差频等于25KHz不变(选定差频为 25KHz)
中国民航大学 CAUC
7.3 典型无线电高度表
中国民航大学 CAUC
7.3 典型无线电高度表
2、跟踪状态 当飞机保持一定高度飞行时,收发机所测得的差频 保持25KHz ,跟踪鉴别器输出的误差信号为零。积分 器输出不变,调制锯齿波周期不变,高度处理器输出 的高度电压不变。 当飞机高度升高时,电波往返传播时间Δ t增大,差 F 频频率Fb( T t )高于25KHz,此时跟踪鉴别器输出一 个正的误差电压,加到积分器,使锯齿波控制电压增 加,调制锯齿波周期增长,调频波的频率变化率 F (T )减小,差频频率减小。直到差频加到25KHz。 M 这时高度处理器输出的高度电压也增加。同理,当 飞机高度下降时,调制锯齿波的周期减小,高度电压 也减小。
A320系统知识普及帖之25-无线电高度表系统常见问题
无线电高度表(Radio Altimeter)是一种使用无线电信号测量航空器离地高度的机载设备。
民用航空器上使用的无线电高度表一般为低高度无线电高度表(LRRA:Low Range Radio Altimeter),测量范围0到2,500英尺,通常在航空器进近和着陆阶段使用,特别是在低能见度和自动着陆的情况下。
无线电高度表是近地警告系统(GPWS)的基本组成部分。
工作原理简介:无线电高度表系统向地面发射调频连续波信号,这些信号经地面反射后被接收机接受,通过比较发射信号和接收信号的时间差就可以计算出航空器实际的离地高度。
A320飞机的RA 有两部,系统组成如下图.两部收发机位于后货舱,自带风扇冷却.四个小方型天线,两个发射,两个接收.高度显示在两侧的PFD上.在系统使用中经常出现如下错误,给飞行员造成很大困惑,甚至造成飞机损坏.无线电高度表(Radio Altimeter)有两种工作模式,NO正常模式和NCD模式NCD(无计算数据模式)是在某一高度以上(5000英尺)或飞机在某些飞行姿态如(ROLL >30) 这时候系统会进入NCD模式.如果在正常模式时给系统送了错误的数据,如过低的高度,或在飞机低高度时收到了NCD信号.(如在飞机进近中收到NCD会导致飞机不会激活FLARE模式,从而导致擦尾或重着陆)下表中列出了一些典型的故障.在故障调查中,发现问题主要存在于以下几个方面.1.天线区域被污染,常见的是尘土,雨雪天的污泥,渗漏出的各种油液.参考A320 MPD 324200-03-1 要求每6个月做一次清洁工作.在雨雪天气或在跑道受污染的情况下及时清洁天线表面.可以有效避免出现错误数据和NCD情况,防止飞机擦尾或重着陆2.在安装天线时,由于天线电缆露出部分太短,安装人员经常要把天线用力拉出,这个会造成接头处损坏,而外观上是看不出来的.为此空客做了相应的改装SB,如下图.3.天线的接头防水问题为此空客做了多次改装如下图,可以看到各种变化.4.天线线缆的老化问题按照要求每144个月(12年)需要更换线缆.需要注意的是电缆长度是不可随意增加或剪短的.因为在计算时,该长度是计算在内的.这个问题曾经在某些公司出现过.。
航空电子设备
航空电子设备(复习)-2020.05.12一.大气数据计算机ADC/ADCS二.惯性导航系统INS三.低高度无线电高度表RA四.飞行管理计算机系统FMCs五.电子仪表系统EIS六.自动飞行控制系统AFCS七.机载气象雷达系统WXR八.二次监视雷达和应答机SSR XPONDER 九.空中交通警戒与防撞系统TCAS十.近地警告系统GPWS十一.跑道感知咨询系统RAAS十二.预测式风切变系统PWS十三.警告系统WS十四.飞行记录系统FDR十五.平视显示器HUD附:1.缩略词2.习题Notes:※重点掌握※了解,不考此内容航空电子系统(AVIONICS)→飞机性能、任务完成逻辑:简述-组成-原理-特点-应用一.大气数据计算机ADC/ADCS1.安装2套-PIC(左侧)F/O(右侧)※故障时,另一侧(转换电门),只针对显示器的显示信息IN-参数:全压、静压、总温、AOA(迎角)(误差修正)--传感器OUT-参数:气压高度、IAS/CAS、VS、M、TAS、SAT(大气静温)对应仪表:高度表、空速表、升降速度表※左ADC-FD、AFCS、FMC、GPWS、FDR2.组成:IN+ADC+OUT各组成部分作用:①IN:大气数据信号→电信号②ADC:处理、计算、静压源误差修正(SSEC)→大气数据参数③OUT:显示参数信息、参数输出到FD、AFCS等设备Detail:2.1 :ADC-计算、误差修正、故障监控(形式-警告旗,储存故障信息)分类:模拟式、数字式、混合式(过渡)1):解算模块-机电伺服解算装置/函数凸轮/函数电位计,SSEC模块-AOA、M2):计算装置-微型计算机(程序-处理并完成IN、计算、OUT,ROM单片机-程序储存器,常数储存器),处理-模拟量、数字量、离散量,输出-数字信号、离散信号,线矩阵-SSEC规律、V mo/M mo规律※3):过渡eg:B7472.2:IN-大气数据信号转为电信号(传感器)→ADC1):压力传感器(静压、总压/动压):①模拟式-波纹管及相关电路,P x和P r关系→静压、全压、动压,压力变化(电容值变化-电桥测量→压力值)②数字式-固态压力传感器及相关电路,压阻式(石英晶体压电效应制整体膜片→应变电阻条→硅压阻芯片)、压容式、压频式2):总温传感器:流线型支柱-机头-不发生绝热压缩,感温元件-2个同心白金管,感温电阻值(电路转换→电压值)-总温※地面或低速时,引入发动机引气(某些飞机)→负压加速流经感温部件的大气,提高测量精度3):迎角传感器:2个-机身两侧-ADC使用平均值-减小误差2.3:OUT-输出大气数据参数去向-显示器;FD、AFCS※SSEC-模拟式:SSEC模块-马赫数信号、迎角信号;数字式9非线性校正):SSEC规律编排成矩阵(改变销钉排列顺序→改变矩阵中元素-适应不同机型)3.数字式ADC特点(简答)①提高可靠性和使用寿命②计算误差小,降低对传感器特性的要求③提高信息的一致性④易于标准化、系列化,大大提高适应性、经济性和易维护性⑤可实现高度综合化,可以向大系统方向发展⑥有冗余度的系统,可靠性很高4.指示仪表早期-分立式,电动仪表VS 现代-电子仪表和MCDU4.1电动式大气仪表(识读)1):电动马赫/空速表IAS(KIAS)-SSEC-CAS(KCAS)前提:单位-“节”2):电动高度表-ALT3):电动升降速度表-VS4):全温/静温/真空速综合指示器-TAS、SAT、TAT4.2电子显示器1)PFD-空速左气压高速右,升降速度最右-IAS/CAS、ALT、VS2)ND-左上-TAS3)EICAS主显-左上-TAT4)EICAS辅显-性能维护页面顶部-SAT、M、TAT、ALT、IAS/CAS 5)S/SD-底部左下角(ECAM-波音)-TAT、SAT4.3MCDU-TAS、SATALL:※飞行前,接通和ADCS有关电门飞行中,电动指示仪表故障旗不能出现如果两套ADC都失效,使用备用气压高度表和指示空速表无静温表-根据总温表和飞行马赫数手册查表得到静温)-了解(T H=T T1+0.2Ma2二.惯性导航系统INS1.惯性敏感元件:陀螺-导航坐标系、加速度计-速度kt(一次积分)、位移nm(二次积分)2.提供:位移、目前经纬度、航迹、地速(输入TAS→WSWD)、姿态(三个轴-俯仰、横滚、航向)3.特点(简答):①自主式系统,隐蔽性好,不受外界电磁干扰②AWO全天候工作,空、地、水下③位置、速度、航向和姿态角信息,连续型好,噪声低④速度更新率高、短期精度高、稳定性好⑤积累误差⑥初始对准时间长⑦成本高⑧不能给出时间信息4.计算速度、位置、高度的原理(简答)对N-S加速度、E-W加速度,进行一次积分得到两个速度,再进行矢量合成(大小、方向)得到大圆航迹的地速和航迹,再对速度积分得到位移:除以地球半径→经度改变量→+初始经度→目前经度;除以地球半径与维度余弦的乘积→维度改变量→+初始维度→目前维度。
民航电子设备——无线电高度表
二、原理
6
原理图1
7
原理图2
8
原理图3
9
原理图4
10
原理图5
11
原理图6
12
三、组成
1、收发机 2、收发天线 3、指示器
13
四、指示器介绍
1、非EFIS飞机上,安装有专门的高度表指 示器
14
指示器
15
四、指示器介绍
1、非EFIS飞机上,安装有专门的高度表指 示器
2、EFIS飞机上,高度在EADI上显示
3、在非EFIS飞机上,高度在无线电高度上指示;在
EFIS飞机上,高度在EADI上显示。
4、飞机离地高度达到2500英尺时,
高度表进行高度指示。
19
复习思考题
1、说明无线电高度表的功用 2、说明无线电高度表的简单原理 3、在非EFIS和EFIS飞机上,高度是如何指
示和显示的? 4、高度表的使用
20
16
EADI上的高度显示
17
五、使用
1、飞行高度低于2500英尺时,高度表开始 高度指示。
2、当飞行高度低于决断高度DH时,决断高 度灯亮;高于决断高度时,决断高度灯 灭。
18
小结
1、无线电高度表用于测量飞机的真实高度。
2、无线电高度表利用无线电波从飞机到地面,再从地
面返回飞机,测量其所经历的时间而测量高度的。
1Leabharlann 十四章无线电高度表 RADIO ALTIMETER
RA
2
内容
一、功用 二、原理 三、组成 四、指示器介绍 五、使用 六、小结及复习思考题
3
一、功用
4
一、功用
测量飞机离地面的实际高度,其测量范围为 0 -2500英尺。在起飞和最后进近时使用。所以也 称为低高度无线电高度表LRRA(Low Range Radio Altimeter)
飞机无线电高度表指示异常分析与维护
飞机无线电高度表指示异常分析与维护摘要对飞机无线电高度表的工作原理及交联设备之间的关系进行了简单叙述,针对无线电高度表在地面工作、试飞过程中出现的指示异常故障,结合其工作过程及原理,提出有针对性的排除措施,对提高机务工作质量、降低产品故障率,延长产品寿命都有积极的指导价值。
关键词无线电高度表收发机测量高度1、引言无线电高度表系统是现代飞机中较重要的自备式导航电子设备,其主要作用是实时测量飞机与地面之间的实际高度,提供给驾驶员在进场、着陆和飞行阶段使用。
飞机上安装的低空无线电高度表能准确测量0~1500m的飞行高度,其工作的正常与输出信息的准确对于飞行人员或自动驾驶仪操纵飞机来说都至关重要。
2、无线电高度表概述及基本工作原理飞机无线电高度表系统由低高度无线电高度表收发机及接收机和发射天线组成,工作原理图如下:图1无线电高度表工作原理图调制器产生调制信号供给发射机并设置发射频率、移动速率。
无线电高度表的移动速率设置为±20HZ/ns,发射机产生射频信号供给发射天线,同时输送给接收机一个采样信号,无线电波传播速度相当于1ft/ns,电波由飞机到地面又返回飞机的路径长度是飞机高度的两倍,因此,每英尺飞机高度需2ns时间,发射机输出频率移动40HZ,高度处理器将接收机频差IF(发射频率和接收频率之间的频率差)计算出来后得到高度信息。
3、无线电高度表指示异常及外部因素分析:在飞机的日常维护中,经常遇到飞行机组反应无线电高度表指示方面的问题,其中有一部分故障是由收发机或天线以及高频电缆本身质量问题所引起的,但也有一些由外部原因和系统自身工作特点造成的,下面说一下影响指示的外部因素。
3.1地形急剧起伏的影响无线电高度表的显示范围为0m~1500m,当无线电高度无效或超过1500m 时,无线电高度数值不显示。
由于无线电高度表反映的是飞机距正下方地形的实际高度,飞机飞行高度的变化将在接引起指示变化,而飞机下方地形的急剧起伏同样也能对指示产生影响,有时两者共同作用,使高度指示变化剧烈,一旦超过1500m,指示即消失,而小于1500m时,指示又出现,故往往会出现指示跳动,甚至于出现一会儿有指示,一会儿无指示,断断续续显示的现象。
737-NG_无线电高度表系统
— DEU 1 和DEU 2
— GPWC — TCAS 计算机 — FDAU
输入程序销钉
系统选择程序销钉输入设置系统调节率和系统识别。 RA 1 系统的调节率是145Hz,RA 2 系统的调节率是 155Hz。 飞机安装延迟(ADI)程序销钉被接地到57 英尺选项。 这将系统校准为当飞机接地时,无线电高度为0 英尺。 这为下列条件提供修正量: — 无线电缆长度 — 机体到地面距离
具体描述
四个螺钉将每个天线安装到机体的底部。在同 轴接头周围的凹槽内有一个O 形密封圈。O 形 密封圈提供防潮保护。在天线的发射面有红色 的“FWD” 标志。
显示
显示组件(DU)显示无线电高度和无线电最小值。飞行 机组在进近和着陆过程中使用该数据。 无线电高度以白色显示飞机高度处于-20 到2500 英尺 之间。以下是无线电高度值更新的时间: — 从 — 20 到100 英尺之间每2 英尺增加 — 从100 到500 英尺之间每10 英尺增加 — 从500 到2500 英尺之间每20 英尺增加
GPWC 将无线电高度用于它的近地提醒和警告逻辑计算。
FDAU 记录无线电高度值。 TCAS 计算机将无线电高度设定敏感等级用于迎面飞机通 告计算和确定入侵的飞机是否在地面上。
RA 收发机
描述
以下是收发机工作限制:
— 频率=423MHz 到4365MHz
— 发射=500mW 额定
概述
ARINC 429 数据总线1 向下列部件发送数据: — 飞行操纵计算机(FCC) — 自动油门计算机。 ARINC429 数据总线2 向下列部件发送数据: — 近地警告计算机(GPWC)
— 交通警告和防撞系统(TCAS)计算机
— 飞行数据获取组件(FDAU) — 气象雷达(WXR) — 共用显示系统(CDS)显示电子组件(DEU)。
低高度无线电高度表系统
低高度无线电高度表系统第一节概述一、功用低高度无线电高度表系统用来测量飞机距离地面的垂直高度。
二、系统概述低高度无线电高度表系统工作高度范围为-20~2500英尺,一般用在飞行的进近和着陆阶段。
系统的中心工作频率为4300MHZ。
它向地面发射调频信号,无线电信号经地面反射后被LRRA收发机接收,发射信号与接收信号进行比较后得出的差频(对应一定的时间差),这样就可以计算出实际离地高度。
收发机将这个高度数据送到指示器显示,并送到飞机其它有关系统.三、系统各部件安装位置1、跳开关:LRRA—1跳开关—P18板LRRA—2跳开关-P6板2、收发机-E2—4架3、天线—飞机底部4、EADI显示器—P1、P3板(33A和34N飞机)5、高度指示器—P1、P3板(3T0飞机)第二节部件功能一、LRRA系统收发机1、功用LRRA的R/T组件发射和接收调频信号,对发射信号和回波信号进行比较和处理,得到飞机距离地面的高度。
2、结构特征LRRA收发机是标准的1/2ATR短箱,重15磅。
收发机靠前面两个锁扣固定在设备架上,前面板还有一个把手以便于搬动。
面板上的插座用于连结到测试设备进行航线测试.前面板上还有一个自测试开关和故障指示灯。
3、电源LAAR收发机使用115V AC,400HZ单相电源。
4、工作发射机产生一个中心频率为4300MHZ的连续调频波信号输出。
向地面发射的信号经过地面反射,回波信号被接收机处理.接收机通过比较发射与接收的信号频率,产生对应于绝对高度的信号,高度信号的处理是由收发机内部的两个微处理器来完成的,一个处理器进行高度信号处理并输出模拟和数字式高度数据;另一处理器完成监控功能,收发机还将无线电高度数据送到自动飞机控制系统。
5、自测试按压收发机面板上的自测试开关进行自测试。
如果自测试通过,则先显示40英尺,接着显示RA故障旗。
二、LRRA系统天线1、功用LRRA天线用来发射或接收无线电射频(RF)信号2、结构特征LRRA天线通过一根同轴电缆连结到收发机。
737飞机无线电高度表故障处置的探讨(PPT)
空速比所选择的进近速度小了40节(正常着 陆速度应该为260公里/小时,但是本架飞机 落地时的速度为175公里/小时),飞机的速 度降低到了最小飞行速度(失速状态),并 出现警告信息(CVR记录150米高度时出现 抖杆警告音),此时机组将推力推到最大, 但是此时飞机高度已经太低,最终导致事故。
▪ 由于接收到错误的无线电高度信息,在2000英 尺左右 EGPWS错误的发出了TOO LOW GEAR语音警告,机组通过此错误警告注意
而怎么才能及时发现以上的情况呢,这要求机 组加强对自动化设备的监控。无论在自动或人工飞 行过程中,飞行机组必须仔细监控主要飞行仪表 (空速,高度等),飞机性能和自动飞行方式下的 FMA。
我们推荐:
(1)在标准喊话中要求:当在MCP面板上改变导 航方式时,机组必须在FMA核实方式的改变并喊出;
(2)在起飞爬升和下降进近时,高度在10000英 尺以下的飞行中,无论自动或人工飞行,PF 的手应扶在驾驶盘和油门杆上,脚应靠在脚 蹬上.这样可以及时感知到自动驾驶和自动油 门的异常操作.
737飞机无线电高度表故障处置 的探讨
海南航空公司波音737机队
一、相关概念:
▪ 低高度无线电高度表(LRRA)是测量飞机到 地面垂直距离用的机载无线电设备,是重要 的飞行仪表之一。
▪ 两部低高度无线电高度表给以下系统提供飞 机真高的信息支持:自动油门,自动驾驶和 形态/近地警告系统。
▪ 低高度无线电高度表(LRRA)工作原理是: 飞机向地面发射无线电波,经地面反射后被 飞机接收机接收。无线电波经历两倍飞行高 度的行程所用的时间等于两倍飞行高度被电 波传播速度所除的商值。电波传播的速度为 恒值,只要测出这段时间便可求出飞行高度。
▪ FDR数据显示机组使用自动驾驶B通道和自 动油门进近,在飞机下降到1950英尺的时候, 右侧无线电高度表提供高度信号正确,左侧 提供了错误的高度数据,无线电高度突然从 1950转变到-7/-8英尺,自动油门用左RA的 数据将工作模式转变为着陆拉平模式,并且 油门杆收回到慢车位保持了大约100秒,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RA
内容
一、功用 二、原理 三、组成 四、指示器介绍 五、使用 六、小结及复习思考题
一、功用
一、功用
测量飞机离地面的实际高度,其测量范围 为 0-2500英尺。在起飞和最后进近时使用。 所以也称为低高度无线电高度表LRRA(Low Range Radio Altimeter)
二、原理
原理图1
原理图2
原理图3
原理图4
原理图5
原理图6
三、组成
1、收发机 2、收发天线 3、指示器
四、指示器介绍
1、非EFIS飞机上,安装有专门的高度表指 示器
指示器
四、指示器介绍
1、非EFIS飞机上,安装有专门的高度表指 示器
2、EFIS飞机上,高度在EADI上显示
EADI上的高度显示
五、使用
1、飞行高度低于2500英尺时,高度表开始 高度指示。
2、当飞行高度低于决断高度DH时,决断高 度灯亮;高于决断高度时,决断高度灯 灭。
小结
1、无线电高度表用于测量飞机的真实高度。
2、无线电高度表利用无线电波从飞机到地面,再
从地面返回飞机,测量其所经历的时间而测量高 度的。
3、在非EFIS飞机上,高度在无线电高度上指示;到2500英尺时,
高度表进行高度指示。
复习思考题
1、说明无线电高度表的功用 2、说明无线电高度表的简单原理 3、在非EFIS和EFIS飞机上,高度是如何指
示和显示的? 4、高度表的使用