非惯性系中的动力学专题

合集下载

第二章 非惯性系中的质点动力学

第二章 非惯性系中的质点动力学

M1-28
积分可得
mgR(cos jmax 1 1) m 2 R 2 sin 2 jmax 0 2
因 sin 2 jmax 1 cos2 jmax 上式变为
mgR(cos jmax 1) 1 m 2 R 2 (1 cos 2 jmax ) 0 2
z

2 R cos2 jmax 2 g cos jmax 2 g 2 R 0
2. 当加速度 ae 2 g tan 时,牵连惯性力 FIe 2mg tan ,应用 相对运动动能定理,有
m v 2 0 ( F cos )l (mg sin )l Ie 2 r
整理后得
y' m
FN FIe
mg θ ae x'
m 2 vr (mg sin )l 2
力大小为 FIe m 2 R sin j ,方向如图。 经过微小角度dj 时,此惯性力作功为
z
W FIe R cos jdj m 2 R sin j cos jRdj
相对运动的动能定理,得
R
0 0 mgR(1 cos j max )
jmax
0
Байду номын сангаас
j
mg
FIe
m 2 R 2 sin j cos j dj
vr 质点相对动参考系速度
M1-20
上式两端点乘相对位移
dr
dvr m dr F dr FIe dr FIC dr dt
dr 注意到vr , 且科氏惯性力垂直于vr , 有FIC dr 0, 则 dt mvr dvr F dr FIe dr

解答非惯性参考系内动力学问题的三种思路

解答非惯性参考系内动力学问题的三种思路

解答非惯性参考系内动力学问题的三种思路作者:***来源:《中学教学参考·理科版》2021年第11期[摘要]解答非惯性参考系内的动力学问题,既可以重选惯性参考系,又可以根据等效原理把非惯性参考系转换为惯性参考系,还可以对物体添加平衡力使物体的不平衡状态转换为其他的不平衡状态,甚至平衡状态,再分别进行解答。

[关键词]非惯性参考系;参考系转换法;运动状态转换法[中图分类号] G633.7 [文献标识码] A [文章编号] 1674-6058(2021)32-0054-03当我们站在电梯中随电梯匀速上升或者匀速下降时,感觉和人静止站立在地面上时一样,此时支持力等于重力,合外力等于零,人相对电梯的加速度也等于零,符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律,电梯是惯性参考系。

当我们站在电梯中随电梯开始上升或者开始下降时,随电梯即将停止上升或者即将停止下降时,感觉和人静止站立在地面上时不一样,此时人“超重”或“失重”,支持力大于或小于重力,合外力不等于零,而人相对于电梯的加速度却等于零,不符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律,电梯是非惯性参考系。

参考系是惯性参考系还是非惯性参考系,是用牛顿第二定律解答动力学问题之前需要弄清楚的问题,否则就可能会判断错误。

下面结合例题进行分析探讨。

题目:(2015年高考物理海南卷第9题)如图1所示,升降机内有一固定斜面,斜面上放一物块,开始时升降机做匀速运动,物块相对斜面匀速下滑。

当升降机加速上升时()。

A.物块与斜面间的摩擦力减小B.物块与斜面间的正压力增大C.物块相对于斜面减速下滑D.物块相对于斜面匀速下滑分析:该题中升降机开始时做匀速向上的运动,升降机和斜面对在斜面上运动的物块来说是惯性参考系,物块的运动符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律。

此时在斜面上匀速下滑的物块受重力、支持力、滑动摩擦力三个力作用而平衡,支持力与重力沿垂直于斜面斜向下方向的分力抵消,滑动摩擦力与重力沿平行于斜面斜向下方向的分力抵消。

第九章质点在惯性与非惯性参考系中的动力学复习课程

第九章质点在惯性与非惯性参考系中的动力学复习课程

方向相同。即
maF
第三定律——作用反作用定律:两物体之间的作用力和反 作用力大小相等,方向相反,并沿同一条直线分别作用在两 个物体上。
? 质点在惯性系中的运动微分方程
当物体受几个力作用时,右端应为这几个力的合力。

maF

m
d2r dt2
F
? 质点在惯性系中的运动微分方程
● 矢量形式 m r Fi(t,rr, )
求球的运动和杆对球的约束力。
解:本题先由已知的主动力mg求质点的运动规律,再根据 求得的运动求未知约束力,故同时包含第一类问题和第二类 问题。
质点运动轨迹是圆弧,故用自然轴系研究
sl, vdsl
dt 建立小球的运动微分方程:
m mg cos
讨论:(1)微幅摆动
i
m x F ix
i
●直角坐标形式
m y F iy
i
m z F iz
i
● 弧坐标形式
m s F iτ
i
m s2
F in
i
0 F i b
i
? 质点动力学两类问题应用举例
第一类问题:已知质点的运动, 求作用于质点的力;
第二类问题:已知作用于质点的力, 求质点的运动。
? 质点动力学两类问题应用举例
x
st
O
x
W
l0
x
m
W=mgi
讨 论:
x
F=-k( x+ st)
1)、物块垂直悬挂时,运动规律如何?
2)、物块垂直悬挂时,坐标原点选择 不同,对运动微分方程的影响。
? 质点动力学两类问题应用举例
例 题2
图示一单摆。设球的质量为m, 杆的质量不计,杆长为l。当杆 在铅垂位置时,球因受冲击,具

非惯性系中的力学(物理竞赛)

非惯性系中的力学(物理竞赛)
例 2.如图所示,定滑轮 A 的一侧持有 m1=5kg 的物体,另一侧挂有轻滑轮 B,滑轮 B 两侧挂着民 m2=3kg,m3=2kg 的物体,求每个物体的加速度。
例 3.一辆质量为 m 的汽车以速度 v 在半径为 R 的水平弯道上做匀速圆周运动。汽车左右轮相距为 d,重心离地高度为 h,车轮与路面之间的摩擦因数为 μ ,求: (1) 汽车内外轮各承受多大的支持力? (2) 汽车能安全行驶的最大速度?
F 合+F 惯=0
例 1.在火车车厢内有一长 l,倾角为的斜面,当车厢以恒定加速度 a0 从静止开始运动时,物体自 倾角为 θ 的斜面顶部 A 点由静止开始下滑,已知斜面的静摩因数为 μ ,求物体滑至斜面底部 B 点时, 物体相对于车厢的速度,并讨论当 a0 与 μ 一定时,倾角 θ 为多大时,物体可静止于 A 点?
F 合+F 惯=ma 相 式中, F 合为物体实际受到的合力.
二,匀速转动系中的惯性力 圆盘以角速度 ω 绕铅直轴转动,在圆盘上用长为 r 的轻线将质量为 m 的小球系于盘心且小不球 相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力 T 的作用一下作圆周运动, 符合牛顿第二定律.以圆盘为参考系,小球受到拉力 T 的作用,却保持静止,没有加速度,不符合牛顿第 二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力: F 惯=mω 2r.这个力叫做惯性离心力.若质点 静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方 程,就需要引入惯性力的概念.
一.直线加速系中的惯性力 设非惯性参考系的加速度为 a 参,物体相对于参考系的加速度为 a 相,物体实际的加速度为 a 绝, 则有: a 绝= a 参+a 相.那么,物体”受到”的惯性力 F 惯=-m a 参,其方向与 a 参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为:

哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解(第16~17章)【圣才出

哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解(第16~17章)【圣才出

第16章非惯性系中的质点动力学16.1复习笔记一、基本方程1.非惯性系中的质点动力学基本方程(或称为质点相对运动动力学基本方程),其表达式为r Ie ICma F F F =++v v v v 式中,e Ie F ma =-v v ,表示牵连惯性力;C C I F ma =-v v ,表示科氏惯性力。

2.在动参考系内,把非惯性系质点动力学基本方程写成微分形式22Ie IC d d r m F F F t'=++v v v v 3.几种特殊情况(1)当动参考系相对于定参考系作平移时,则C 0a = ,0F =IC ,于是相对运动动力学基本方程为r Iema F F =+v v v (2)当动参考系相对于定参考系作匀速直线平移时,则C 0a = ,e 0a = ,Ie 0F F ==IC,于是相对运动动力学基本方程与相对于惯性参考系的基本方程形式一样,其表达式为r ma F= ①相对于惯性参考系做匀速直线平移的参考系都是惯性参考系。

②发生在惯性参考系本身的任何力学现象,都无助于发现该参考系本身的运动状况,这称为经典力学的相对性原理。

(3)当质点相对于动参考系静止时,则r r 00a υ==v v ,,0F =IC ,所以质点相对静止的平衡方程为F F +=Ie 上式称为质点相对静止的平衡方程,即当质点在非惯性参考系中保持相对静止时,作用在质点上的力与质点的牵连惯性力相互平衡。

(4)当质点相对于动参考系作等速直线运动时,有r 0a =,质点相对平衡方程为0Ie IC F F F ++=v v v 上式称为质点相对平衡方程。

可见在非惯性参考系中,质点相对静止和作等速直线运动时,其平衡条件是不相同的。

二、非惯性系中质点的动能定理1.质点相对运动动能定理的微分形式质点在非惯性系中相对动能的增量,等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。

即2r 1d()δδ2F mv W W ''=+Ie 2.质点相对运动动能定理的积分形式质点在非惯性参考系中相对动能的变化,等于作用在质点上的力与牵连惯性力在相对路程上所作的功之和。

非惯性力问题

非惯性力问题

运用非惯性系的观点求解复杂的动力学竞赛题例析湖北省监利县朱河中学黄尚鹏摘要:牛顿运动定律只在惯性系中成立。

但有时需要考察质点相对非惯性系的运动,如何处理这种问题呢?当然可以先在惯性系中用牛顿运动定律考察质点的运动,然后用相对运动的公式把它变换到非惯性系中,求得质点在非惯性系中的运动。

但这样做有时很麻烦,其实只要引进适当的虚拟力即惯性力,就可以在非惯性系中用牛顿运动定律求解质点的运动。

关键词:惯性系非惯性系惯性力速度合成公式加速度合成公式一、非惯性系与惯性力牛顿运动定律成立的参照系叫做惯性系。

实验表明:地球上的物体相对于地球的运动并不完全遵守牛顿运动定律,所以地球不是惯性系,不过这种偏差一般是比较微小的。

因此,我们常常把地球看做近似程度相当好的惯性系。

一般情况下,相对地面静止或做匀速运动的参照系都可作为惯性系。

牛顿运动定律不成立的参照系叫做非惯性系,非惯性系相对惯性系必然做加速运动或旋转运动。

为了使牛顿运动定律在非惯性系中也能使用,可以人为地引进一个虚拟的惯性力。

如果非惯性系相对惯性系有平动加速度,那么只要认为非惯性系中的所有物体都受到一个大小为、方向与的方向相反的惯性力,牛顿运动定律即可照用,证明如下:设非惯性系相对惯性系有平动加速度(牵连加速度),质点相对于系的加速度为(绝对加速度),质点相对于系的加速度为(相对加速度),根据加速度合成公式,有(1)在惯性系中牛顿运动定律成立,即(2)是作用在质点上的合外力,是质点的质量。

在非惯性系中,为使牛顿运动定律成立,引入虚拟的惯性力,使(3)联立(1)(2)(3)知惯性力,证毕。

二、竞赛题例析例题1.如图1所示,质量为的汽车在水平地面上向左做匀加速直线运动,其重心离开前轮和后轮的水平距离分别为和(),重心离地面的高度为,假设车轮和地面之间不打滑,求:汽车以多大的加速度前进时其前、后轮对地面的压力相等?图1解析:选汽车为参照系,汽车处于静止状态,但由于其为非惯性系,为使牛顿运动定律成立,必须引入惯性力,故在质心上加一个向右的惯性力。

非惯性系中的功能原理及应用

非惯性系中的功能原理及应用

非惯性系中的功能原理及应用摘要: 在理论力学中,关于非惯性参照系中动力学问题,从来未涉及到非惯性系中的功能原理。

为此,本文先推证出质点系相对非惯性系的动能定理,再推出质点系相对非惯性系的功能原理及机械能守恒定理,然后再运用此原理解决实际问题。

关键词: 非惯性系;牵连惯性力;科氏惯性力;功能原理;机械能守恒定理The function of the inertial system principle and applicationAbstract: In the theory of mechanics,about the dynamics inertia reference in question never involved in noninertial system function and principle.For this reason this paper first inferred, particle system to a relative non-inertial systems of kinetic energy theorem,and then launch the relative particle noninertial system of function and principle, the last to solve practical problems by using theprinciple.Key words: Noninertial system; Involved the inertial force; Division type inertia force; principle of work and energy; Mechanical energy conservation theorem0 引言处理非惯性参考系中的动力学问题有两种方法,一种是在惯性参考系中考虑问题,然后运用相对运动的关系进行两种坐标参考系之间坐标、速度和加速度诸量的转换,化成非惯性系中的结论。

力学2动力学II-非惯性系讲解

力学2动力学II-非惯性系讲解

设有一质量为m的质点,在真实的外力F 的作 用下相对于某一惯性系S产生加速度 a ,
则根据牛顿第二定律,有:
F ma
假 沿设直线另运有动一。参在考S系参S考相系对中于,惯质性点系的S加以速加度速是度aa。0
则: a a a0
aAB aAC aCB
将此式代入上一式可得:
e
er
方向描述:er :径向方向
e :极角增加方向
O
位矢 r rer
速度
v

dr dt

d( rer dt
)

dr dt
er
r der dt

dr dt
er

r
d
dt
e

vr er

v e
r
P

X
e

r
der
d er
der der e der er d d
vr : v :
dt
参阅专业《力学》书
本地加速度
牵连横向 加速度
牵连向心 加速度
科里奥利 加速度
a a d r ( r ) 2 v
dt
a绝 a相 a牵
牵连加速度
f惯性力 ma牵
m
d
dt

r

[m

(

r
)]
2m(v )
欧拉力
对匀速转动的S'系:
非惯性系中的牛顿第二定律:
虚拟力
F ma F真实力 R
惯性力不是物体间的真实的相互作用,是一种假想的 力。它既无施力者, 也无反作用力, 不满足牛顿第三定律。

§2.1.4 非惯性系中的动力学

§2.1.4 非惯性系中的动力学
i
i
a 是非惯性系相对惯性系的加速度 是物体相对于非惯性系的加速度 a
例1:如图,升降机内有一倾角为的光滑斜面。当升降机以匀 加速度a1相对地面上升时,一木块m正沿斜面下滑。 求:木块m相对于升降机与地面的加速度。 解:已知升降机相对于地面的加速度为a1,木块相对于升降机 的加速度为a2,对物体受力分析,然后给升降机中木块加上惯 性力,选择升降机为参考系并建立图示坐标系。 y轴:
2
a x a2 a1 sin=g sin
a y a1 cos
y a1 a
a g 2 sin 2 a1 cos 2
a y a1 tan cot ax g
(是a与斜面的夹角)

a2 x
例2 平移惯性力在地球上的效应 实际上地球是一个非惯性系, 惯性力必然有实际的效应。 太阳引力失重和潮汐现象都是平移惯性力在非惯性系中 的实际效应。
W FG Fg
其中
Mm FG G 2 R
Fg mR cos
2
Mm FG G 2 R
Fg mR cos
2
Fg FG
由于W与FG的夹角很小(约10-3rad), 取近似
W FG Fg cos
Fgcos
W

M W m G 2 R 2 cos 2 mg 0 mR 2 cos 2 R
Fg man n mr 2 n
惯性离心力 :由于转动参考系的加速度效应而产生的一个假想力
(2) 转动系下的牛顿第二定律
在转动系中,牛顿第二定律写为

FG Fg W

F F
i i
g
ma

非惯性系中的动力学专题

非惯性系中的动力学专题

3.2非惯性系中的动力学【基本知识】一、联接体问题在力的作用下一起运动的两个或两个以上的物体,叫做联结体。

解有关联结体的问题一般要用到隔离法,适当辅以整体法。

联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。

力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。

因此,解联结体问题就是寻找约束,然后建立方程。

例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。

如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。

有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。

例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析)紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则:1.μ的数值应满足什么条件?2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)二、质点系牛顿第二定律及质心运动问题(1)质点系的牛顿第二定律如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方向的加速度分别是a1x、a2x、…、anx,那么有:Fx=m1·a1x+m2·a2x+…+mn·anx质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程往往能带来很大的方便。

(2)质心和质心的运动1 求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上的位置:=同理可以求得质心的速度:=质心的加速度:=②质心动力学方程:F=mac F 为此方向上质点系所受的合外力。

非惯性系力学

非惯性系力学

第三章 非惯性系力学引言:到目前为止,我们对质点的力学现象只是限制在惯性参考系中进行讨论的。

但是在某些实际问题中往往要求我们在非惯性系中研究力学问题。

而牛顿定律a m F =只适用于惯性系,在非惯性系中,它是不能适用的,那么相对于非惯性系中的运动定律要解决的是,质点在怎样的力作用下作怎样的运动,换句话来说,运动定律要解决的问题是,质点的受力情况与运动情况之间的联系。

1、对惯性系来说这种联系已经有了,就是牛顿第二定律a m F =。

提到了质点的受力情况,必须要明确力是物体之间的相互作用,既然力是物体间的互相作用,它与参照系的选择有没有关系?没有关系。

2、对非惯性系质点所受的力仍然为F 。

至于运动情况与参照系的选取却是有关的,对不同的参照系会给出不同的描述。

因此,质点相对惯性系和非惯性系的加速度当然是不同的,为了加以区分,就用a ' 表示质点相对非惯性系的加速度。

此时F 就不等于a m F '= ,F 虽然不等于a m F '= ,那么能不能找出F 与a ' 的关系呢?如果找到了它们之间的关系,也就等于找到了非惯性系中的运动定律,那么我们也就可以在非惯性系中讨论力学问题了。

F 与a '之间的关系总能够找到的。

3、只要能找到a 与a ' 的关系:)(a f a '=,根据运动描述的相对性,这个关系总是可以找到的。

那么根据)(a mf a m F '== 也就可以找到F 与a ' 的关系。

因此根据这条解决问题的途径,在这一章里我们准备要讲的4、内容:是①相对运动;②非惯性系动力学;③然后再做一个大题目——解决地球自转所产生的影响。

下面先讲质点相对运动的描述。

也就是讨论质点相对于两个不同参照系运动之间的关系。

§1. 作平动的参照系一、伽利略变换如右图所示,为叙述方便起见简称OX 坐标系为O 系,假定O 系为惯性系,并认为它是一个固定不动的参照系,就称它为固定坐标系。

非惯性系下的动力学

非惯性系下的动力学

非惯性系下的动力学引言:在物理学中,我们经常研究物体在惯性系下的运动规律,即不受外力作用时的运动状态。

然而,现实生活中存在许多非惯性系,例如地球的自转和公交车的加速等。

在这些非惯性系下,物体的运动会受到额外的力的影响,因此我们需要研究非惯性系下的动力学。

一、非惯性系的定义和特点非惯性系是指相对于惯性系而言,具有加速度的参考系。

在非惯性系中,物体的运动受到惯性力的影响,这是由于参考系的加速度导致的。

惯性力的大小和方向与物体的质量和加速度有关。

二、离心力的作用在非惯性系下,离心力是一种常见的惯性力。

当物体在旋转的参考系中运动时,会受到离心力的作用。

离心力的大小与物体的质量、角速度和距离旋转中心的距离有关。

离心力的方向指向旋转中心的外侧,是一种向心加速度的结果。

三、科里奥利力的效应科里奥利力是另一种非惯性系下的力。

当物体在旋转的参考系中有径向速度时,会受到科里奥利力的作用。

科里奥利力的方向垂直于物体的速度和旋转轴,并且与速度的大小和旋转角速度有关。

科里奥利力会使物体偏离其惯性轨迹,导致物体的运动轨迹呈现出曲线形状。

四、福科力的存在福科力是一种在非惯性系下的惯性力。

当物体在加速的参考系中运动时,会受到福科力的作用。

福科力的大小与物体的质量、加速度和参考系的加速度有关。

福科力的方向与参考系的加速度相反,并且与物体的质量和加速度成正比。

五、应用举例:地球自转和人体感受地球的自转是一个非惯性系,因此我们可以观察到一些非惯性系下的动力学效应。

例如,地球的自转导致了地球上的离心力,使得物体在赤道上的重力稍微减小。

此外,地球的自转也会导致科里奥利力的作用,使得气流和海洋流的运动呈现出特定的曲线形状。

在人体感受方面,非惯性系下的动力学效应也起到一定的作用。

例如,当乘坐公交车或电梯加速或减速时,我们会感受到身体向前或向后倾斜的力。

这是由于福科力的作用,使得我们的身体相对于参考系有一个相对的加速度。

结论:非惯性系下的动力学是物理学中一个重要的研究领域。

非惯性系中的动力学

非惯性系中的动力学

在非惯性系中由于牛顿运动定律不成立, 不能直接用 牛顿运动定律处理力学问题。若仍希望能用牛顿运动定律 处理这些问题, 则必须在非惯性系中引入一种作用于物体 上的惯性力。惯性力不同于前面所说的力,因为惯性力既 没有施力物体,也不存在它的反作用力。
小车作加速运动a≠0时,单摆偏 转了一个角度,拉小球的弹簧被 拉伸,其状态不符合牛顿定律, 引入了惯性力后,就能把牛顿运 动定律应用于非惯性系。
a cos
g
sin
(m2 m1)sin m2 m1 sin2
g
m2g
二、转动参照系中的离心惯性力
m
FT
m
F*
观 察 者2
一光滑的圆盘以匀角速ω绕其铅直轴转动,将一质
量为m的小球用长为r的细线栓在轴上,并使小球在圆
盘上与圆盘一起以匀角速ω绕铅直轴转动。
如果在O则系对内于的观观察测者者1:1测F量T 到 m细a线对m小球2r的拉力为FT
§3.5 非惯性中的动力学
一、 直线加速参考系中的惯性力 二、 离心惯性力 *三、 科里奥利力
§3.5 非惯性中的动力学
一、 直线加速参考系中的惯性力
问题:如图,一单摆悬挂在小车的天花板上,另一个小
球用弹簧拉着,现均以小车为参考系来研究小球的运动
a =0
a 0
小车作匀速直线运动,即a = 0 时,单摆、小球均处于 静止状态符合牛顿定律。
小车作加速直线运动,即a≠0时,单摆偏转了一个角度,拉 小球的弹簧被拉伸,其状态不符合牛顿定律,为什么?
inertia force 1.avi
如图:O系为基本参考系,O 系为动参考系
设 O系相对O系以加速度 a 作直线加速运动,
z
质点在空间运动, 某时刻位于P点

非惯性系中动力学问题的讨论讲解

非惯性系中动力学问题的讨论讲解

包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。

介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。

最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。

关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。

动力学2非惯性系

动力学2非惯性系

解: 以地面为参考系(惯性系), hamster受力为零, 向心加速度为零,
d 2x dt 2

0,
d2y dt 2

0
转轮
Fc=2mv
以转轮为参考系(非惯性系)
受力情况?
Hamster的加速度: 2r
v
Fc-F离=ma’ 2mv-m2r = m2r F离=m2r
思考:如果转轮的速度是 =v1/r, hamster的相对速度为
F
“转m动 ”r参考m系中 (,牛 顿r)运动0 定m律a:'.
物体相对于 转动参考系 静止。
切向惯性力
惯性离心力
例(P165):试研究地面上物体的重量。所谓 重量即静止于地球上的物体施于其承托物的力。
隔离物体 具体分析(重力、惯性离心力) 建立坐标(Z’为天顶,X’为南方)
(用到x 0, y 0)
y'
d 2x' / dt 2 2x'2(x sin t y cost)
Fc f
2m

qv

B

v' 2mv'.
方向判断:类 似于洛仑兹力
(B) Fc
科里奥利力的方向: 北半球——向右 南半球——向左
左、右不同 因为南半球人是头向“下”

Fc v(qv) (B) v(qv) 上
Fc

av质点av作''一般rr的.“相 (对” r运)系关和动,键相2从:对 而掌”av正’握加'. 0确“ 速计度绝入之对惯间、性的牵力关连。
dy' / dt x cost y sin t x sin t y cost

第二章 - 非惯性系2

第二章 - 非惯性系2
r
2
v 2 m 2mv mr 2 r
v 2 , 在非惯性系(圆盘)S′: 向心加速度 a r
非惯性系中牛二定律不适用
16
将惯性系(地面S)中的牛二定律式
2 v F m 2mv mr 2 r
转换到非惯性系(圆盘)S′中使用:
v F 2mv mr m r
m2 m1 m2 a m2 g m1 g m1a
a
m1 g m2 g m1a m2a m1ar m2ar m1 m2 ar ( g a) m1 m2
在非惯性系中,只要在受 2m1m2 FT ( g a ) 力分析时加上惯性力后, m1 m2 就可形式上使用牛顿定律。
注意:加速度是矢量,要有方向! a = ax j + a yk
解法 二
物体受力:重力 W , 斜面对它的正压力 N N 惯性力 F惯 ma1 W 动力学方程为: W N F惯 ma F惯
以作加速平动的升降机为参考系,是非惯性系。
沿斜面向下方向和垂直斜面向上方向的受力分量式为:
速度 a0 相对地面向上运动时,求两物体相对
a
a
a0
为 a1、a2 ,且相对电梯的加速度为 a
m1 g T m1a1
m1 m 2
a1 a0 a
m2 g T m2a2
m1 m2 a ( g a0 ) m1 m2
0 y T aT 2
a2 a0 a
2m1m2 T ( g a0 ) m1 m2
a1
m1g
y
m2 g
9
0
若电梯以相同的加速度下降,结果又如何?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2非惯性系中的动力学
【基本知识】
一、联接体问题
在力的作用下一起运动的两个或两个以上的物体,叫做联结体。

解有关联结体的问题一般要用到隔离法,适当辅以整体法。

联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。

力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。

因此,解联结体问题就是寻找约束,然后建立方程。

例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。

如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。

有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。

例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析)
紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B 都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则:1.μ的数值应满足什么条件?
2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)
二、质点系牛顿第二定律及质心运动问题
(1)质点系的牛顿第二定律
如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方
向的加速度分别是a1x、a2x、…、a nx,那么有:
Fx=m1·a1x+m2·a2x+…+m n·a nx
质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程
往往能带来很大的方便。

(2)质心和质心的运动
①求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系
的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上
的位置:
x c=m1x1+m2x2+⋯+m n x n
m1+m2+⋯+m3
同理可以求得质心的速度:
v c=m1v1+m2v2+⋯+m n v n
m1+m2+⋯+m3
质心的加速度:
a c=m1a1+m2a2+⋯+m n a n
m1+m2+⋯+m3
②质心动力学方程:F=ma c F 为此方向上质点系所受的合外力。

特例,当F=0时,ac=0,vc 不变,意味着质点系整体上做匀速直线运动。

而当Vc=0时,意味着质心的位置不变。

例2:一列火车有静止开始在铁路上匀加速直线运动,在前20s内前进了40m.至20s末,最后一节车厢脱钩.若机车的牵引力保持不变,再经过20s,这节车厢停下来.且此时与火车相距84m.求这节车厢质量是原来整列火车质量的几分之几?设运动中车的各部分所受阻力大小不变.
三、非惯性系中的力学问题
1、非惯性系相对惯性系做变速运动的参考系,牛顿运动定律不适用,称为非惯性系。

2、惯性力a
m -=惯F ,其中a 是非惯性系相对惯性系的加速度。

引入惯性力的概念后,牛顿方程在非惯性系中形式上得以成立,有'a F F m =+惯,式中,F 为真实力,惯F 为惯性力,'a 为质点在非惯性系中的加速度,从产生的效果看,惯性力与真实力一样,都可以改变物体的运动状态,即产生加速度。

惯性力的方向与非惯性系的加速度的方向相反,惯F 具体形式与非惯性系的运动状态有关。

(1)平动加速系中的惯性力
在平动加速参考系中,o a m -=惯
F ,o a 为非惯性系的加速度。

平动非惯性系中,惯性力由非惯性系相对惯性系的加速度及质点的质量决定,与质点的位置及质点相对于非惯性下速度无关。

(2)匀速转动系统中的惯性力——惯性力离心力
在转动参考系中,r m 2F ω=惯
,式中ω为转动系的角速度,r 为物体在转动系中的矢径.
例3:如图所示,长度分别为L 1和L 2的两根不可伸长的轻绳悬挂着质量都是m的两个小球,它们处于静止状态。

中间的小球m1受到水平的冲击,瞬间获得水平向右的速度v0,求此时连接m2的绳的拉力T 是多少?
例4:质量为M的光滑圆形滑块平放在桌面上,一根轻绳跨过此滑块后,两端各挂一个物体,物体的质量分别为m1和m2,如图3.2-4所示,绳子跨过桌边竖直向下,所有摩擦均不计。

求滑块M加速度。

提示:先分析极小段位移,有△x M=(△x1+△x2)/2
也就是v M=(v1+v2)/2恒成立咯,因为v=△x/△t
那么就也有△v M=(△v1+△v2)/2
加速度也就有a M=(a1+a2)/2 ,因为a=△v/△t。

相关文档
最新文档