风力发电变桨距控制系统研究
变桨距调节的工作原理

变桨距调节的工作原理首先,风速测量是变桨距调节的基础。
在风力发电机组中,通常会安装一个或多个风速传感器,用于实时测量周围的风速。
这些风速传感器可以采用多种测量原理,如超声波、热线、风口压力差等。
测得的风速数据会传输给风力发电机组的主控制系统,供桨距控制使用。
桨距控制是变桨距调节的核心部分。
主控制系统会根据风速传感器测得的风速数据,通过对桨距的调节,控制叶片在不同风速下的角度,进而控制发电机的输出功率。
当风速较低时,桨距会被调整为较大的角度,以便最大程度地捕捉到风能;当风速较高时,桨距会被调整为较小的角度,以减小叶片的阻力,保护风力发电机组的安全运行。
桨距的调节通常是通过使用液压或电动机驱动的调节机构来实现的。
在液压调节系统中,主控制系统会根据风速数据发送信号给液压系统,液压系统会通过液压缸或液压马达等执行机构,调节叶片的角度。
而在电动机驱动的调节系统中,主控制系统会直接控制电动机的转速,电动机则通过传动装置来驱动叶片调节机构,实现桨距的调节。
无论采用何种调节机构,都需要通过精确的控制算法来准确地调节桨距角度,以确保发电机组的高效运行。
传动系统是实现桨距调节的关键。
桨距的调节需要通过传动装置将控制力传递给叶片。
传动系统通常由多个齿轮、轴承和传动带等组成,它的设计和制造需要满足高强度、高稳定性和低噪音等要求。
传动系统的稳定性对于保证叶片的桨距调节准确性至关重要,同时还需要耐受风力的冲击和振动等恶劣环境下的工作条件。
总之,变桨距调节通过风速测量、桨距控制和传动系统三个方面的工作原理,实现了风力发电机组叶片角度的自动调节,从而优化了发电机的发电效率。
这种技术的应用不仅提高了风力发电系统的能量利用率,也增强了其在可再生能源领域的竞争力,对于可持续能源的发展具有重要意义。
大型风力发电机组变桨距机构分析与实验研究

收稿日期:2006-08-21.基金项目:国家863计划资助项目(2100AA512022).作者简介:单光坤(1968-),女,辽宁沈阳人,副教授,博士生,主要从事大型风力发电机组变桨距技术等方面的研究.文章编号:1000-1646(2007)02-0209-04大型风力发电机组变桨距机构分析与实验研究单光坤,刘颖明,姚兴佳(沈阳工业大学风能技术研究所,沈阳110023)摘 要:旨在确定变桨距机构的结构形式,通过精炼设计校核变桨距机构的技术参数,论证变桨距机构的合理性,确保兆瓦级风力发电机组在60m 高空稳定工作.通过不同的变桨距机构方案的对比,找出各种变桨距机构的优缺点,完成兆瓦级风力发电机组变桨距结构的确定;利用数值算法进行变桨距机构参数的精炼设计;利用实验装置验证变桨距机构的合理性.最终,兆瓦级风力发电机组采用了液压变桨距结构形式,由数值算法给出了液压变桨距结构的最大负载力矩;并利用实验装置验证完成了在地面上的变桨距机构的调试工作,证明了变桨距机构在额定工况下能正常工作.在兆瓦级风力发电机组的调试过程中变桨距机构工作正常、稳定,达到了预期设计的目标.关 键 词:大型风力发电机组;变桨距机构;载荷分析;加载试验;测试工装中图分类号:T M 614 文献标识码:APitch regulated mechanism analysis and experiment of large wind turbineSHAN Guang kun,LIU Ying ming,YAO Xing jia(Wind Ener gy Institute o f T echnolog y,Shenyang U niversity of T echnology,Sheny ang 110023,China)Abstract:The research is to determine the pitch regulated mechanism of a large w ind turbine,check the technical parameters of pitch regulated mechanism by refine design,and demonstrate the rationality of pitch reg ulated mechanism,w hich w ill ensure the stable operation of the w ind turbine on the tow er of 60meters.The different pitch regulated mechanisms w ere compared to determine their advantages andshortcom ing s and select the best mechanism.T he refine desig n for the technical parameters of pitch regulated mechanism w as done by numerical analysis method.T he rationality of pitch regulated mechanism w as demonstrated by ex periments.At last,a hydraulic pitch regulated mechanism was selected for the megawatt wind turbine.T he max imum load moment of pitch regulated mechanism w as given by numerical analysis method,and the regulation and test on the ground w ere carried out.T he pitch regulated mechanism operates normally under rated condition and the desired results have been achieved.Key words:large w ind turbine;pitch regulated mechanism;load analysis;loading test;test technolog icalequipment变桨距风力发电机组,其桨叶桨距角在电气控制下可随时调整,当风速超过额定风速后,机组可通过调整叶片桨距角,保证其转速不变,输出额定功率,提高了机组利用率;变桨距型风力发电机组,在机组并网与脱网时,通过调整叶片桨距角,可使机组输出功率到最小,这样减小了机组在并网与脱网时的冲击电流,提高了机组寿命和电网质量[1];变桨距型风力发电机组,在其进行刹车制动时,由于其可先进行叶片变距气动刹车,再进行机械刹车,这样减小了机械刹车力矩,降低了刹车对机组部件的损害,提高了机组的寿命[2].由此,变桨距型风力发电机组将会成为大型风力发电机组发展的主流.沈阳工业大学风能技术研究所自主开发设计的1MW 风机采用了变桨距的形第29卷第2期2007年4月沈 阳 工 业 大 学 学 报Journal of Shenyang University of TechnologyVol 29No 2Apr.2007式.变桨距机构作为变桨距型风力发电机的关键部件直接影响到机组的正常运行,本文对1M W 风力发电机的变桨距机构从理论上进行了精炼设计分析,从实验上论证了变桨距机构的合理性.1 变桨距机构类型变桨距机构是变桨距型风力发电机组的核心.目前国际上大型风电机组的变桨距机构主要有两种实施方案[3]:机械齿轮传动变距与液压驱动变距.机械齿轮传动变距是利用伺服电机作为原动机,经过减速器通过齿轮副,带动桨叶旋转.这种变距方案,每一片桨叶都由一套独立的电动机、减速器和齿轮副驱动,因此变距力大,但电气布线困难,并且要求三个电动机运行同步,增加了控制上的难度.由于电动机、减速器、齿轮等部件均在轮毂内,增加了风轮重量和轮毂制造难度,而且维护也极不方便.液压驱动变距是利用液压缸作为源动机,通过曲柄滑块机构推动桨叶旋转.由于液压系统输出力大,变距机构可以做得很紧凑.液压驱动变距也有两种结构:一种是通过轮毂内三个液压缸和三套曲柄滑块机构分别驱动三片桨叶.这种方案变距力很大,但存在三个液压缸同步控制难,电气布线困难,风轮重量增加,轮毂制造难度加大,维护不便等问题;另一种结构是液压站,液压缸放在机舱内,通过一套曲柄滑块机构同步推动三片桨叶旋转.这种结构电气布线方便,而且降低了风轮重量和轮毂制造难度,维护也很容易,但这种结构要求传动机构的强度、刚度较高.2 大型风力发电机组变桨距机构本兆瓦级风电机组是变桨距型风力发电机组[4],采用的是液压缸作为源动机,通过一套曲柄滑块机构同步驱动三片桨叶变距的方式.2 1 变桨距机构组成本机组的变桨距机构主要由推动杆、支撑杆、导套、防转装置、同步盘、短转轴、连杆、长转轴、偏心盘、桨叶法兰等部件组成.其结构如图1所示[5].图1 变桨距机构Fig 1 Pitch regulated mechanism各组成部件作用如下:推动杆:传递动力,把机舱内液压缸的推力传递到同步盘上.支撑杆:是推动杆轮毂端径向支撑部件.导套:与支撑杆形成轴向运动副,限制支撑杆的径向运动.同步盘:把推动杆的轴向力进行分解,形成推动三片桨叶转动的动力.防转装置:防止同步盘在周向分力作用下转动,使其与轮毂同步转动.其中同步盘、短转轴、连杆、长转轴、偏心盘组成了曲柄滑块机构,将推动杆的直线运动转变成偏心盘的圆周运动.该机构的工作过程如下:控制系统根据当前风速,以一定的算法给出液压缸的位移信号,液压系统根据位移指令信号驱动液压缸,液压缸带动推动杆,同步盘运动,同步盘通过短转轴、连杆、长转轴推动偏心盘转动,偏心盘带动桨叶进行变距.2 2 变桨距机构分析该变桨距机构简图如图2所示.图2 变桨距机构运动简图F ig 2 Schematic movement of pitch regulated mechanism图中:od 摇杆;210 沈 阳 工 业 大 学 学 报第29卷df 连杆;od摇杆初始位置与水平线夹角;X 推杆位移;摇杆从初始位置转过角度;L 连杆长度.该机构的受力分析:该变桨距机构主要承受和传递来自两个方向的载荷:桨叶的旋转力矩和液压缸的输出力.桨叶旋转力矩的x轴分量传给液压缸的推动杆,y轴分量通过防转装置传给轮毂.油缸的输出载荷传递路线则相反,最后通过桨叶法兰的转动达到对桨叶变距操纵的目的.2 3 变桨距机构顺桨力的分析与计算[6]风电机组在工作状态下,作用于每个桨叶变距轴(桨叶大梁)上的阻力矩由如下几部分组成: M1=M j+M z+M m+M e+M f式中:M j 由桨叶本身质量离心力作用而产生的惯性力矩;M z 由空气动力作用而产生的气动力矩;M m 桨叶重心偏离桨叶变距轴而产生的重力矩;M e 弹性变形引起的力矩;M f 由变距机构各摩擦副而产生的摩擦阻力矩.1)由桨叶本身质量离心力作用而产生的惯性力矩M j在变距过程中,桨叶产生的最大惯性阻力矩为M j max=J22=10856 56Nm式中:J 桨叶对变距轴(大梁)的质量惯性矩,2200kg/m2;风轮回转角速度,3 1416/s.2)空气动力作用而产生的气动力矩M z空气动力作用而产生的气动力矩M z已由第602研究所得出计算结果.但其方向与M j相反,是使桨叶安装角增大的方向,且与M j相比其数值也较小,故为了安全起见,可以不考虑.3)桨叶重心偏离桨叶变距轴而产生的重力矩M m设桨叶轴均通过各截面重心,并位于风轮旋转平面内,即M m=0.4)弹性变形引起的力矩M e设桨叶不变形,即M e=0.5)由变距机构各摩擦副而产生的摩擦阻力矩M f支承桨叶轴的轴承是一个回转支承轴承,其空载摩擦阻力矩值为950Nm,其他机构摩擦阻力矩以效率计为0 95.故使桨叶绕桨叶轴转动所需的驱动力矩为M1=(M j max+950)/0 95=12427 96Nm 也就是说,在最恶劣情况下,使桨叶顺桨停机时,需作用于每支桨叶轴上的驱动力矩为M1=12427 96Nm风轮共三支桨叶,故M=M13=37283 87Nm已知驱动桨叶的曲柄长R,曲柄最大角度 =46!,故变距机构拉杆拉力为P=MR cos=82853N=8454 4kg液压站提供给变距机构的力随桨距角的变化而变化[7],其关系如图3所示;在外力矩为37283 87Nm时,变桨距系统所需要的力随桨距角的变化而变化[8],其关系如图4所示.由图3和图4可以看出,在外力矩为37283 87Nm时,变桨距系统工作正常.图3 液压系统压力与桨距角的关系Fig 3 Relationship between hydraulic pressure and pitch angle图4 变距系统需要的力与桨距角的关系(M=37283 87Nm)F ig 4 Relationship betw een necessar y pressure andpitch ang le(M=37283 87Nm)211第2期单光坤,等:大型风力发电机组变桨距机构分析与实验研究3 变桨距机构的负载试验测试目的:在设计外力矩条件下,测试机构能否准确完成顺桨及开桨工作.测试方法:通过测试工装,同时在三个变桨矩轴承内环的桨叶安装孔上加相同的重力,使三个变桨矩轴承内环产生与顺(开)桨力矩相反力矩.设计顺桨力矩:37283 87Nm设计开桨力矩:12428Nm测试工装[9-10]如图5所示,该装置与桨叶轴承内环连接,其上有6个滑轮,开桨时在1、3、5滑轮处各挂上一个重量相等的重锤,使产生转矩为12428Nm;顺桨时在2、4、6滑轮处各挂上一个重量相等的重锤,使产生转矩为37283 87Nm.图5 测试工装F ig 5 T est technological equipment测试结果:1)全行程变桨距试验(开、关桨)动作到位;2)变桨速度试验,动作时间可调、机构运动平稳;3)任意变桨距位置停止准确、位置重复精度和任意位置飘移量满足设计要求.4 结 论从理论上通过数值计算方法精炼设计了兆瓦风力发电机组变桨距机构的技术参数;通过地面试验验证了1MW 兆瓦风力发电机组变桨距机构合理,各部件参数选择正确,可以实现变桨距机构设计的预期目标,为1MW 风力发电机组的安全运行提供了保障.此风机已于2005年7月完成安装和现场调试,变桨距机构工作正常.参考文献:[1]武鑫,赵斌.并网型风电机组的调节控制[J].太阳能学报,2003(4):24-25.(WU Xin,ZHA O Bin.M odulation and control grid connected w ind turbine [J].Solar Energy ,2003(4):24-25.)[2]李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报,2004(2):146-148.(L I Q iang ,Y AO Xing Jia,CHEN L ei.Pitch mecha nism analysis o f megawatt stage w ind turbine [J ].Journal of Shenyang U niversit y of T echnolog y,2004(2):146-148.)[3]Xing Z X,Chen L.T he compariso n of sever al variablespeed wind generation set construction [A ].T he Sec o nd China I nternat ional Renew able Energy Conference [C].Beijing,2005:361-369.[4]姚兴佳,单光坤.1M W 变速恒频风力电机组结构特点[J].风电新能源,2004(1):25-26.(YAO Xing jia,SHA N Guang kun.T he characteristic of 1M W variable speed and constant frequency w ind turbine [J].Wind Electricit y N ew Energy,2004(1):25-26.)[5]秦立学.兆瓦级风力发电机变桨距机构研究[D ].沈阳:沈阳工业大学,2006.(Q IN L i xue.Research on meg aw att w ind turbine pitch regulated system [D].Shenyang:Shenyang U ni versity of T echnology ,2006.)[6]Yao X J,Liu G D ,San G K ,et al.One mega watt variable speed and constant frequency w ind turbine [A ].4th World W ind Ener gy Conference &Renewable En erg y Ex hibition [C ].M elbour ne,A ustralia,2005:214-219.[7]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压,2003(1):198-200.(WAN G Dong liang ,L I Hong ren,LI Chun ping.Asymmetrical valve asymmetrical cylinder load flow load pressure stat ic and dynamic property [J].M achine T ool &Hydraulics,2003(1):198-200.)[8]Yao X J,Shan G K,Sun C Z.Character i stic analysis ofhydraulic system o n wind turbine [A].T he Great Wall World Renewable Energ y Forum and Exihibition 2006[C].Beijing,2006:110-113.[9]Shan G K ,Y ao X J.Study on variable pitch regulatedmechanism of 1megawatt w ind turbine [A].4th World Wind Energ y Conference &Renewable Energy Exhi bition [C].M elbour ne,Australia,2005:413-419.[10]Yao X J,Shan G K,Su D H.Study on variable pitch system characteristics of big wind turbine [A ].Inter national Technol ogy and Innovation Conference Advanced Manu facturing Technolog i es [C].Hangzhou,2006:647-651.(责任编辑:吉海涛 英文审校:杨俊友)212 沈 阳 工 业 大 学 学 报第29卷。
风力发电机组变桨系统毕业论文

风力发电机组变桨系统的维护与检修毕业顶岗实习报告书专业: 电力系统自动化技术(风电方向)班级:姓名:顶岗实习单位: 金风科技股份有限公司校外指导师傅:校内指导教师:报告完成日期:新疆农业大学2015年6月风力发电机组变桨系统的维护与检修学生姓名:专业班级:学生诚信签名:完成日期:指导教师签收:摘要能源、环境是当今人类生存和发展所要解决的紧迫问题.传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等优点,所以其受到世界各国的重视.可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。
然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。
所以对风力发电机组尤其是大型风电机组的控制技术及风力发电后期的维护和检修就具有相当重要的意义.本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,变桨距风机的维护和检修,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。
关键词:变桨距控制,维护,检修目录一顶岗实习简历 (1)二顶岗实习目的 (1)三顶岗实习单位简介 (2)四顶岗实习内容 (3)第一章变桨距系统 (3)1。
1变桨距与定桨距 (5)1。
1.1定桨距 (5)1。
1。
2 变桨距 (5)1.1.3定桨距与变桨距的比较 (5)1。
2 变桨距控制过程 (7)1.3 变桨距风力机组的运行状态分析 (8)1.3.1 启动状态 (8)1.3。
2 欠功率状态 (8)1.3。
3 额定功率状态 (8)1.4 变桨距控制的特点 (9)1.4.1 输出功率特性 (9)1.4.2 风能利用率 (9)1.4.3 额定功率 (9)1.4.4 启动与制动性能 (9)1。
直驱式永磁同步风力发电机变速变桨距控制

直驱式永磁同步风力发电机变速变桨距控制变桨距是最常见的控制风力发电机组吸收风能的方法。
变桨距控制会对所有由风轮产生的空气动力载荷产生影响。
直驱式永磁风力发电机组一旦达到额定转矩,载荷转矩就不能继续增加,但风速还在增加,所以转速也开始增加,应用变桨距控制调节转速,使转速不超过上限,并由变流器保证载荷转矩恒定不变。
通常PI或PID调节器调节桨距角就可以满足要求,在有些情况下要用滤波器对转速误差进行处理,以防止过度的桨距动作。
一、变速变桨距控制概述1.基本控制要求在额定风速以下时,风力发电机组应该尽可能捕捉较多风能,所以这时没有必要改变桨距角,此时的空气动力载荷通常比在额定风速以上时的动力载荷小,也没有必要通过变桨距来调节载荷。
在额定风速以上时,变桨距控制可以有效调节风力发电机组的吸收功率及风轮产生的载荷,使其不超出设计的限定值。
而且为了达到良好的调节效果,变桨距应该对变化的情况作出迅速的反应。
这种主动控制器需要仔细设计,因为它会与风力发电机组的动态特性相互影响。
随着叶片攻角的变化,气流对风轮的作用力也会随之发生改变,这就会导致风力发电机组塔架的振动。
随着风速的增加,为了保持功率恒定,转矩桨距角也随着增加,风轮所受到的力将会减小。
这就使塔架的弯曲减小,塔架的顶端就会向前移动引起以风轮为参照物的相对风速的增加。
空气动力产生的转矩进一步增加,引起更大的调桨动作。
显然,如果变桨距控制器的增益太高会导致正反馈不稳定。
2.主动失速变桨距在额定风速以下时,桨距角设定值应该设置在能够吸收最大功率的最优值。
按照这个原则,当风速超过额定风速时,增大或减小桨距角都会减小机组转矩。
减小桨距角,即将叶片前缘转向背风侧,通过增大失速角来调节转矩,使升力减小,阻力增加,称为主动失速变桨距。
尽管顺桨是更常见的控制策略,但是有些风力发电机组采用主动失速变桨距的方法,通常称为主动失速。
向顺桨方向变桨距比主动失速需要更多的动态主动性,一旦大部分叶片失速,就没有足够的变桨距调节来控制转矩。
风力发电机组变桨距控制系统的研究

风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。
风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。
本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。
1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。
传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。
控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。
2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。
定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。
而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。
最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。
3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。
通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。
同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。
4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。
首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。
其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。
另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。
双馈异步风力发电系统变桨距控制技术研究

双馈异步风力发电系统变桨距控制技术研究在环境污染、全球都提倡节能减排的形势下,风能作为清洁型可再生能源之一,其开发利用已受到全世界的广泛关注,市场前景广阔。
在各国大力发展风力发电技术之际,变桨距控制技术已成为研究的热点之一。
本文以双馈式风力发电系统(DFIG)为研究对象,对兆瓦级风电机组电动变桨距控制进行了全面的理论分析和仿真验证,围绕变桨距控制策略和变桨距伺服系统两方面进行研究,主要工作如下:(1)在桨叶空气动力学分析的基础上,建立风能捕获、气动功率,气动转矩等重要状态变量的数学模型,并通过机理建模的方式搭建与变桨距技术相关的各子系统数学模型,包括风轮模型、传动链模型。
(2)通过分析风力发电系统运行原理和控制要求,提出了不同工段风力机变桨距控制策略。
针对额定风速以下和额定风速以上分别建立了最大功率追踪算法(MPPT)和模糊自适应PID控制算法,并设计了基于以上两种算法模糊切换的全风速段双模变桨距控制器。
相比传统单一PID控制,双模变桨距控制器对全风速段的适应性更好,在低风速段,能获得最佳风能捕捉,在高风速段,能够获得更稳定的功率输出。
(3)通过对桨叶负载分析计算,为电动变桨距执行机构主要部件选型提供了理论依据。
设计了基于矢量控制的永磁同步电机三闭环变桨距伺服系统,针对传统矢量控制中d-q轴电流不完全解耦造成的变桨电机转矩/电流波动,提出了电压前馈解耦型变桨距方案,经Simulink仿真验证,改进后的变桨距伺服系统具有桨距角位置跟踪能力强、变桨负载动态响应快的特点。
《2024年风力发电变桨距自抗扰控制技术研究及其参数整定》范文

《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着可再生能源的快速发展,风力发电已成为重要的清洁能源之一。
风力发电技术的关键之一是变桨距控制技术,其能够根据风速变化调整风力机桨叶的角度,以实现最佳的风能捕获和能量转换。
然而,由于风速的随机性和不确定性,传统的控制方法往往难以满足高精度的控制要求。
因此,研究风力发电变桨距自抗扰控制技术及其参数整定具有重要的理论意义和实际应用价值。
二、风力发电变桨距自抗扰控制技术研究(一)自抗扰控制理论概述自抗扰控制是一种先进的控制策略,通过非线性组合多种信号以减小系统的误差,并对不确定性的影响进行有效抑制。
自抗扰控制器通常由跟踪微分器、扩张状态观测器和状态误差的非线性组合三部分组成。
这种控制方法具有良好的动态性能和抗干扰能力,在非线性系统中有很好的应用前景。
(二)风力发电变桨距自抗扰控制技术应用在风力发电系统中,变桨距自抗扰控制技术通过实时调整桨叶的角度,以适应不同的风速条件。
在风速较低时,桨叶角度较小,以捕获更多的风能;在风速较高时,通过增大桨叶角度来减小风力机的气动负荷,保护设备免受过大负荷的损害。
自抗扰控制技术通过实时监测和调整,实现对风速的快速响应和精确控制。
三、参数整定方法(一)参数整定的必要性风力发电系统的变桨距自抗扰控制器的性能与其参数的整定密切相关。
参数的合理设置可以有效地提高系统的稳定性和动态响应能力。
因此,针对不同的风力发电系统,需要进行相应的参数整定工作。
(二)参数整定方法1. 理论计算法:根据系统的数学模型和性能指标,通过理论计算确定参数的初始值。
这种方法需要深入理解系统的动态特性和控制策略。
2. 试验法:通过在真实的风力发电系统中进行试验,根据试验结果调整参数,以达到最佳的控制系统性能。
这种方法需要大量的试验数据和经验。
3. 智能优化算法:利用智能优化算法如遗传算法、粒子群算法等对参数进行优化。
这种方法可以快速找到最优参数组合,但需要较高的计算资源和时间。
风力发电机组变桨距控制策略

2023-11-10CATALOGUE 目录•风力发电机组简介•变桨距控制策略的基本理论•变桨距控制策略的实现方法•变桨距控制策略的优化方法•变桨距控制策略在实际中的应用及案例分析01风力发电机组简介风力发电机组的基本构造风力发电机组的核心部件,由叶片和轮毂组成,用于捕捉风能并将其转化为机械能。
风轮齿轮箱发电机塔筒连接风轮和发电机的重要部件,将风轮的转速提升到发电机所需的速度。
将机械能转化为电能的重要部件,由定子和转子组成。
支撑风轮和发电机的高耸结构,通常由钢铁或混凝土制成。
风力发电机组通过旋转的风轮捕捉风的动能,并将其转化为机械能。
风的捕捉机械能的转化电能的产生机械能通过齿轮箱的传递,将转速提升到发电机所需的速度。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的运行原理0201按风向分类水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机组的风轮轴与地面平行,而垂直轴风力发电机组的风轮轴与地面垂直。
风力发电机组的分类按容量分类小型、中型和大型风力发电机组。
小型风力发电机组的功率通常在几百瓦到几千瓦之间,中型风力发电机组的功率在几兆瓦到几十兆瓦之间,而大型风力发电机组的功率通常在几百兆瓦到几兆瓦之间。
按运行原理分类恒速风力发电机组和变速风力发电机组。
恒速风力发电机组的风轮转速保持不变,而变速风力发电机组的风轮转速可以根据风速进行调整。
02变桨距控制策略的基本理论变桨距控制是一种用于调节风力发电机组功率输出的技术,通过改变桨叶的桨距角实现对风能捕获的优化控制。
在风速较高时,通过减小桨距角增加风能捕获,以提升发电机组的功率输出;在风速较低时,通过增大桨距角减小风能捕获,以避免过度捕获风能导致发电机组振动和疲劳损坏。
变桨距控制的概念和意义变桨距控制系统的基本结构变桨距控制系统主要由传感器、控制器和执行器组成。
传感器负责监测风速、风向和发电机组运行状态;控制器根据传感器信号和预设的控制逻辑对执行器进行指令输出;执行器根据指令调整桨叶的桨距角。
涨知识风力机的独立变桨距系统

涨知识风力机的独立变桨距系统在风力机调速方式课件中介绍了变桨距调节转速的原理,还介绍了一种简单的离心力桨距调节装置。
现代大中型风力发电机组对叶片的变桨距性能有很高要求,以保证风力机能以最高效率安全的运行,主要有独立变桨距系统与统一变桨距机构。
本课件介绍独立变桨距系统。
变桨距系统要保证风轮叶片在起动状态、正常运行状态、停机顺桨状态能有良好的变桨距角功能,也就是:起动状态:风力机在静止时,桨距角为90度(全顺风);当风速达到起动风速时,叶片转向45度左右,以获得较大的起动转矩;当风轮转速达到一定速度时,再调节叶片转到0度。
运行状态:在正常运行时,当功率在额定功率以下时,桨距角在0度附近;当功率超过额定功率时,根据计算机命令增大叶片的攻角,并不断调整桨距角使发电机的输出功率保持在额定功率附近,桨距角变化范围在0度到30度之间。
停机顺桨状态:当风机正常停机和快速停机时将叶片顺桨到90度附近,利用叶片的气动阻力将风轮转速降为0。
当停电或出现故障时无需计算机命令能自动进入全顺桨状态,使风力机紧急停机,确保风力发电机组的安全。
本课件介绍的变桨距系统的三组叶片的桨距角变化是受各自的驱动装置控制,同一台风力机的各个叶片可根据不同的控制作出不同的桨距角变化,这种变桨系统称为独立变桨系统,有很好的控制性能。
主要有液压驱动与电动驱动方式。
液压变桨距系统先介绍液压变桨距系统,在风轮的三叉形轮毂上有三个变桨轴承法兰,将与变桨轴承的外圈固定安装,在图1中的三叉形轮毂是剖开的,在两个法兰上已经固定好两个变桨轴承,在其中一个变桨轴承内圈固定着叶片根盘,叶片根部与叶片根盘固定连接,叶片通过变桨轴承可自由转动。
图中有一个液压缸,液压缸内有可伸出的活塞杆(液压杆),活塞杆输出端通过液压杆轴承与叶片根盘上的变桨摇柄连接,活塞杆的伸缩推动叶片根盘转动。
由于变桨摇柄是圆弧运动,液压缸也会随之摆动,所以液压缸是通过一根摆动轴安装在轮毂上的。
图1--液压变桨距系统的液压缸图2是液压缸的活塞杆部分推出时的状态,叶片转动了一定的角度。
风力发电机组变桨系统分析

目录摘要: (2)一、变桨系统论述 (2)(一)变桨距机构 (2)(二)电动变桨距系统 (3)1. 机械部分 (4)2. 气动制动 (5)二、变桨系统 (5)(一)变桨系统的作用 (5)1. 功率调节作用 (5)2. 气动刹车作用 (5)(二)变桨系统在轮毂内的拓扑结构与接线图 (7)三、变桨传感部分 (9)(一)旋转编码器 (9)(二)接近开关 (10)四、变桨距角的调节 (11)(一)变桨距部分 (11)(二)伺服驱动部分 (12)总结 (14)参考文献: (14)致谢 (15)风力发电机组変桨系统分析摘要:风能是一种清洁而安全的能源,在自然界中可以不断生成并有规律得到补充,所以风能资源的特点十分明显,其开发利用的潜力巨大。
本文对大型的兆瓦级风力发电机变桨系统做简单的介绍。
变速恒频技术于20世纪90年代开始兴起,其中较为成功的有丹麦VESTAS的V39/V42-600KW机组和美国的Zand的Z-40-600KW机组。
变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。
变速恒频机组的显著优点已得到风力机生产厂和研究机构的普遍承认,将成为未来的主流机型。
但变速恒频风力机组仅通过电机自身调节要达到减小风速波动冲击的目的是很困难的,因为自然界中风速瞬息万变,特别是在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。
但是变桨风机不会产生此类情况,变桨距是指大型风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力状况大为改善。
近年来,电动变桨距系统越来越多的应用到风力发电机组当中,直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。
因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速,在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。
永磁直驱风力发电机组变速变桨距控制技术的研究的开题报告

永磁直驱风力发电机组变速变桨距控制技术的研究的开题报告一、选题背景风力发电是一种清洁能源,在近年来得到了广泛的应用。
目前,永磁直驱风力发电机组已成为风力发电机组中的主流,具有功率密度高、转速高、噪音低、启动性好等优点。
同时,在风力发电系统中,变速变桨距控制技术能够使发电机组实现最大化输出功率和风能利用率。
因此,永磁直驱风力发电机组变速变桨距控制技术的研究具有重要的理论价值和实际应用价值。
二、研究内容本文选取永磁直驱风力发电机组变速变桨距控制技术为研究内容,具体考虑以下几个方面:1. 永磁直驱风力发电机组结构特点的分析与设计2. 风能转化特性与功率输出特性的研究3. 变速控制原理与算法的研究4. 桨距控制原理与算法的研究5. 永磁直驱风力发电机组变速变桨距控制系统的建立与仿真分析三、研究意义本研究的意义在于:1. 以永磁直驱风力发电机组为研究对象,对其结构特点进行分析与设计,以期更好地实现其功能。
2. 研究风能转化特性与功率输出特性,为探讨变速变桨距控制技术奠定基础。
3. 探讨变速控制原理与算法,为实现发电机组的最大化输出功率提供技术保障。
4. 探讨桨距控制原理与算法,为实现发电机组的风能效率提供技术保障。
5. 建立永磁直驱风力发电机组变速变桨距控制系统,并对其进行仿真分析,为实际应用提供参考。
四、研究方法本研究采用以下研究方法:1. 文献调研,了解永磁直驱风力发电机组变速变桨距控制技术的基本概念、研究进展和国内外相关研究现状。
2. 研究永磁直驱风力发电机组的结构特点及其风能转化特性与功率输出特性,以期更好地探讨发电机组变速变桨距控制技术。
3. 探讨变速控制原理与算法,以实现发电机组的最大化输出功率。
4. 探讨桨距控制原理与算法,以实现发电机组的风能效率。
5. 借助仿真软件建立永磁直驱风力发电机组变速变桨距控制系统,并进行仿真分析,为实际应用提供参考。
五、预期结果1. 对永磁直驱风力发电机组变速变桨距控制技术的理论基础和操作技术有较为深入的了解。
新型风力发电机组液压变桨距系统的研究

并 通 过 滑 环 送 给 轮 毂 控 制 器 ,液 压 控 制 系 统 根 据控制指 令驱动油缸 ,油缸活塞 杆通过偏 式 中 :c 。 为 油缸 内泄 露 系 数 , / ( N . s ) ; 心 块 驱 动 桨 叶进 行 变 距 。 每 个 桨 叶 都 由 一 套 独 立的液压 伺服系统驱 动,一个桨 叶出现故 B 为液体体积弹性模量,P a 。 障 时 ,其 他 两 个 桨 叶 仍 能 正 常 工 作 , 增 加 了 油 缸 无杆 腔 容积 系 统的安全 性。桨距角可在o 。  ̄ J t 9 o 。 的 范 围 内 = + △ ( 5 ) 式 中 :V 为 油 缸 无 杆腔 的初 始 容 积 ,I I l 3 ; 调 整 。油 缸 的 最 左 端 和 最 右 端 两 个 极 限 位 置 为 油 缸 无 杆 腔 的 活 塞 面 积 ,I I l 2 ; 分 别 对应 桨 叶节距 角 的9 0 。 和o 。 , 油 缸 向 左 s 和 向右运动 分别对应桨 叶节距 角的增大与减 假 定活塞 的位移很小,即 l A l ・ △ y l < < v 0 , 2 ) 、( 4 ) 和 ( 5 ) 可得 m 小 。 显 然 , 这 种 执 行 机 构 尤 其 适 用 于 大 型 风 则 由式 ( 力 发 电机 组 。 3 . 变 桨 距 系统 建模 本 文 提 出 的液 压 变 桨 距 系 统 由 油 缸 直 接 变 桨 距机 构 动 力 平 衡 方 程 为 推 动 桨 叶进 行 变 距 。液 压 驱 动 系 统 采 用 的 是 电 液 比例 伺 服 控 制 系 统 。 由于 桨 叶 在 关 桨 和 开 桨 时 的 液 压 回 路 不 同 , 因 此 需对 关 桨 和 开 式 中 :J 为 叶片 绕 纵 轴 转 动惯 量 , ・ ; 桨 两个过程分别建模 。 s 2 为 油 缸有 杆 腔 的活 塞 作 用面 积 , ;T 为 扭 矩 3 . 1 关 桨过 程 建 模 负 载 ,N ・ m ;L ( 0) 为 变 桨 距 机 构 力 臂长 度 关 于 桨 距 角 的 函 数 ,m ; 由于 △L ( 0 ) 较 小 ,有 力臂 常 数代 替L ( 0 )
1.5MW风力发电机组中电动变桨距控制系统的研究

1.5MW风力发电机组中电动变桨距控制系统的研究摘要:本文以1.5mw级风力发电机组为例,在介绍了风力发电机电动变桨距系统的基础上,分析变桨距控制的基本规律,建立统一变桨和独立变桨距的设计方案和控制方法。
提出一种应用于统一变桨距的模糊pid参数自整定控制器设计方案,并在matlab/simulink中建立相应的仿真模块。
仿真结果表明,模糊pid 的统一变桨距系统能较好地实现大型风电机组对功率控制的要求。
此外,通过仿真证明和比较发现,独立变桨距控制比统一变桨距控制的输出功率更加稳定。
关键词:兆瓦级;风力发电机;电动变桨距系统;模拟仿真中图分类号:tm315 文献标识码:a 文章编号:1001-828x(2011)09-0253-03一、引言大型风力发电机组根据结构一般被分为定桨距型风力发电机组和变桨距型风力发电机组两种类型。
定桨距风力发电机组将叶片固定在轮毅上,但只能在风速选定的速度范围内效率较高。
变桨距风力发电机组通过叶片沿其纵向轴心转动来调节功率。
在低风速时,叶片可以转动到合适位置来保证叶轮具有最大起动力矩,从而使得发电机能够在更低风速下开始发电,而无需连接电动机使用。
变桨距系统可以在一定时间内,保持发电机的适当转速改变,确保平缓并网发电。
其对温度和海拔高度的变化而引起的空气密度的变化能很好的适用,具有很好的鲁棒性。
二、风力发电现状常规能源因大量开采使用及不可再生等原因不断减少,风能作为清洁的可再生能源,是最具有发展潜力的未来能源之一。
风力发电,不仅可一定程度的代替现有能源,而且清洁环保,是一种可以改善能源结构的环境友好型途径。
根据专家的估计,地球上所能接收到的太阳辐射能大约有3%转换成了风能,也就是说风力发电装机的容量可达2000兆千瓦,平均每年可发电力1.6×1011度。
风能作为一种无污染的再生能源,它的开发利用已经受到世界各国的高度重视。
我国风能资源丰富,可开发利用的风能资源总量约有3亿多千瓦时。
风电机组变桨距控制系统的仿真研究考核试卷

B.提高发电效率
C.减少塔架振动
D.控制电机转速
2.以下哪些因素会影响风电机组变桨距控制系统的稳定性?()
A.叶片质量
B.变桨距驱动器的响应速度
C.控制策电机组变桨距控制系统中,以下哪些方法可以用于提高系统的响应速度?()
A.优化控制器参数
B.减小叶片质量
A.发电机
B.变桨距驱动器
C.叶片
D.塔架
2.以下哪种因素不会影响风电机组变桨距控制系统的控制效果?()
A.风速
B.叶片材质
C.控制策略
D.电机转速
3.在风电机组变桨距控制系统中,PID控制器的参数整定包括以下哪几部分?()
A. P、I、D
B. P、D、Q
C. I、Q、S
D. Kp、Ki、Kd
4.关于风电机组变桨距控制系统的仿真,以下哪项说法是正确的?()
15.在风电机组变桨距控制系统的设计中,以下哪些方面会影响系统的经济性?()
A.控制器成本
B.变桨距驱动器寿命
C.叶片材料成本
D.传感器维护费用
16.以下哪些因素会影响风电机组变桨距控制系统的可靠性和安全性?()
A.控制系统的冗余设计
B.变桨距驱动器的防护措施
C.叶片的疲劳寿命
D.传感器的抗干扰能力
11. ABC
12. ABCD
13. ABCD
14. ABCD
15. ABCD
16. ABCD
17. ABCD
18. ABCD
19. ABCD
20. ABCD
三、填空题
1.变桨距驱动器
2.叶片角度
3.发电效率
4.线性建模、非线性建模
5.控制器
风力发电变桨控制系统设计研究

风力发电变桨控制系统设计研究风力发电是一种利用风能将风能转化为电能的技术。
在风力发电过程中,变桨控制系统是一个非常重要的组成部分,它的设计和研究对于风力发电的效率和可靠性至关重要。
变桨控制系统的主要功能是根据风力大小和风向变化情况来控制风力发电机的桨叶角度,以获得最佳的能量转化效率。
变桨控制系统需要根据风力的实时测量数据来进行桨叶的角度调整,以确保风力发电机在不同的风速条件下能够始终工作在最佳状态。
在变桨控制系统的设计过程中,需要考虑以下几个方面:1.传感器选择和位置安装:为了准确测量风力的大小和方向,需要选择合适的传感器,并将其安装在合适的位置。
传感器的选择和位置安装是变桨控制系统设计的重要环节,它对于系统的准确性和可靠性有着至关重要的影响。
2.数据采集和处理:变桨控制系统需要实时采集和处理风力传感器的数据,并根据这些数据来调整桨叶的角度。
数据采集和处理过程需要高速、高精度的硬件和软件支持,以确保数据的实时性和准确性。
3.控制算法设计:控制算法的设计是变桨控制系统设计的核心环节。
控制算法需要根据实时的风力数据来决定桨叶的调整角度,以实现最佳的能量转化效率。
控制算法设计需要考虑风力的大小、风向的变化以及系统的动态响应能力等因素,以确保系统能够稳定工作并且具有较好的抗干扰能力。
4.系统建模和仿真:在变桨控制系统设计的过程中,建立系统的数学模型是非常重要的。
系统建模可以帮助我们理解系统的工作原理和动态特性,并根据模型进行仿真和优化设计。
系统建模和仿真可以有效减少实际试验的成本和风险,并帮助我们更好地了解系统的性能和可靠性。
总之,风力发电变桨控制系统的设计和研究对于提高风力发电的效率和可靠性具有重要的意义。
在设计过程中,需要考虑传感器选择和位置安装、数据采集和处理、控制算法设计以及系统建模和仿真等方面的问题。
通过合理的设计和研究,可以提高风力发电的效率和可靠性,进一步推动可再生能源的发展。
风力发电机偏航控制系统的研究

风力发电机偏航控制系统的研究一、本文概述随着全球对可再生能源需求的持续增长,风力发电作为一种清洁、可再生的能源形式,已在全球范围内得到了广泛的关注和应用。
风力发电机(Wind Turbine)作为风力发电系统的核心设备,其运行效率和稳定性对于整个系统的性能至关重要。
偏航控制系统作为风力发电机的重要组成部分,对于确保风电机组的安全运行和最大化能量捕获具有关键作用。
本文旨在深入研究风力发电机偏航控制系统的原理、设计及其在实际应用中的性能表现。
文章首先介绍了风力发电机的基本工作原理和偏航控制系统的基本构成,为后续的研究提供了理论基础。
接着,文章详细分析了偏航控制系统的关键技术和控制策略,包括传感器技术、执行机构、控制算法等,并探讨了这些技术和策略对风力发电机性能的影响。
在此基础上,文章通过实验和仿真研究,评估了不同偏航控制策略在实际应用中的效果,为优化风力发电机偏航控制系统提供了有益的参考。
文章还讨论了风力发电机偏航控制系统面临的挑战和未来的发展趋势,为相关领域的研究者和工程师提供了有价值的参考信息。
通过本文的研究,期望能够为风力发电机偏航控制系统的设计、优化和应用提供有益的指导,推动风力发电技术的发展,为实现全球能源转型和可持续发展做出贡献。
二、风力发电机概述风力发电机是一种利用风能转换为电能的装置,其工作原理基于风的动力学特性和电磁感应原理。
风力发电机通常由风轮(也称为风叶或转子)、发电机、塔筒和基础等部分组成。
风轮由多个风叶组成,当风吹过风叶时,风叶受到风力作用而旋转,进而带动发电机转动,发电机中的磁场与导体产生相对运动,根据电磁感应原理,导体中会产生感应电动势,从而产生电能。
风力发电机具有清洁、可再生、无污染等优点,是当前全球范围内大力推广的可再生能源发电方式之一。
风力发电机的装机容量和单机容量不断增大,技术也在不断进步,从最初的定桨距失速型发展到变桨距调节型,再到目前最先进的主动偏航控制系统,风力发电机的性能和稳定性得到了显著提升。
《2024年风力发电变桨距自抗扰控制技术研究及其参数整定》范文

《风力发电变桨距自抗扰控制技术研究及其参数整定》篇一一、引言随着能源危机与环境污染问题日益突出,风力发电作为可再生能源的代表,已在全球范围内得到广泛应用。
而变桨距控制技术是风力发电系统中的重要环节,对于提升发电效率、保证风机安全以及优化整体性能具有重要意义。
自抗扰控制技术作为现代控制理论的一种,对于风力发电系统中的复杂、非线性以及时变特性有较好的适应能力。
因此,研究风力发电变桨距自抗扰控制技术及其参数整定,对于提高风力发电系统的性能和稳定性具有重要意义。
二、风力发电变桨距控制技术概述风力发电机的变桨距控制技术是通过改变风轮机的桨叶角度来调节风能的捕获。
在风速较低时,通过调整桨叶角度增大捕获的风能,提高发电效率;在风速过高时,通过调整桨叶角度减小风能的捕获,保护风机免受过载和损坏。
因此,变桨距控制技术对于风力发电系统的稳定运行和性能提升具有重要作用。
三、自抗扰控制技术原理及应用自抗扰控制技术是一种基于微分几何理论的现代控制方法,其核心思想是通过非线性状态误差反馈来构造控制系统。
该技术对于复杂、非线性以及时变系统的控制具有较好的效果。
在风力发电系统中,自抗扰控制技术能够有效地抑制系统的不确定性、外界干扰以及模型误差等因素对系统的影响,提高系统的稳定性和鲁棒性。
四、风力发电变桨距自抗扰控制技术研究针对风力发电系统的变桨距控制,结合自抗扰控制技术的优点,可以通过设计合适的控制器来提高系统的性能。
在控制器设计中,需要考虑系统的模型参数、外界干扰、桨叶的动力学特性等因素。
同时,还需要根据实际的风场环境和风机运行状态,对控制器进行优化和调整。
此外,还需要对控制器的稳定性和鲁棒性进行验证和分析。
五、参数整定方法及其实验验证参数整定是自抗扰控制技术中的重要环节,对于控制器的性能和稳定性具有重要影响。
针对风力发电变桨距自抗扰控制系统,可以采用试凑法、遗传算法、粒子群算法等整定方法对控制器参数进行优化。
同时,需要通过实验验证整定后的控制器在实际风场环境中的性能和稳定性。
变桨距控制

变桨控制的分类:分为主动变桨控制和被动变桨控制。
主动变桨是指桨叶被设计成可沿自身轴线旋转,通过控制系统的指令完成变桨,多用于大型风力发电机组。
被动变桨是指桨叶可在外部载荷的作用下自动发生扭转,且达到风力机控制所需的桨距角,一般只用于独立运行的机组。
以下均为主动变桨控制的相关内容。
变桨控制的基本原理:风力机运行中,通过使叶片沿自身轴旋转、改变桨距角,可使气流对叶片的攻角发生变化,从而改变风轮所受气动力矩和功率输出。
同等风速下,桨距角越大,风能利用系数越低。
变桨系统在不同风速下的控制策略和所起作用:1)风速小于启动风速:处于停机状态,桨距角为90°。
2)启动风速到额定风速:桨距角保持在0°,在启动阶段使机组获得最大的启动力矩,在中低风速下获得最大的功率系数。
3)额定风速到切出风速:根据功率或发电机转速和风速,对桨距角进行闭环控制,限制功率输出。
进行功率控制。
4)大于切出风速:桨距角迅速切换到90°,提供很大的气动阻力,使风轮快速减速,完成停机。
变桨执行机构分类:可分为液压变桨系统和电动变桨系统。
液压变桨系统使用曲柄连杆机构同步驱动或者由3个液压缸分别推动桨叶转动,调节桨距角。
优点是对于大惯性负载其频率响应快、扭矩大,可实现无级调速,便于集中控制和集成化。
缺点是其传动结构相对复杂,漏油、卡涩时有发生,且液压传动部件在夏季和冬季的控制精度差别较大。
电动变桨机构利用伺服电机带动减速机调节桨距角,具有快速性、同步性、准确性等优点。
结构简单、紧凑,机械故障较少。
其缺点是电气布线困难,动态响应特性较差。
另外频繁调节桨距时会产生过量的热负荷,易使电机损坏。
变桨距风力发电机的特点:1)额定功率点以上输出功率平稳。
2)额定点具有较高的风能利用系数。
3)高风速段仍能保持额定功率。
4)气动性能和制动性能更加优异。
变桨距控制系统:传统变桨距控制方式根据功率反馈信号进行功率控制,控制信号给定值为额定功率,但其响应速度受到限制,控制效果不理想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文风力发电变桨距控制系统研究学生姓名:XXXX学号:XXXXXX 系部:自动化专业:自动化指导教师:XXXXX二〇一一年六月诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
本人签名:年月摘要能源、环境是当今人类生存和发展所要解决的紧迫问题。
传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等优点,所以其受到世界各国的重视。
可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。
然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。
所以对风力发电机组尤其是大型风电机组的控制技术的深入研究就具有相当重要的意义。
本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。
关键词:风力发电,变桨距控制,伺服系统AbstractEnergy and environment is the human survival and development of the pressing problems which should be solved. The traditional fossil fuel can solve the energy shortage, but give environment caused the most damage, and wind have clean, renewable and low cost, so its advantages by world attention.Reliable and efficient wind power generation system research and development have already become the hot new energy technologies. However, because the wind is instability, energy density characteristics such as low and randomness, and wind power plant are usually located in remote areas and even at sea, natural condition is poor, so ask its control system must be able to realize automatic operation, and asked for the control system had high reliability. So for WTG especially large wind generator control technology research is of vital significance.This paper firstly in the principle of wind power generation, based on the study of the wind generator from getting away from a wind turbine propeller air dynamics research, analyses from the basic control variable OARS, coupled with the current domestic law change from the mainstream of the OARS were designed control technology from control hydraulic change propeller, electric control scheme of variable propeller from last, based on this, advances a more ideal control strategy - half oar active stall control.Keywords: Wind power, From control variable oar ,Servo system目录第一章绪论 (1)1.1风能 (1)1.2风能发电的历史与现状 (2)1.3风力发电技术的发展 (3)1.4风力发电的前景 (4)1.5本章小结 (5)第二章风力发电机组概述 (6)2.1风力发电的原理 (6)2.2风力发电机组的组成 (6)2.3风电机组的分类 (7)2.3.1 按功率控制方式分类 (8)2.3.2 按发电机控制方式分类的风力机组 (8)2.4风力发电控制系统简介 (9)2.4.1 变桨距系统 (10)2.4.2 偏航系统 (11)2.4.3 制动系统 (11)2.5本章小结 (12)第三章风力发电变桨距控制系统简介 (13)3.1风力发电的空气动力学基础 (13)3.2贝茨理论 (13)3.3风轮机 (15)3.4风轮机的特性系数 (15)3.5变桨距与定桨距 (16)3.5.1 定桨距 (16)3.5.2 变桨距 (17)3.5.3 定桨距与变桨距的比较 (17)3.6变桨距控制过程 (18)3.7变桨距风力机组的运行状态分析 (19)3.7.1 启动状态 (19)3.7.2 欠功率状态 (19)3.7.3 额定功率状态 (20)3.8变桨距控制的特点 (20)3.8.1 输出功率特性 (20)3.8.2 风能利用率 (20)3.8.3 额定功率 (21)3.8.4 启动与制动性能 (21)3.8.5 对机械部件的影响 (21)3.9本章小结 (21)第四章变桨距控制系统的设计 (22)4.1所涉及设备介绍 (23)4.1.1 GE PAC SysteRX3i控制器简介 (23)4.1.2 PAC Systems RX3i性能 (24)4.1.3 PACSystems RX3i模块简介 (24)4.1.4 运动模块DSM324i介绍 (25)4.1.5 伺服电机选型 (27)4.2方案设计 (28)4.3液压变桨距控制系统设计 (28)4.3.1 液压变桨距控制系统 (28)4.3.2 液压变桨距结构 (28)4.3.3 变桨控制系统的设计 (29)4.4液压变桨距控制系统评估 (33)4.5电动变桨距控制系统设计 (33)4.5.1 独立变桨距控制分析 (34)4.5.2 统一变桨控制系统 (38)4.6电动变桨距软件设计 (39)4.7电动变桨距系统评估 (41)4.8液压变桨距与电动变桨距的比较 (42)4.9最佳控制思想 (42)总结 (43)参考文献 (44)致谢 (44)附录 (45)第一章绪论1.1风能随着全球经济的迅速发展和人类生活水平的日益提高,对能源的需求越来越大。
化石燃料是人类最早利用的能源之一。
从18世纪开始,即随着英国产业革命的发生和发展,化石资源—最先是煤炭,然后是石油和天然气,就逐步替代柴草进入人类社会生活的各个方面,并有力地推动着社会生产力的发展。
虽然到目前为止,石油、天然气和煤炭等化石能源仍然是世界经济的能源支柱,然而化石资源的有限性和对环境的危害性,已经日益地威胁着人类社会的安全和发展。
充足的能源、洁净的环境是经济持续发展的基础条件。
1996年联合国环境署报告指出:从现在到2020年,全球能源消耗将比现在增长50%到100%,由此造成温室效应的气体排放将会增加45%到90%,从而会带来灾难性后果。
为了制止地球的温暖化,为了人类尽快走出燃碳时代,构建一个稳定的可持续发展的社会,各国正掀起一股追求不排放CO2,不污染环境、清洁发电的热潮。
太阳能、风能、水能、潮汐能等都是可再生的清洁能源,其中以风能利用的技术最为成熟,最为广泛。
风能利用的最主要型式就是风力发电,风是风力发电的原动力,它是由于太阳照射到地球表面各处受热不同,产生温差引起大气运动形成的。
据理论计算全球大气中风能总的能量是1017kW,而且是可再生的,估计大约有3.5×1012kW的蕴藏风能可以被开发利用,这个价值至少比世界上可利用的水能大10倍,而且风取之不尽,用之不竭,不存在资源衰竭问题,同时在风能的转换过程中,基本不消耗化石能源,因而不会对环境构成严重威胁。
尽管从全能量系统的观点来看,在风电设备及其原材料的生产、制造和安装过程中需要消耗一定的化石能源,进而对环境构成一定的污染,但其排放量相对于风力机发出的电力而言则是微不足道的。
从表1.1可以看出风力发电具有显著的环保效益。
据专家计算,风力发电每1kW/时一般可以减少消耗0.31~0.34kg标准煤,同时还会减少排放CO2 0.835~0.93kg,以及一定数量的NO2,SO2及粉尘灰碴等。
CO2会导致温室效应,空气中的NO2和SO2会产生酸雨,粉尘污染空气,灰碴需占用土地堆放和处理。
而风力发电则不同其作为绿色能源的一种,己深受全世界的重视。
正如美国著名学者、美国地球政策研究所所长莱斯特·布朗在他的新书《B模式》中指出:我们要提倡风力发电,由于风能非常丰富、价格非常便宜、能源不会枯竭;又可以在很大范围内取得非常干净,没有污染,不会对气候造成影响。
目前,还没有任何一种能源有这么多的优点。
因此风能是一种对环境和人类都友好的真正的无污染的能源,其是改变全球能源与环境冲突的最有效方式之一,而这其中以风力发电最为广泛。
表1.1 不同能源对环境影响对比表1.2风能发电的历史与现状世界上第一个利用风力发电的国家是丹麦。
1890年,丹麦制造了人类社会第一台风力发电机。
到1910年时,已有几百台5~25kW的风力发电机组在丹麦运行。
同年荷兰、美国等国家也都有风力机发电机组的运行。
风力发电的应用最初在边远地区,应用的方式主要有:①单独使用小型风力发电机,供家庭住宅使用;②风力发电机与其它电源联用,可为海上导航设备和远距离通信设备供电;③并入地方孤立小电网,为乡村供电。
在此后的一段时间内,由于风力机机械故障频发和发电成本较高,而且石油价格下降、能源供应状况好转,因而风力发电并没有得到足够的重视,几乎没有得到什么发展。