箍筋配筋率

合集下载

箍筋计算

箍筋计算

在混凝土结构中,配箍率是用来体现箍筋相对于混凝土的含量,分体积配箍率和面积配箍率。

1.概念:(1)面积配箍率ρ(sv)(括号内为角标,下同):是指沿构件长度,在箍筋的一个间距S范围内,箍筋中发挥抗剪作用的各肢的全部截面面积与混凝土截面面积b·s的比值(b为构件宽,其与剪力方向垂直的,s为箍筋间距)。

配箍率是影响混凝土构件抗剪承载力的主要因素。

计算公式:ρ(sv)=A(sv)/bs=nA(sv1)/bs 式中:n为发挥抗剪作用的箍筋肢数,A(sv1)为箍筋单肢截面面积,直接按圆形计算。

(2)体积配箍率ρ(v):指单位体积混凝土内箍筋所占的含量,即箍筋体积(箍筋总长乘单肢面积)与相应箍筋的一个间距(S)范围内砼体积的比率。

复合箍筋应扣除重叠部分的体积。

体积配箍率ρ(v)主要用于保证框架结构梁端部和柱节点区的抗剪能力,并提高构件在地震等反复荷载下的变形能力。

计算公式:ρ(sv)=∑ni*A(sv)Li/Acor*s 式中:ni:一个方向箍筋的肢数,Li:相对ni方向的箍筋的肢长,Acor:箍筋核心区的面积,s:箍筋间距。

2.作用:(1)面积配箍率ρ(sv):体现抗剪要求,要求ρ(sv)≥ρ(sv,min )(2)体积配箍率ρ(v):体现柱端加密区箍筋对砼的约束作用。

ρ(v)≥ρ(v,min)=λ(v)f(c)/f(yv),式中:λ(v)为最小配箍特征值,f(c)为混凝土的轴心抗压强度,f(yv)为箍筋的屈服强度设计值。

3. 配箍率与配筋率的区别(1)配箍率是影响混凝土构件抗剪承载力的主要因素。

控制配箍率可以控制结构构件斜截面的破坏形态,使构件不发生斜拉破坏和斜压破坏。

(2)配筋率是钢筋混凝土构件中纵向受力(拉或压分别计算)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。

配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件正截面的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。

箍筋配筋率

箍筋配筋率

箍筋体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。

计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB50010-2002》第90页)。

式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度;计算复合箍的体积配筋率时,应扣除重叠部分的箍筋体积。

柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。

其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。

箍筋面积配筋率面积配筋率(ρsv):配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。

其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。

计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。

最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.28×ft/fyv。

关于最小配筋率最大配筋率与梁高的取值第一是最小配筋率,最小配筋率的确定理论原则应该是受弯构件的第一阶段末,即截面受拉区砼开裂临界状态,此时的配筋应能承担砼开裂后转嫁的全部拉应力,故与全截面有关,应用全截面。

第二是正常的配筋率或最大配筋率,针对的是受弯构件第三阶段,即极限破坏状态,此时截面只与有效高度有关,保护层多厚都无用,故采用有效高度。

柱中的箍筋规定

柱中的箍筋规定

柱中的箍筋规定
1 箍筋直径不应小于d/4,且不应小于6mm,d为纵向钢筋的最大直径;
2 箍筋间距不应大于400mm及构件截面的短边尺寸,且不应大于15d,d为纵向钢筋的最小直径;
3 柱及其他受压构件中的周边箍筋应做成封闭式;对圆柱中的箍筋,搭接长度不应小于规定的锚固长度,且末端应做成135°弯钩,弯钩末端平直段长度不应小于5d,d为箍筋直径;
4 当柱截面短边尺寸大于400mm且各边纵向钢筋多于3根时,或当柱截面短边尺寸不大于400mm但各边纵向钢筋多于4根时,应设置复合箍筋;
5 柱中全部纵向受力钢筋的配筋率大于3%时,箍筋直径不应小于8mm,间距不应大于10d,且不应大于200mm。

箍筋末端应做成135°弯钩,且弯钩末端平直段长度不应小于10d,d为纵向受力钢筋的最小直径;
6 在配有螺旋式或焊接环式箍筋的柱中,如在正截面受压承载力计算中考虑间接钢筋的作用时,箍筋间距不应大于80mm及dcor/5,且不宜小于40mm,dcor为按箍筋内表面确定的核心截面直径。

第 1 页共1 页。

箍筋配筋率

箍筋配筋率

在混凝土结构中,配箍率是用来体现箍筋相对于混凝土的含量,分体积配箍率和面积配箍率。

1.概念:(1)面积配箍率ρ(sv)(括号内为角标,下同):是指沿构件长度,在箍筋的一个间距S范围内,箍筋中发挥抗剪作用的各肢的全部截面面积与混凝土截面面积b·s的比值(b为构件宽,其与剪力方向垂直的,s为箍筋间距)。

配箍率是影响混凝土构件抗剪承载力的主要因素。

计算公式:ρ(sv)=A(sv)/bs=nA(sv1)/bs 式中:n为发挥抗剪作用的箍筋肢数,A(sv1)为箍筋单肢截面面积,直接按圆形计算。

(2)体积配箍率ρ(v):指单位体积混凝土内箍筋所占的含量,即箍筋体积(箍筋总长乘单肢面积)与相应箍筋的一个间距(S)范围内砼体积的比率。

复合箍筋应扣除重叠部分的体积。

体积配箍率ρ(v)主要用于保证框架结构梁端部和柱节点区的抗剪能力,并提高构件在地震等反复荷载下的变形能力。

计算公式:ρ(sv)=∑ni*A(sv)Li/Acor*s 式中:ni:一个方向箍筋的肢数,Li:相对ni方向的箍筋的肢长,Acor:箍筋核心区的面积,s:箍筋间距。

2.作用:(1)面积配箍率ρ(sv):体现抗剪要求,要求ρ(sv)≥ρ(sv,min )(2)体积配箍率ρ(v):体现柱端加密区箍筋对砼的约束作用。

ρ(v)≥ρ(v,min)=λ(v)f(c)/f(yv),式中:λ(v)为最小配箍特征值,f(c)为混凝土的轴心抗压强度,f(yv)为箍筋的屈服强度设计值。

3. 配箍率与配筋率的区别(1)配箍率是影响混凝土构件抗剪承载力的主要因素。

控制配箍率可以控制结构构件斜截面的破坏形态,使构件不发生斜拉破坏和斜压破坏。

(2)配筋率是钢筋混凝土构件中纵向受力(拉或压分别计算)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。

配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件正截面的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。

梁箍筋面积配筋率计算用表

梁箍筋面积配筋率计算用表

梁箍筋面积配筋率计算用表舒宣武编华南理工大学建筑设计研究院2003年7月表1.1 箍筋强度为的梁最小箍筋面积配筋率(%)条件混凝土强度等级C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80(一级) 0.130 0.157 0.181 0.204 0.224 0.244 0.257 0.270 0.280 0.291 0.299 0.306 0.311 0.317(二级) 0.121 0.147 0.169 0.191 0.209 0.228 0.240 0.252 0.261 0.272 0.2790.285 0.291 0.296(三、四级) 0.113 0.136 0.157 0.177 0.194 0.212 0.223 0.234 0.243 0.2530.259 0.265 0.270 0.2750.104 0.126 0.145 0.163 0.179 0.195 0.206 0.216 0.224 0.233 0.239 0.245 0.249 0.254表1.2 箍筋强度为的梁最小箍筋面积配筋率(%)条件混凝土强度等级C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80(一级) 0.091 0.110 0.127 0.143 0.157 0.171 0.180 0.189 0.196 0.204 0.209 0.214 0.218 0.222(二级) 0.085 0.103 0.119 0.133 0.147 0.160 0.168 0.176 0.183 0.190 0.1950.200 0.203 0.207(三、四级) 0.079 0.095 0.110 0.124 0.136 0.148 0.156 0.164 0.170 0.1770.181 0.185 0.189 0.1920.073 0.088 0.102 0.114 0.126 0.137 0.144 0.151 0.157 0.163 0.167 0.171 0.174 0.178表1.3 箍筋强度为的梁最小箍筋面积配筋率(%)条件混凝土强度等级C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80(一级) 0.076 0.092 0.106 0.119 0.131 0.143 0.150 0.157 0.163 0.170 0.174 0.178 0.182 0.185(二级) 0.071 0.086 0.099 0.111 0.122 0.133 0.140 0.147 0.152 0.159 0.1630.166 0.170 0.173(三、四级) 0.066 0.079 0.092 0.103 0.113 0.123 0.130 0.137 0.142 0.1470.151 0.155 0.157 0.1600.061 0.073 0.085 0.095 0.105 0.114 0.120 0.126 0.131 0.136 0.139 0.143 0.145 0.148表2.1 梁箍筋面积配筋率(%、b=100、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 1.131 2.011 3.142 4.524 6.158 8.042 10.179 12.566 15.205 19.635@75 0.754 1.340 2.094 3.016 4.105 5.362 6.786 8.378 10.137 13.090@100 0.565 1.005 1.571 2.262 3.079 4.021 5.089 6.283 7.603 9.818@125 0.452 0.804 1.257 1.810 2.463 3.217 4.072 5.027 6.082 7.854@150 0.377 0.670 1.047 1.508 2.053 2.681 3.393 4.189 5.068 6.545@200 0.283 0.503 0.785 1.131 1.539 2.011 2.545 3.142 3.801 4.909@250 0.226 0.402 0.628 0.905 1.232 1.608 2.036 2.513 3.041 3.927表2.2 梁箍筋面积配筋率(%、b=150、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.754 1.340 2.094 3.016 4.105 5.362 6.786 8.378 10.137 13.090@75 0.503 0.894 1.396 2.011 2.737 3.574 4.524 5.585 6.758 8.727@100 0.377 0.670 1.047 1.508 2.053 2.681 3.393 4.189 5.068 6.545@125 0.302 0.536 0.838 1.206 1.642 2.145 2.714 3.351 4.055 5.236@150 0.251 0.447 0.698 1.005 1.368 1.787 2.262 2.793 3.379 4.363@200 0.188 0.335 0.524 0.754 1.026 1.340 1.696 2.094 2.534 3.272@250 0.151 0.268 0.419 0.603 0.821 1.072 1.357 1.676 2.027 2.618表2.3 梁箍筋面积配筋率(%、b=180、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.628 1.117 1.745 2.513 3.421 4.468 5.655 6.981 8.447 10.908@75 0.419 0.745 1.164 1.676 2.281 2.979 3.770 4.654 5.632 7.272@100 0.314 0.559 0.873 1.257 1.710 2.234 2.827 3.491 4.224 5.454@125 0.251 0.447 0.698 1.005 1.368 1.787 2.262 2.793 3.379 4.363@150 0.209 0.372 0.582 0.838 1.140 1.489 1.885 2.327 2.816 3.636@200 0.157 0.279 0.436 0.628 0.855 1.117 1.414 1.745 2.112 2.727@250 0.126 0.223 0.349 0.503 0.684 0.894 1.131 1.396 1.689 2.182表2.4 梁箍筋面积配筋率(%、b=200、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.565 1.005 1.571 2.262 3.079 4.021 5.089 6.283 7.603 9.818 @75 0.377 0.670 1.047 1.508 2.053 2.681 3.393 4.189 5.068 6.545 @100 0.283 0.503 0.785 1.131 1.539 2.011 2.545 3.142 3.801 4.909 @125 0.226 0.402 0.628 0.905 1.232 1.608 2.036 2.513 3.041 3.927 @150 0.188 0.335 0.524 0.754 1.026 1.340 1.696 2.094 2.534 3.272 @200 0.141 0.251 0.393 0.565 0.770 1.005 1.272 1.571 1.901 2.454 @250 0.113 0.201 0.314 0.452 0.616 0.804 1.018 1.257 1.521 1.963表2.5 梁箍筋面积配筋率(%、b=250、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.452 0.804 1.257 1.810 2.463 3.217 4.072 5.027 6.082 7.854 @75 0.302 0.536 0.838 1.206 1.642 2.145 2.714 3.351 4.055 5.236 @100 0.226 0.402 0.628 0.905 1.232 1.608 2.036 2.513 3.041 3.927 @125 0.181 0.322 0.503 0.724 0.985 1.287 1.629 2.011 2.433 3.142 @150 0.151 0.268 0.419 0.603 0.821 1.072 1.357 1.676 2.027 2.618 @200 0.113 0.201 0.314 0.452 0.616 0.804 1.018 1.257 1.521 1.963 @250 0.090 0.161 0.251 0.362 0.493 0.643 0.814 1.005 1.216 1.571表2.6 梁箍筋面积配筋率(%、b=300、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.377 0.670 1.047 1.508 2.053 2.681 3.393 4.189 5.068 6.545 @75 0.251 0.447 0.698 1.005 1.368 1.787 2.262 2.793 3.379 4.363 @100 0.188 0.335 0.524 0.754 1.026 1.340 1.696 2.094 2.534 3.272 @125 0.151 0.268 0.419 0.603 0.821 1.072 1.357 1.676 2.027 2.618 @150 0.126 0.223 0.349 0.503 0.684 0.894 1.131 1.396 1.689 2.182 @200 0.094 0.168 0.262 0.377 0.513 0.670 0.848 1.047 1.267 1.636 @250 0.075 0.134 0.209 0.302 0.411 0.536 0.679 0.838 1.014 1.309表2.7 梁箍筋面积配筋率(%、b=350、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.323 0.574 0.898 1.293 1.759 2.298 2.908 3.590 4.344 5.610 @75 0.215 0.383 0.598 0.862 1.173 1.532 1.939 2.394 2.896 3.740 @100 0.162 0.287 0.449 0.646 0.880 1.149 1.454 1.795 2.172 2.805 @125 0.129 0.230 0.359 0.517 0.704 0.919 1.163 1.436 1.738 2.244 @150 0.108 0.191 0.299 0.431 0.586 0.766 0.969 1.197 1.448 1.870 @200 0.081 0.144 0.224 0.323 0.440 0.574 0.727 0.898 1.086 1.403 @250 0.065 0.115 0.180 0.259 0.352 0.460 0.582 0.718 0.869 1.122表2.8 梁箍筋面积配筋率(%、b=400、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.283 0.503 0.785 1.131 1.539 2.011 2.545 3.142 3.801 4.909 @75 0.188 0.335 0.524 0.754 1.026 1.340 1.696 2.094 2.534 3.272 @100 0.141 0.251 0.393 0.565 0.770 1.005 1.272 1.571 1.901 2.454 @125 0.113 0.201 0.314 0.452 0.616 0.804 1.018 1.257 1.521 1.963 @150 0.094 0.168 0.262 0.377 0.513 0.670 0.848 1.047 1.267 1.636 @200 0.071 0.126 0.196 0.283 0.385 0.503 0.636 0.785 0.950 1.227 @250 0.057 0.101 0.157 0.226 0.308 0.402 0.509 0.628 0.760 0.982表2.9 梁箍筋面积配筋率(%、b=450、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.251 0.447 0.698 1.005 1.368 1.787 2.262 2.793 3.379 4.363 @75 0.168 0.298 0.465 0.670 0.912 1.191 1.508 1.862 2.253 2.909 @100 0.126 0.223 0.349 0.503 0.684 0.894 1.131 1.396 1.689 2.182 @125 0.101 0.179 0.279 0.402 0.547 0.715 0.905 1.117 1.352 1.745 @150 0.084 0.149 0.233 0.335 0.456 0.596 0.754 0.931 1.126 1.454 @200 0.063 0.112 0.175 0.251 0.342 0.447 0.565 0.698 0.845 1.091 @250 0.050 0.089 0.140 0.201 0.274 0.357 0.452 0.559 0.676 0.873表2.10 梁箍筋面积配筋率(%、b=500、双肢箍)钢筋间距钢筋直径F6 F8 F10 F12 F14 F16 F18 F20 F22 F25@50 0.226 0.402 0.628 0.905 1.232 1.608 2.036 2.513 3.041 3.927 @75 0.151 0.268 0.419 0.603 0.821 1.072 1.357 1.676 2.027 2.618 @100 0.113 0.201 0.314 0.452 0.616 0.804 1.018 1.257 1.521 1.963 @125 0.090 0.161 0.251 0.362 0.493 0.643 0.814 1.005 1.216 1.571@150 0.075 0.134 0.209 0.302 0.411 0.536 0.679 0.838 1.014 1.309 @200 0.057 0.101 0.157 0.226 0.308 0.402 0.509 0.628 0.760 0.982 @250 0.045 0.080 0.126 0.181 0.246 0.322 0.407 0.503 0.608 0.785 . .。

箍筋体积配筋率计算公式

箍筋体积配筋率计算公式

箍筋体积配筋率计算公式
混凝土钢筋支撑体系是混凝土结构的重要构件,准确的箍筋及体
积配筋率计算,对混凝土结构的安全有着关键性的意义。

箍筋计算依据有多种,常见的有交接处纵向力和轴心受弯时的弯
矩以及水平荷载的计算。

箍筋计算方法为:首先根据结构形式,
确定所需要的箍筋种类,如椭圆形箍筋、圆形箍筋等;其次根据
计算出每种箍筋所需长度,计算每种箍筋所需重量,再乘以箍筋
的理论重量,得出配箍筋数量按此计算,算出此构件所需钢筋总
重量;最后按此总重量,配置所需要的钢筋类别、直径及受拉抗
拉钢筋的长度。

体积配筋率的计算也有多种方法,其基本概念是混凝土体积中所
含的钢筋重量占混凝土体积重量的百分百比率。

其计算公式为:
体积配筋率A=Σm的(K)/Σm的(V)其中,m为钢筋的重量,K为混凝土体积,V为混凝土重量。

为了保证混凝土结构的质量和安全,恰当、合理的计算箍筋及体积配筋率是非常必要的,以做到混凝土结构的质量稳固可靠。

箍筋规范

箍筋规范

抗震设计时,框架梁的箍筋尚应符合下列构造要求:1 框架梁沿梁全长箍筋的面积配筋率应符合下列要求:2 第一个箍筋应设置在距支座边缘50mm处;3 在箍筋加密区范围内的箍筋肢距:一级不宜大于200mm和20倍箍筋直径的较大值,二、三级不宜大于250mm和20倍箍筋直径的较大值,四级不宜大于300mm;4 箍筋应有135°弯钩,弯钩端头直段长度不应小于10倍的箍筋直径和75mm的较大值;5 在纵向钢筋搭接长度范围内的箍筋间距,钢筋受拉时不应大于搭接钢筋较小直径的5倍,且不应大于100mm;钢筋受压时不应大于搭接钢筋较小直径的10倍,且不应大于200mm;6 框架梁非加密区箍筋最大间距不宜大于加密区箍筋间距的2倍。

非抗震设计时,框架梁箍筋配筋构造应符合下列规定:1 应沿梁全长设置箍筋;2 截面高度大于800mm的梁,其箍筋直径不宜小于8mm;其余截面高度的梁不应小于6mm。

在受力钢筋搭接长度范围内,箍筋直径不应小于搭接钢筋最大直径的0.25倍。

3 箍筋间距不应大于表6.3.5的规定;在纵向受拉钢筋的搭接长度范围内,箍筋间距尚不应大于搭接钢筋较小直径的5倍,且不应大于100mm;在纵向受压钢筋的搭接长度范围内,箍筋间距尚不应大于搭接钢筋较小直径的10倍,且不应大于200mm;4 当梁的剪力设计值大于0.7ftbh0时,其箍筋面积配筋率应符合下式要求:5 当梁中配有计算需要的纵向受压钢筋时,其箍筋配置尚应符合下列要求:1)箍筋直径不应小于纵向受压钢筋最大直径的0.25倍;2)箍筋应做成封闭式;3)箍筋间距不应大于15d且不应大于400mm;当一层内的受压钢筋多于5根且直径大于18mm时,箍筋间距不应大于10d(d 为纵向受压钢筋的最小直径);4)当梁截面宽度大于400mm且一层内的纵向受压钢筋多于3根时,或当梁截面宽度不大于400mm但一层内的纵向受压钢筋多于4根时,应设置复合箍筋。

二级抗震柱箍筋最小配筋率

二级抗震柱箍筋最小配筋率

二级抗震柱箍筋最小配筋率根据《建筑抗震设计规范》GB50011-2010,二级抗震等级的框架柱的箍筋最小直径应不小于8mm,且箍筋间距不应大于200mm。

另外,对于一级(含)以上的抗震等级的柱子,其纵向钢筋的最小配筋率要求如下:
•全部纵向钢筋的配筋率不小于0.5%,且不小于**0.4%**的最小配筋率。

•角柱、边柱在地震等级为一级的情况下需要增大0.1%;在地震等级为二级的情况下需要增大0.05%。

•箍筋的直径大于8mm,且箍筋间距不大于100mm。

这些规定都是为了确保建筑的抗震性能达到标准,从而保障人们的生命安全。

如需获取更多详细信息,建议查阅《建筑抗震设计规范》原文件第四章“抗震设计”
中的相关内容。

各种梁箍筋的数量计算

各种梁箍筋的数量计算

各种梁箍筋的数量计算
梁箍筋是用来增强梁的承载力和抗震能力的一种加筋方式,它的数量计算是设计梁结构中非常重要的一步。

下面将介绍各种梁箍筋的数量计算方法。

首先,需要明确以下概念:
1.梁箍筋纵向间距(s):即梁上两根纵向箍筋之间的距离。

2.梁箍筋的直径(φ):即箍筋的横截面直径。

3.梁的高度(h)和宽度(b):即梁的截面尺寸。

常见的梁箍筋类型包括水平箍筋、斜箍筋和竖向箍筋,下面将分别介绍它们的数量计算方法。

1.水平箍筋数量计算:
水平箍筋主要用于提高梁的承载力和抗弯能力,其数量计算公式为:Ns=ρs*n*h/p
其中,Ns为箍筋的总根数;
ρs为箍筋配筋率,一般为0.001-0.003;
n为梁的每米长度内需要的箍筋根数;
h为梁的高度;
p为箍筋的纵向间距。

2.斜箍筋数量计算:
斜箍筋主要用于提高梁的抗剪能力,其数量计算公式为:
Nθ=(b/h)*Ns
其中,Nθ为斜箍筋的总根数;
b为梁的宽度;
h为梁的高度;
Ns为水平箍筋的总根数。

3.竖向箍筋数量计算:
竖向箍筋主要用于提高梁的抗震能力,其数量计算公式为:
Nv=ρv*n*l
其中,Nv为竖向箍筋的总根数;
ρv为竖向箍筋配筋率,一般为0.001-0.003;
n为梁的每米长度内需要的箍筋根数;
l为梁的长度。

需注意的是,上述的箍筋数量计算方法是根据国内相关规范和经验总结得出的,但实际工程中还需根据具体情况进行调整,如结构设计要求、地震区位等。

此外,在实际施工过程中,还需要考虑箍筋的最小间距、最大间距和最小弯制直径等要求,以确保梁的受力性能和施工质量。

关于箍筋配筋率的概念、作用及与配箍率的区别

关于箍筋配筋率的概念、作用及与配箍率的区别

关于箍筋配筋率的概念、作用及与配箍率的区别配箍率在混凝土结构中,配箍率是用来体现箍筋相对于混凝土的含量,分体积配箍率和面积配箍率。

在梁的箍筋配置表示方法中多用面积配筋率,而在柱子中多用体积配箍率。

1.概念:(1)面积配箍率ρ(sv)(括号内为角标,下同):是指沿构件长度,在箍筋的一个间距S范围内,箍筋中发挥抗剪作用的各肢的全部截面面积与混凝土截面面积b·s的比值(b为构件宽,其与剪力方向垂直的,s为箍筋间距)。

配箍率是影响混凝土构件抗剪承载力的主要因素。

计算公式:ρ(sv)=A(sv)/bs=nA(sv1)/bs式中:n为发挥抗剪作用的箍筋肢数,A(sv1)为箍筋单肢截面面积,直接按圆形计算。

(2)体积配箍率ρ(v):指单位体积混凝土内箍筋所占的含量,即箍筋体积(箍筋总长乘单肢面积)与相应箍筋的一个间距(S)范围内砼体积的比率。

复合箍筋应扣除重叠部分的体积。

体积配箍率ρ(v)主要用于保证框架结构梁端部和柱节点区的抗剪能力,并提高构件在地震等反复荷载下的变形能力。

计算公式:ρ(sv)=∑ni*A(sv)Li/Acor*s式中:ni:一个方向箍筋的肢数,Li:相对ni方向的箍筋的肢长,Acor:箍筋核心区的面积,s:箍筋间距。

2.作用:(1)面积配箍率ρ(sv):体现抗剪要求,要求ρ(sv)≥ρ(sv,min )(2)体积配箍率ρ(v):体现柱端加密区箍筋对砼的约束作用。

ρ(v)≥ρ(v,min)=λ(v)f(c)/f(yv),式中:λ(v)为最小配箍特征值,f(c)为混凝土的轴心抗压强度,f(yv)为箍筋的屈服强度设计值。

3.配箍率与配筋率的区别(1)配箍率是影响混凝土构件抗剪承载力的主要因素。

控制配箍率可以控制结构构件斜截面的破坏形态,使构件不发生斜拉破坏和斜压破坏。

(2)配筋率是钢筋混凝土构件中纵向受力(拉或压分别计算)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。

配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件正截面的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。

新规范梁箍筋面积配筋率计算用表

新规范梁箍筋面积配筋率计算用表

2011新规范梁箍筋面积配筋率计算用表
阿宝改编
临安市建筑规划设计院
2012年9月
表1.1 箍筋强度为2/270mm N f yv =的梁最小箍筋面积配筋率(%)
表1.2 箍筋强度为2/300mm N f yv =的梁最小箍筋面积配筋率(%)
表1.3 箍筋强度为2/360mm N f yv =的梁最小箍筋面积配筋率(%)
表2.1 梁箍筋面积配筋率(%、b=100、双肢箍)
表2.2 梁箍筋面积配筋率(%、b=150、双肢箍)
表2.3 梁箍筋面积配筋率(%、b=180、双肢箍)
表2.4 梁箍筋面积配筋率(%、b=200、双肢箍)
表2.5 梁箍筋面积配筋率(%、b=250、双肢箍)
表2.6 梁箍筋面积配筋率(%、b=300、双肢箍)
表2.7 梁箍筋面积配筋率(%、b=350、双肢箍)
表2.8 梁箍筋面积配筋率(%、b=400、双肢箍)
表2.9 梁箍筋面积配筋率(%、b=450、双肢箍)
表2.10 梁箍筋面积配筋率(%、b=500、双肢箍)。

梁、板、柱配筋规范要求汇总

梁、板、柱配筋规范要求汇总

深梁钢筋网
间距不应大于 200mm。
G.0.9
水平分布钢 当沿深梁梁端部竖向边缘设柱时,水平分布钢筋应锚入柱内。在深梁 《砼规》P241,
深梁
筋 拉筋
上、下边缘处,竖向分布钢筋宜做成封闭式。
G.0.9
在深梁双排钢筋间应设置拉筋,拉筋沿纵横两个方向的间距均不宜大
《砼规》P241,
于 600mm,在支座区高度为 0.4h,宽度为从支座伸出 0.4h 的范围内,
1
4、在梁中配有按计算需要的纵向受压钢筋时,箍筋应符合以下规定: 1)箍筋应做成封闭式,且弯钩直线段长度不应小于 5d,d 为箍筋直
径。 2)箍筋的间距不应大于 15d,并不应大于 400mm。当一层内的纵向
受压钢筋多于 5 根且直径大于 18mm 时,箍筋间距不应大于 10d,d 为 纵向受压钢筋的最小直径。
的 0.1%,但当梁宽较大时可以适当放松。
梁正截面受弯承载力计算中,计入纵向受压钢筋的梁端砼受压区高度
砼受压区高
《砼规》P167,

应符合下列要求:一级抗震等级 x≤0.25h0;二、三级抗震等级
11.3.1
x≤0.35h0;式中:x—砼受压区高度;h0—截面有效高度。
1、截面宽度不宜小于 200mm;
截面尺寸 2、截面高度与宽度的比值不宜大于 4;
《砼规》P167, 11.3.5
3、净跨与截面高度的比值不宜小于 4。
1、纵向受拉钢筋的配筋率不应小于附表 3 规定的数值;
配筋
2、框架梁梁端截面的底部和顶部纵向受力钢筋截面面积的比值,除按
计算确定外,一级抗震等级不应小于 0.5;二、三级抗震等级不应小 《砼规》P168,
座底面以上 0.2l0~0.6l0 高度范围内的纵向受拉钢筋配筋率尚不宜小

钢筋混凝土结构配筋计算

钢筋混凝土结构配筋计算

钢筋混凝土结构配筋计算配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。

其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。

计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。

最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.2×ft/fyv。

箍筋体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。

计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB-2010》6.6.3条规定)。

式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度。

柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。

扩展资料实际混凝土结构工程中,有不少结构构件由于构造或建筑功能的要求,截面会很大而弯矩又极小。

这种情况下如果按受力要求计算配筋,只需要很少的钢筋,但若是要按最小配筋率的规定来配筋,就会出现截面厚度越大,配筋就越多的不合理结果。

从规范中看,配筋可以按受弯构件用受拉钢筋的最小配筋率ρmin反求其临界高度hcr,即在此临界高度下最小配筋率ρmin的配筋已经足够承受实际的弯矩了。

既然在临界高度hcr情况下最小配筋率ρmin相应的配筋As已经能够满足构件承载受力要求了。

所以即使截面高度继续加高,仍然可以保持原有的实际配筋As不变。

虽然配筋率减少,但应该还是能够保证构件应有的承载力,构件仍是安全的。

这时,大截面受弯构件的最小配筋As相对应的实际配筋率ρ已经小于规范的最小配筋率ρmin了,但仍是允许的。

梁柱钢筋配筋率和箍筋间距和直径

梁柱钢筋配筋率和箍筋间距和直径

2,框架梁梁端截面的底部和顶部纵向受力钢筋届满面积的比值,除按计算的确定外,一级抗震等级不应小于0.5,二,三级抗震等级不应小于0.3.
3,梁端箍筋加密区长度,箍筋最大间距和箍筋最小直径按下表采用。

当梁端纵向钢筋配筋率大于2%时,下表中的箍筋直径应该增大2mm。

间距应允许适当放宽,但是不得大于150mm。

4,梁端纵向受拉钢筋的配筋率不宜大于2.5%,沿梁全长顶面和底面至少应该各配置;两根通长的纵向钢筋,对一,二级抗震等级,钢筋直径不应该小于14mm,并且分别不应小于梁两端顶面和底面纵向受力钢筋较大截面面积的1/4,对三,四级抗震等级,钢筋直径不应小于12mm。

注意,1 表中括号北数值用于框架结构的柱。

2 采用335Mpa,400Mpa等级纵向受力刚筋时,应分别按表中数值增加0.1和0.05采用。

3 当混凝土强度等级为C60以上时,应按表中增加0.1采用。

注意,1 Ac为构造边缘构件的截面面积
2 符号●表示钢筋的直径
3 其他部分的转角处宜配置箍筋。

什么是配筋率

什么是配筋率

什么是配筋率,配箍率1、配筋率是钢筋混凝土构件中纵向受力钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。

,其中,ρ为配筋率;As为受拉区纵向钢筋的截面面积;b为矩形截面的宽度;h 0为截面的有效高度。

配筋率是反映配筋数量的一个参数。

最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρmin。

是根据Mu=Mcy时确定最小配筋率。

配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。

控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。

钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。

钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 表9.5.1受力类型最小配筋百分率受压构件全部纵向钢筋0.6一侧纵向钢筋0.2受弯构件、偏心受拉、轴心受拉构件一侧的受拉钢筋0.2和45ft/fy中较大值注:1受压构件全部纵向钢筋最小配筋百分率,当采用HRB400级、RRB400级钢筋时,应按表中规定减小0.1;当混凝土强度等级为C60及以上时,应按表中规定增大0.1;2偏心受拉构件中的受压钢筋,应按受压构件一侧纵向钢筋考虑;3受压构件的全部纵向钢筋和一侧纵向钢筋的配筋率以及轴心受拉构件和小偏心受拉构件一侧受拉钢筋的配筋率应按构件的全截面面积计算;受弯构件、大偏心受拉构件一侧受拉钢筋的配筋率应按全截面面积扣除受压翼缘面积(b'f-b)h'f后的截面面积计算;4当钢筋沿构件截面周边布置时,"一侧纵向钢筋"系指沿受力方向两个对边中的一边布置的纵向钢筋。

------------------------------------------------------------------------------------------------配箍率体积配筋率和面积配筋率1.概念:两者均对箍筋而言,所以也叫体积配箍率和面积配箍率(1).面积配箍率(ρsv):是在垂直箍筋的截面bs(b为构件宽,s为箍筋间距)中,箍筋面积所占的比率(钢箍面积为肢数乘每根钢筋的面积)。

加劲箍筋计算公式

加劲箍筋计算公式

加劲箍筋计算公式
加劲箍筋计算公式是用于计算混凝土结构中的箍筋数量和尺寸的理论公式。


建筑和土木工程中,通过加劲箍筋可以提高混凝土构件的承载力和抗震性能。

加劲箍筋的计算公式基于混凝土构件的尺寸、材料强度和设计要求。

一般来说,公式涉及的参数包括混凝土柱或梁的截面尺寸、混凝土的强度等级、构件的受力状态以及构件所要求的抗震性能等。

根据《混凝土结构设计规范》等相关规范,加劲箍筋计算公式通常分为以下几
个方面:
1. 最小箍筋间距公式:根据构件尺寸和截面形状,计算箍筋之间的最小间距,
以确保箍筋能够有效地约束和限制混凝土的开裂。

2. 箍筋面积计算公式:根据构件的尺寸、材料的强度和设计要求,计算箍筋的
截面积,以满足对构件强度和抗震性能的要求。

3. 箍筋配筋率计算公式:根据混凝土构件的受力状态和设计要求,计算箍筋的
配筋率,以确保箍筋能够有效地提供约束和限制混凝土的能力。

4. 弯曲箍筋计算公式:针对受扭构件或其他弯曲受力构件,根据受力状态和设
计要求,计算弯曲箍筋的数量和尺寸,以增强构件的抗弯能力。

需要注意的是,加劲箍筋计算公式是根据国家标准和规范进行设计的,不同国家、地区甚至工程项目可能存在不同的标准和要求。

因此,在进行加劲箍筋计算时,应严格遵循当地的设计规范和标准,以确保结构的安全和稳定。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

箍筋体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。

计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB50010-2002》第90页)。

式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度;计算复合箍的体积配筋率时,应扣除重叠部分的箍筋体积。

柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。

其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。

箍筋面积配筋率面积配筋率(ρsv):配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。

其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。

计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。

最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.28×ft/fyv。

关于最小配筋率最大配筋率与梁高的取值第一是最小配筋率,最小配筋率的确定理论原则应该是受弯构件的第一阶段末,即截面受拉区砼开裂临界状态,此时的配筋应能承担砼开裂后转嫁的全部拉应力,故与全截面有关,应用全截面。

第二是正常的配筋率或最大配筋率,针对的是受弯构件第三阶段,即极限破坏状态,此时截面只与有效高度有关,保护层多厚都无用,故采用有效高度。

______配筋率首先要满足砼本身的要求,(参见大家上学时的混凝土教材正截面受压计算)。

混凝土受压区高度不能无限增大,太大时会在钢筋屈服前压溃,超筋破坏。

所以教材上是控制ξb(常用材料在0.5附近),所以我们的受拉钢筋配筋梁受ξb不能超过一定值,这个值随着截面尺寸砼等级钢筋等级保护层厚度的不同,值也不同。

我通过列表计算得出的结论是:对于常用材料和截面,梁的配筋率(即有效截面配筋率,不要搞错配筋率概念)一般在2.0%,全截面配筋率一般在2.0%以下(这句话相对于上句话似乎是废话,呵呵,但对于实际配筋时有很大方便)。

对于抗震梁(常见的为框架梁),除了控制上面的第二条外。

还需要满足,砼规11.3.1可知框架梁配筋率宜满足1.≤2.5%2.ρ≤α1ζbfc/fy ρ=(As'-As)/bhoξb=0.35(二、三级框架)=0.25(一级框架)考虑受压区钢筋作用______抗震框架梁梁端最大配筋率只是2.5%吗?抗震规范中,强规6.3.3条:6.3.3梁的钢筋配置,应符合下列各项要求:1梁端纵向受拉钢筋的配筋率不应大于 2.5%,且计入受压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于0.25,二、三级不应大于0.35。

2梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于0.5,二、三级不应小于0.3。

高规中6.3.2条也有强制规定。

注意文中”且计入受压钢筋的。

“,这里关键一个“且”字,故“梁端纵向受拉钢筋的配筋率不应大于 2.5%”,只是必要条件,不能认为梁端纵向受拉钢筋的最大配筋率就是 2.5%。

而应加上“且”后面的话,才是充分必要条件。

在求x/h0时,应注意是计入受压钢筋的。

所以,在梁端纵向受拉钢筋的配筋率问题上,应注意三个问题:一、不能认为梁端纵向受拉钢筋的最大配筋率就是 2.5%,实际设计中和一些资料手册中,就有这个问题。

是不全面的,从而导致错误。

二、抗震时用公式pmax=Sb*a1*fc/fy,(其中,sb一级为0.25,二、三级为0.35)也是不对的,因为没有考虑受压钢筋的作用。

而梁端有加密箍筋,6.3.3条第二款又保证了足够的受压筋,故不能忽约。

三、更不能套用非抗震时的最大配筋率。

______在钢筋混凝土构件的设计中,提起“配筋率”,行内人士想必都不陌生,这里我主要说的配筋率是钢筋混凝土结构构件中纵向受力钢筋的配筋百分率。

在设计过程中,最初本人对它的概念比较模糊,并发现工作多年的同行朋友对此理解也有误区,所以在这里整理一下自己的理解,和大家分享。

在《混凝土结构设计规范》中9.5.1注解第3条,受压构件的全部纵向钢筋和一侧纵向钢筋的配筋率以及轴心受拉构件和小偏心受拉构件一侧受拉钢筋的配筋率应按构件的全截面面积计算。

这句话我读了几十遍,照字面理解,我们计算配筋率的时候,分母应该取全截面面积,即b·h,但是我看校对人员帮我看图的时候,验算配筋率,用A s/(b·h。

)。

有人说h和h。

的差距在实际工程中的意义不大,我看未必,单排配筋时h。

=h-35,差距还不算大,而双排或双排以上配筋时h。

=h-60,如此说来,我们还真的应该抠一下到底用h还是h。

这个问题纵说纷议,我查阅资料和规范得出如下看法:《建筑结构设计规范应用图解手册》明确指明受弯构件最小配筋率是按有效高度计算,受压构件按全截面。

PKPM对受弯构件也是按有效高度计算的。

我同意这个说法的一部分,并且这样理解:对于大偏心或受弯构件在计算配筋时都不考虑受拉区一侧砼抗拉强度,仅考虑有效截面积,所以应该采用As/b*h。

来计算,在小偏心或轴压构件不存在砼抗拉情况,应按全截面来计算As/b*h来计算。

照此说来,9.5.1的注解3仿佛没有说清楚h和h。

的问题,对于受弯构件,从理论上说,计算最小配筋率也应该用h。

,这在规范组编制的《混凝土结构计算算例》中有提及,而且,美国ACI规范也是如此规定的。

这和计算最大配筋率等的概念一致,从受力图形上就可以明白,不再赘述。

设计和考试的时候,仍应按规范条文规定计算,也就是说,该用H的时候用H。

,据说没有改变过来,是因为修订规范时想改,但是担心整本规范安全度提得高了,钢筋用量偏大,部里不同意,于是就降了一些其他指标,但是把最小配筋率又提了点。

说了这么多,我怕把大家说糊涂了,就概括一下:实际工程中:1.当你计算梁的配筋率的时候,验算是否达到最小配筋率,请用b·h来做乘数,验算最大配筋率的时候,分子请用b·h。

,这样偏安全。

2.计算柱子配筋率时,全用b·h。

上面是根据《混凝土结构设计规范》9.5.1引发的思考,下面我们看《建筑抗震设计规范》第52页6.3.3中第1条:梁端纵向受拉钢筋的配筋率不应大于2.5%,且计入受压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于0.25,二、三级不应大于0.35。

对这句强规开始重视是有一次同事的图梁端配筋率已经大于2.5%了,被审图中心提出意见,说违反强规。

这里控制的是梁端受拉钢筋,而对于梁跨中下部纵向受拉钢筋很多人也按2.5%来控制,这样正确吗?可能是这个2.5%给大家印象太深刻了吧,实际上在规范上对于梁中间段下部纵向受拉钢筋的控制仅限于ξ=x/h。

≤ξb,也就是受相对受压区高度限制的。

但是梁是有经济配筋率的,控制1%-1.5%比较合适吧。

举个例子,昨天给校对看了份图,有个250X600的梁,上面是2个1 8,下面是7个25,校对给写了个:超筋!违反强规!根据什么说我超筋呢?我计算:C30混凝土,HRB335级钢筋:由α1fcbx=fyAs-fy’As’算出X=(300X3436-300X509)/(14.3X250)=245.6mm,ξ=X/h。

=245. 6/540=0.45<0.55,那么照此看来,我并没有超筋,只是梁配筋并不经济。

这是我最近对配筋率的一点个人理解,希望各位同仁给予指点,加以评论。

并且感谢丁页和荣立2位结构工程师的帮助。

______《混凝土结构设计规范》10.4.5框架顶层端节点处梁上部纵向钢筋的截面面积As 应符合下列规定:As ≤ 0.35*βc*fc*bb*ho/f y (10.4.5)式中bb---梁腹板宽度;h0---梁截面有效高度。

梁上部纵向钢筋与柱外侧纵向钢筋在节点角部的弯弧内半径,当钢筋直径d≤25mm 时,不宜小于6d ;当钢筋直径d>25mm 时,不宜小于8d 。

条文说明:10.4.5试验表明,当梁上部和柱外侧钢筋配筋率过高时,将引起顶层端节点核心区混凝土的斜压破坏,故应通过本条规定对相应的配筋率作出限制。

试验表明,当梁上部钢筋和柱外侧钢筋在顶层端节点外上角的弯弧半径过小时,弯弧下的混凝土可能发生局部受压破坏,故对钢筋的弯弧半径最小值做了相应规定。

根据式10.4.5 ,框架顶层端节点处梁上部纵筋的最大配筋率ρmax =As / bb / ho =0.35*βc*fc/fy ,当fy = 300 时,有:C20:ρmax =1.12%C25:ρmax =1.39%C30:ρmax =1.67%关于前面的那个excel表格中的方法应该是这么得到的,公式的原形是混凝土规范式7.2.1-2,略去受压纵筋、预应力钢筋部分为:α1×fc×b×x =fy×As(7.2.1-2)等式均除以(fy×b×ho)As/(b×ho)=α1×fc×b×x /(fy×b×ho)将ρ=As/(b×ho)、ζ =x / ho 代入上式:ρ=α1×fc×ζ / fy非抗震设计,ζ 取ζb、抗震设计根据混凝土规范第11.3.1 条:11.3.1考虑地震作用组合的框架梁,其正截面抗震受弯承载力应按本规范第7.2 节的规定计算,但在受弯承载力计算公式右边应除以相应的承载力抗震调整系数γRE。

在计算中,计入纵向受压钢筋的梁端混凝土受压区高度应符合下列要求:一级抗震等级x≤0.25h0(11.3.1-1)二、三级抗震等级x≤0.35h0(11.3.1-2)且梁端纵向受拉钢筋的配筋率不应大于 2.5%。

即一级ζ 取0.25、二、三级ζ 取0.35。

应该注意的是,对于一~三级框架梁,在计算中,当没有地震作用参与组合的情况下,最大配筋率可以超过上述规定,但应满足ζ≤ζb、≤2.5%。

另外,一级框架梁混凝土不应低于C30。

最大配筋率应该由下列条件控制:。

相关文档
最新文档