假设检验的基本概念.pptx

合集下载

假设检验PPT课件

假设检验PPT课件

60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中

P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

数理统计之假设检验ppt课件

数理统计之假设检验ppt课件

z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别
完整版PPT课件
15
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
由样本算得 x543.5, s27.582 查表 t2(n1)t0.02 (4 5)2.776 这里 |t||543549|1.77t0.02(54)2.776
7.58/ 5 接受H0。新罐的平均爆破压力与过去无显著差别。
完整版PPT课件
31
例6 某工厂生产一种螺钉,标准要求是长度是32.5毫米,
假设的决定。 ❖ 基本思想(规则或前提)
小概率事件在一次试验中几乎不会发生。
完整版PPT课件
4
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
❖ 3 给定显著性水平 ,按分布写出小概率事件及其
概率表达式;
❖ 4 由样本计算出需要的数值;
❖ 5 判断小概率事件是否发生,是则拒绝,否接受
完整版PPT课件
9
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
2
z x
2
完整版PPT课件

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

《假设检验的概念》PPT课件

《假设检验的概念》PPT课件

假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行

假设检验PPT课件

假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?

第六章--假设检验基础课件

第六章--假设检验基础课件
两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效

概率统计 假设检验 ppt课件

概率统计  假设检验  ppt课件
为检验的接受域 (实际上没理由拒绝), 现 x 68 .5落入接受域,则接受原假设
H 0: = 68
由引例可见,在给定的前提下, 接受还是拒绝原假设完全取决于子样 值, 因此所作检验可能导致以下两类 错误的产生:
第一类错误 第二类错误
弃真错误 取伪错误
假设检验的两类错误
所作判断 接受 H0 真实情况
19.8 20.0 20.3 20.8 20.9 m = 15 20.9 21.0 21.0 21.0 21.2 21.5 22.0 22.0 22.1 22.3
.05 . 问两子样方差是否有显著差异?0
解 作假设 H0: 12=22 ;H1: 1222
取统计量 FS / S ~F ( 14 , 8 )
H0 为真
正确 第二类错误
(取伪)
拒绝 H0
第一类错误
(弃真)
H0 为假
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
任何检验方法都不能完全排除犯错 误的可能性.理想的检验方法应使犯两类 错误的概率都很小,但在子样容量给定的 情形下,不可能使两者都很小,降低一个, 往往使另一个增大. 假设检验的指导思想是控制犯第一类 错误的概率不超过, 然后使得犯第二类 错误的概率β 尽量的小。 若有必要,通过增大子样容量的方法 来减少 .
y 21.12 s 22 0.5689
19.8 20.0 20.3 20.8 20.9 m = 15 20.9 21.0 21.0 21.0 21.2 21.5 22.0 22.0 22.1 22.3
试判别两个子样均值的差异是仅 由随机因素造成的还是与来自不同的 鸟巢有关 ( 0 .05). 解 H0 : 1 = 2 ; H1 : 1 2

假设检验的基本概念.ppt

假设检验的基本概念.ppt
实际应用中,常将以往的经验性结论作为原假设, 与其相反的结论作为备选假设.
这样,原假设不会被轻易拒绝,一旦结果为拒绝 原假设,其结果也是可以信赖的,而且我们还知道此
时犯第一类错误的概率不超过;
如果结果为不能拒绝原假设,考虑到原假设为以 往的经验,做出接受原假设的推断也是比较合理的.
8.1.4 假设检验的步骤
因此,假设检验问题可能会犯如下两类错误:
第一类错误(“弃真”):实际情况是H0成立,而检验 的结果表明H0不成立,拒绝了H0.
第二类错误(“取伪”):实际情况是H0不成立,H1成 立,而检验的结果表明H0成立,接受了H0. 下面我们来研究一下犯这两类错误的概率.
8.1.3 假设检验的两类错误
犯第一类错误的概率:
没有足够的理由拒绝H0,应认可H0.
8.1.2 假设检验的基本思想
看来,是否拒绝 H0的关键是看U
因此
x 0
/ n
z
2
X
/
0
n
的取值是否满足

x 0
/ n
z
2 即{|
U
|
z/2}称为H0的拒绝域.
称–z/2和z/2为H0的拒绝域的临界点(值).
称 U X 0 为检验统计量.
/ n
0.499 0.515 0.508 0.512 0.498 0.515 0.516 0.513 0.524
问这台包装机工作是否正常? 通过分析知道: 要检验包装机工作是否正常,就是要检验总体均值
= 0.5kg是否成立.
Hale Waihona Puke 8.1.1 假设检验的思想方法
具体思路是:
首先提出两个对立的假设:
H0: = 0.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
注 一般,作假设检验时,先控制犯第一
1类错误的概率,在此基础上使 尽量 地小.要降低 一般要增大样本容量. 当H0不真时,参数值越接近真值, 越大
别的保护.
因而,通常把有把握的、有经验的结论 作为原假设,或者尽可能使后果严重的 错误成为第一类错误.
假设检验步骤(三部曲)
根据实际问题所关心的内容,建立H0与 H1在H0为真时,选择合适的统计量V,由H1
确 定拒绝域形式
给定显著性水平,其对应的拒绝域
注. 备择假设可以是单侧,也可以双侧. 2引例2中的备择假设是双侧的.若根据以
往生产情况,0=68.现采用了新工艺,关 心的是新工艺能否提高螺钉强度,越大
越好.此时可作如下的右边假设检验:
H0 : = 68; H1 : > 68
注 关于原假设与备择假设的选取 3
H0与H1地位应平等,但在控制犯第一类 错误的概率 的原则下,使得采取拒 绝H0 的决策变得较慎重,即H0 得到特
引例2 某厂生产的螺钉,按标准强度为
68/mm2, 而实际生产的强度X 服N(,3.62 ). 若E(X)==68,则认为这批螺钉符合要求,否
则认为不符合要求.为此提出如下假设:
H0 : = 68
称为原假设或零假设
原假设的对立面:
H1 : 68
称为备择假设
假设检验 必须在原假设与备择假设
的任务
假设检验的内容
参数检验 非参数检验
总体均值, 均值差的检验
总体方差, 方差比的检验 分布拟合检验 符号检验 秩和检验
假设检验的理论依据
假设检验所以可行,其理论背景为实际
推断原理,即“小概率原理”
引例1 某产品出厂检验规定: 次品率p不 超过4%才能出厂. 现从一万件产品中任意 抽查12件发现3件次品, 问该批产品能否出 厂?若抽查结果发现1件次品, 问能否出厂?
任何检验方法都不能完全排除犯错 误的可能性.理想的检验方法应使犯两类 错误的概率都很小,但在样本容量给定的 情形下,不可能使两者都很小,降低一个, 往往使另一个增大.
假设检验的指导思想是控制犯第一类
错误的概率不超过, 然后,若有必要,通 过增大样本容量的方法来减少 .
引例2 中,犯第一类错误的概率
§8.1 假设检验的基本概念
若对参数 一无所知
用参数估计 的方法处理
若对 参数 有所 了解
但有怀 疑猜测 需要证 实之时
用假设 检验的 方法来 处理
何为假设检验?
假设检验是指施加于一个或多个总 体的概率分布或参数的假设. 所作假设 可以是正确的,也可以是错误的.
为判断所作的假设是否正确, 从总 体中抽取样本,根据样本的取值,按一定 原则进行检验, 然后作出接受或拒绝所 作假设的决定.
出厂检验问题的数学模型
对总体X ~ f (x ; p) px(1 p)1x, x 0,1 提出假设
H0 : p 0.04; H1 : p 0.04
要求利用样本观察值
( x1 , x2 , , x12 )
12
( xi 3 or 1 )
i 1
对提供的信息作出接受H0 (可出厂) , 还
是接受 H1 (不准出厂) 的判断.
0.306
0.3
这不是小概率事件,没理由拒绝原假设,
从而接受原假设, 即该批产品可以出厂.
注1 直接算 1/12 0.083 0.04
若不用假设检验, 按理不能出厂.
注2 本检验方法是 概率意义下的反证法, 故拒绝原假设是有说服力的, 而接受 原假设是没有说服力的. 因此应把希 望否定的假设作为原假设.
c
取 0.05 ,则
c
z 2
z0.025
1.96
X 68

1.96
3.6 / 6
X 69.18 或 X 66.824
即区间( ,66.824 ) 与 ( 69.18 , + ) 为检验的拒绝域
称 X 的取值区间 ( 66.824 , 69.18 )
为检验的接受域 (实际上没理由拒绝), 现 x 68.5 落入接受域,则接受原假设
解 假设 p 0.04 , p 0.04 代入
P12 (3)
C3 12
p3 (1
p)9
0.0097
0.01
这是 小概率事件 , 一般在一次试验中
是不会发生的, 现一次试验竟然发生, 故认
为原假设不成立, 即该批产品次品率p 0.04
则该批产品不能出厂.
P12 (1)
C1 12
p1 (1
p)11
68, 的大小取决于 的真值的大小.
设 66, n 36, X ~ N ( 66,3.62 / 36)
66 P( 66.82 X 69.18 66 )
69.18 66 66.82 66 0.6 0.6
(5.3) (1.37) 1 0.9147 0.0853
之间作一选择
现从整批螺钉中取容量为36的样本, 其均值为 x 68.5,问原假设是否正确?
若原假设正确, 则 X ~ N(68 , 3.62 / 36)
因而 E( X ) 68 ,即 X 偏离68不应该太远,
故 X 68 取较大值是小概率事件. 因此,
3.6 / 6
可以确定一个常数c
使得
P
X 68 3.6 / 6
P(拒绝H0|H0为真)
No Image
0.05
若H0为真, 则 X ~ N ( 68 , 3.62 / 36 )
所以,拒绝 H0 的概率为, 又称为显 著性水平, 越大,犯第一类错误的概
率越大, 即越显著.
下面计算犯第二类错误的概率
14
=P(接受H0|H0不真) H0不真,即 68,可能小于68,也可能大于
H0: = 68
由引例2可见,在给定的前提下, 接受还是拒绝原假设完全取决于样本 值, 因此所作检验可能导致以下两类 错误的产生:
第一类错误 第二类错误
弃真错误 取伪错误
假设检验的两类错误
所作判断 真实情况
接受 H0
拒绝 H0

H0 为假
第二类错误
(取伪)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
相关文档
最新文档