1-3传感器的误差和精度

合集下载

《传感器精度准确度》课件

《传感器精度准确度》课件

传感器分类
传感器可分为温度传感器、 压力传感器、加速度传感 器等不同类型。
传感器的精度和准确度
1 传感器精度
精度是指传感器测量结果的稳定性和重复性,常用指标有精确度、偏差、线性度等。
2 传感器准确度
准确度是指传感器测量结果与真实值之间的接近程度,常用指标有误差、偏移、灵敏度 等。
3 精度和准确度的差异
2
常见准确度度量
常见的准确度度量方式有误差、偏移和灵敏度等。
3
准确度控制方法
控制传感器准确度的方法包括校准、线性补偿和环境影响消除等。
传感器精度和准确度的关系
精度和准确度的差 异
精度关注测量结果的稳定性, 准确度关注测量结果的接近 程度。
如何平衡精度和准 确度
通过校准和优化算法等方法 平衡精度和准确度的要求。
精度关注测量结果的稳定性,准确度关注测量结果的接近程度。
传感器的精度
1
精度定义
精度是测量结果的稳定性和重复性,可以通过重复测量得到。
2
常见精度度量
常见的精度度量方式有标准偏差、方差和可重复性等。
3
精度控制方法
控制传感器精度的方法包括校准、工艺优化和噪声抑制等。
传感器的准确度
1
准确度定义
准确度是测量结果与真实值之间的接近程度,可以通过与标准参考值 传感器精度和准确度的权衡。
总结
传感器精度和准确度的重要性
精度和准确度影响传感器的可靠性和数据分析的准确性。
如何平衡精度和准确度
通过校准和优化算法等方法平衡精度和准确度的要求。
现有技术的局限性
目前的技术还存在精度和准确度难以完全达到最佳状态的限制。
参考文献
1. 张三, "传感器应用研究", 《传感技术研究》, 2020. 2. 李四, "传感器精度与准确度分析", 《传感器学报》, 2019. 3. 王五, "现代传感器技术综述", 《传感工程与仪器》, 2018.

传感器原理及应用

传感器原理及应用
精品文档
一、传感器的静态特性
6、滞后性-续1
对滞后性的衡量,一般用滞环的最大偏差或最大 偏差的一半与满量程输出值的百分比来表示,称为 滞环误差

如果传感器存在滞后性,则输入与输出就不能保持 一一的对应关系,因此应尽量使之变小。产生滞后 性的原因主要是材料的物理性质所造成的。
精品文档
一、传感器的静态特性
精品文档
烟尘浊度测量
精品文档
传感器与遥感技术
飞机及航天飞行器:近紫外线、可见光、远红外线、微波 船舶:超声波传感器
微波
地面
红外接收传感器
红外线分布差异 矿藏埋藏地区
精品文档
二、传感器的分类
1、按传感器输入量(用途)分类
生产厂家往往按输入量分类,以向户提供基本的使用信息。 如:位移传感器、速度传感器、加速度传感器、力传感器、压 力传感器、流速传感器、温度传感器、光强传感器、湿度传感 器、粘度传感器、浓度传感器、…。
精品文档
传感器的分类
2、按传感器工作机理分类
此种分类方法能表示输入变量和输出变之间的关系。
精品文档
传感器的分类
2、按传感器工作机理分类-续1
(1)物性型传感器 是利用某些功能材料本身所具有的内在特性及效应把被测量直接 转换为电量的传感器。如:各种压电晶体传感器。
(2)结构型传感器 是以结构(如形状、尺寸)为基础,利用某些物理规律实现把被 测量转换为电量。如:气隙型电感式传感器。
(2) 传感器输入、输出端均存在噪声干扰,Δx过小
时,被外界噪声所淹没。 最小检测量:
其中,C为系数,一般取1~5,N为噪声电平, K为灵敏度。对于数字式传感器,则用输出数字指
示值最后一位数字所代表的输入量来表示,称为分 辨率。

传感器1例题+习题

传感器1例题+习题
20.42 20.43 20.40 20.43 20.42
20.43 20.39 20.30 20.40 20.43
20.42 20.41 20.39 20.39 20.40
试用拉依达准则判别有无坏值?
1-17假设使用传感器器对某温度进行了12次的等精度测量,获得的实验数据如下(单位为C):
20.46 20.52 20.50 20.52 20.48 20.47
解: 根据精度定义表达式 %,并由题意已知A=0.5%,YF.S=(1200-600)℃,得最多允许误差
△A=A·YF.S=0.5%×(1200-600)=3℃
此温度传感器最大允许误差位3℃。检验某点的最大绝对误差为4℃,大于3℃,故此传感器不合格。
例题1-2已知电感压力传感器最小检测量为0.5mmH2O,测量范围为0~250mmH2O,输出电压为0~500mV,噪声系数C=2;另一个电容压力传感器最小检测量为0.5mmH2O,测量范围为0~100mmH2O,输出电压为0~300mV,噪声系数C=2。问:哪个传感器噪声电平大?大多少?
20.50 20.49 20.47 20.49 20.51 20.51
要求对该数据进行加工整理,并写出最终结果。
1-18、指出下列原因引起的误差属于哪种类型的误差?
1.米尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
表1.1输入值与输出值的关系
输入值
(mm)
1
5
10
15
20
25
30
输出值
(mV)
1.50
3.51
6.02

传感器原理及工程应用答案

传感器原理及工程应用答案

传感器原理及工程应用答案1—1:测量的定义,答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。

所以, 测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。

1—2:什么是测量值的绝对误差、相对误差、引用误差,答:绝对误差是测量结果与真值之差,即: 绝对误差=测量值—真值相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值×100%引用误差是绝对误差与量程之比,以百分数表示,即: 引用误差=绝对误差/量程×100%1—3什么是测量误差,测量误差有几种表示方法,它们通常应用在什么场合, 答: 测量误差是测得值减去被测量的真值。

测量误差的表示方法:绝对误差、实际相对误差、引用误差、基本误差、附加误差。

当被测量大小相同时,常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。

2,1:什么是传感器,它由哪几部分组成,它的作用及相互关系如何,答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

通常,传感器由敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分; 转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

2—2:什么是传感器的静态特性,它有哪些性能指标,分别说明这些性能指标的含义, 答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。

灵敏度定义是输出量增量Δy与引起输出量增量Δy的相应输入量增量Δx之比。

传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

输出与输入关系可分为线性特性和非线性特性。

工业传感器精确度等级计算

工业传感器精确度等级计算

工业传感器精确度等级计算
1.级别0:级别0的传感器精确度最高,误差范围通常在0.1%以内。

这种传感器通常采用最先进的测量原理和制造工艺,用于对测量结果要求
非常高的应用领域,如科学研究、精密制造等。

2.级别1:级别1的传感器精确度较高,误差范围通常在0.1%-0.5%
之间。

这种传感器通常采用较先进的测量原理和制造工艺,适用于大多数
工业应用领域。

3.级别2:级别2的传感器精确度较低,误差范围通常在0.5%-1%之间。

这种传感器通常采用较简单的测量原理和制造工艺,适用于对测量结
果要求不是很高的应用领域。

在确定一个传感器的精确度等级时,需要考虑多种因素。

首先是测量
原理,不同的测量原理对传感器的精确度会有不同的影响。

其次是传感器
的结构和制造工艺,制造工艺越精良,对传感器的精确度要求越高。

此外,环境因素如温度、湿度、振动等也会对传感器的精确度产生影响。

为了保证传感器的精确度,需要进行严格的质量检验和校准。

质量检
验通常包括外观检查、性能测试等,校准则是通过与已知标准进行比较,
调整传感器的输出结果以使其更接近真实值。

总之,工业传感器的精确度等级是评估传感器测量结果准确性的重要
指标。

选择合适的精确度等级可以满足不同应用领域对测量精度的要求,
并提高生产过程的可靠性和效率。

1-1测量的基本概念、测量误差1-2传感器及其基本特性

1-1测量的基本概念、测量误差1-2传感器及其基本特性

作图法求灵敏度过程 切点 y Δy
传感器 特性曲线
x1
y K x
0 Δx
xmax
x
2、分辨力:
指传感器能检出被测信 号的最小变化量,是有量纲 的数。当被测量的变化小于 分辨力时,传感器对输入量 的变化无任何反应。对数字 仪表而言,如果没有其他附 加说明,可以认为该表的最 后一位所表示的数值就是它 的分辨力。一般地说,分辨 力的数值小于等于仪表的最 大绝对误差。
传感器实例
温度传感器
压力传感器
液位传感器
三、传感器基本特性
传感器的特性一般指输入、输出特性。 包括:灵敏度、分辨力、线性度、稳定度、 电磁兼容性、可靠性等。
1、灵敏度 :
灵敏度是指传感器在稳态下输出变化值与 输入变化值之比,用K 来表示:
dy y K dx x
(1-6)
对线性传感器而言,灵敏度为一常数;对非 线性传感器而言,灵敏度随输入量的变化而变 化。
产生粗大误差的一个例子
2.系统误差:
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原 因是什么?
3.随机误差
误差产生的因素:
1.粗大误差
明显偏离真值的误差称为粗大误差,也叫 过失误差。粗大误差主要是由于测量人员的粗 心大意及电子测量仪器受到突然而强大的干扰 所引起的。如测错、读错、记错、外界过电压 尖峰干扰等造成的误差。就数值大小而言,粗 大误差明显超过正常条件下的误差。当发现粗 大误差时,应予以剔除。

传感器原理及应用_第三版_(王化祥)_天津大学_课后答案

传感器原理及应用_第三版_(王化祥)_天津大学_课后答案

1-9:解:(1) Ug= E[(R1 +Δ R1 ) (R3 +Δ R3 )-(R2+ΔR2) ( R4+ΔR4)]/( (R1+ΔR1 +R2+ ΔR2) (R3+ΔR3+R4+ΔR4) ) = E[ ΔR1 / R+ΔR3/ R-Δ R2 /R-Δ R4/ R]/ ( ( 2+Δ R1 / R+ΔR2 / R) (2+ΔR3/ R+ΔR4/ R) ) =2E[1+μ] ΔR/R /[2+(1-μ) Δ R/R] -3 2.6*10 =2*2*1.3*ΔR/R/[2+0.7*ΔR/R] 2 [2+0.7*ΔR/R] 2=2*10 3ΔR/R=4+2.8 ΔR/R+(Δ R/R)2 0=4-( 2000-2.8)ΔR/R+(ΔR/R)2 (ΔR/R-998.6)2 =998.62 -4 ΔR/R=0.0020028059 ε=Δ R/R/K =0.0010014 -4 εr=-με=-3*10 (2) :F=εES=0.001*2*1011*0.00196=3.92*105N 1- 10:解: (1)贴片习题中图 2-7 所示,R3、R2 靠近中心处,且沿切向方向,R1、R4 靠近圆 片边缘处且沿径向贴。位置在使-εr=εt 即
2
2
2
H( jω) max − H( jω) min H( jω) max
∴1 −< 3%因为最小频率为 W=0 ,由图 1-14 知,此时输出的幅频值为│ H(jw)│/K=1, 即│H(jw)│ =K
K
H ( jω ) max
< 3%
0.97 <
K k
⎛ ⎛ ω ⎞2 ⎞ ⎜ 1−⎜ max ⎟ ⎟ ⎜ ⎝ ω0 ⎠ ⎟ ⎝ ⎠

传感器技术及应用(第二版)思考题与习题参考答案

传感器技术及应用(第二版)思考题与习题参考答案

思考题与习题参考答案第1章1-1 什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何? 答:传感器是把被测量转换成电化学量的装置,由敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。

1-2 什么是传感器的静态特性?它有哪些性能指标?分别说明这些指标的含义?答:传感器的静态特性是指被测量的值处于稳定状态时的输入与输出的关系。

衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。

灵敏度是输入量∆y 与引起输入量增量∆y 的相应输入量增量∆x 之比。

传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

迟滞是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。

重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

漂移是指在输入量不变的情况下,传感器输出量随时间变化的现象。

精度是用来评价系统的优良程度。

1-3 某线性位移测量仪,当被测位移X 由3.0mm 变到4.0mm 时,位移测量仪的输出电压V 由3.0V 减至2.0V ,求该仪器的灵敏度。

解:该仪器的灵敏度为10.30.40.30.2X V -=--=∆∆=S (V/mm ) 1-4 用测量范围为-50~150KPa 的压力传感器测量140KPa 压力时,传感器测得示值为142KPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差:X L ∆=-=142-140=2 相对误差100%L δ∆=⨯=2100% 1.4285%140⨯= 标称相对误差即%100⨯∆=x ξ=2100% 1.4084%142⨯= 引用误差100%-γ∆=⨯测量范围上限测量范围下限 =22100%1%150(50)200=⨯=--1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。

传感器的基本特性

传感器的基本特性

传感器的特性
使用传感器的目的是希望它的输出信号能够准确地反映被测量 (输入信号)的数值或变化情况。
传感器的特性:
传感器的输出量和输入量之间对应关系的描述就称为传感器的
特性。
传感器技术与应用
1.10
传感器的一般特性
静态输入量 传感器的输入量 动态输入量 静态输入量:不随时间变化或变化很慢的输入信号。
传感器技术与应用
1.13
传感器的动态特性体现着传感器的输出值能够真实 再现变化着的输入量的能力。
传感器技术与应用
1.14
传感器的静态特性
2 n
不考虑迟滞及蠕变效应,其输出量和输入量之间的关系为:
Y a 0 a1X a 2 X ... a n X
(1-1)
Y为输出量;
X为输入量;
由此可见,在选用测量仪表的时候,不能单纯追求精度等级,还 要考虑到量程是否合适等因素。
传感器技术与应用
1.7
教学内容
1.2 传感器的基本特性
传感器技术与应用
1.8
教学要求
掌握传感器的静态特性和动态特性的概念 熟练掌握传感器的静态特性
线性度、灵敏度、分辨率、精度
迟滞、重复性、漂移
传感器技术与应用
1.9
在100.2kg时输出的电压值仍为35mV,但在100.3kg时输出的 电压值为36mV,则其分辨率为 0.3kg
分辨率也与测量仪表有关 如果采用精度更高的电压表来测量。同样在100.0kg时输
出电压35.0mV,但在100.1kg时输出电压值为35.1mV,那么其 分辨率变为 0.1kg
传感器技术与应用
1.17
传感器的静态特性
传感器静态特性的主要指标:

传感器实验的误差分析原理

传感器实验的误差分析原理

传感器实验的误差分析原理传感器实验的误差分析原理是通过对传感器实验数据进行分析和处理,识别、评估和校正传感器测量中的各种误差来源和影响因素,从而提高传感器测量的准确性和可靠性。

传感器中的误差分析是传感器精度评定的重要一环,具有重要的理论和实际价值。

传感器实验的误差来源可以分为系统误差和随机误差两部分。

系统误差是由于传感器本身的固有缺陷、非线性特性、温度效应等因素引起的,通常与测量变量的值无关;随机误差则是由于外界干扰、电子噪声、测量环境变化等随机因素引起的,通常与测量变量的值相关。

在进行传感器实验误差分析时,通常依次进行以下几个步骤:1. 传感器参数校准:首先需要对传感器进行校准,确定传感器的基本参数,包括灵敏度、线性度、零偏等,以及与环境条件相关的温度补偿参数等。

校准一般使用标准信号源和标准设备进行,通过与标准参考的比较,确定传感器的输出特性,并建立转换模型。

2. 数据采集:进行传感器实验时,需要对传感器输出的信号进行采集和记录。

可使用数据采集卡、模拟-数字转换器等设备进行传感器信号的数字化。

采集的数据包括传感器输出的模拟电压值、数字编码值或其他物理量。

3. 数据分析:对采集到的传感器数据进行分析,包括数据的统计分布、均值和方差的计算,以及传感器的输出特性曲线的绘制等。

通过对数据的分析,可以初步了解数据中的误差来源和分布情况。

4. 误差评估:根据传感器的特性和数据分析的结果,对误差来源进行评估。

包括对系统误差和随机误差的评估,确定其大小和分布情况。

可以使用均方根误差(RMSE)、平均绝对误差(MAE)等指标进行评估。

5. 校正方法:根据误差评估的结果,采取相应的校正方法,对传感器输出进行修正。

校正方法可以是线性或非线性修正,根据传感器的特性和数据分析的结果确定。

校正方法包括增益校正、零点校正和非线性校正等。

6. 可靠性评估:对经过校正的传感器进行可靠性评估,包括评估传感器测量的精度、准确度、稳定性和可重复性等指标。

传感器技术课后习题答案

传感器技术课后习题答案

1-1 衡量传感器静态特性的主要指标。

说明含义。

1、 线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、 回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、 重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、 灵敏度——传感器输出量增量与被测输入量增量之比。

5、 分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、 阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、 稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、 漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、 静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2 计算传感器线性度的方法,差别。

1、 理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、 端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、 “最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、 最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1-3 什么是传感器的静态特性和动态特性为什么要分静和动(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

Z-1 分析改善传感器性能的技术途径和措施。

传感器规格与精度计算

传感器规格与精度计算

传感器规格与精度计算
简介
本文档旨在介绍传感器规格以及如何计算传感器的精度。

传感器规格
传感器规格是描述传感器性能的重要指标。

常见的传感器规格
包括以下几个方面:
1. 测量范围:传感器能够测量的物理量的范围。

2. 灵敏度:传感器输出信号与所测量物理量变化之间的关系。

3. 分辨率:传感器能够检测的最小变化量。

4. 频率响应:传感器能够响应的最大变化频率。

5. 噪声:传感器输出信号中存在的随机干扰。

精度计算
传感器的精度是评估传感器测量结果与真实值之间的误差大小。

精度通常用以下几个指标来表示:
1. 绝对误差:传感器测量结果与真实值之间的差异。

2. 相对误差:绝对误差与真实值之间的比率。

3. 精度等级:根据绝对误差或相对误差的大小,将传感器分为
不同的等级。

计算传感器的精度可以通过以下步骤进行:
1. 测量一系列已知真实值的物理量,并记录对应的传感器测量
结果。

2. 计算每个测量结果与对应真实值之间的差异,得到绝对误差。

3. 若需要,将绝对误差转化为相对误差。

4. 根据绝对误差或相对误差的大小,判断传感器的精度等级。

总结
传感器规格包括测量范围、灵敏度、分辨率、频率响应和噪声
等指标。

计算传感器的精度可以通过测量已知真实值并比较测量结
果与真实值之间的差异来完成。

传感器的误差名词解释

传感器的误差名词解释

传感器的误差名词解释传感器作为现代科技领域中的重要组成部分,被广泛应用于各个领域。

它们能够将环境中的物理量转换为电信号,并通过电子装置进行处理和分析。

然而,由于各种因素的影响,传感器的输出结果并不完全准确,存在着一定的误差。

本文将通过对传感器误差的名词解释,揭示误差的成因和影响,以及如何减小误差以提高传感器的精度和可靠性。

1. 精度(Accuracy)精度是指传感器输出值与真实值之间的偏差程度,它是衡量传感器输出准确性的重要指标。

通常以百分比或部分比例表示精度,并分为静态精度和动态精度。

静态精度是在静止场景下进行测量时的精度,而动态精度则是在变化场景下进行测量时的精度。

2. 分辨率(Resolution)分辨率是指传感器在输入范围内能够检测到的最小变化量,也可称作最小可分辨步进。

它决定了传感器能够测量的最小精度。

通常以数字或模拟单位表示,较高的分辨率意味着传感器能够更精确地测量细微变化。

3. 灵敏度(Sensitivity)灵敏度是指传感器输出值对于输入变化的响应程度。

它描述了传感器的增益特性,即输入信号与输出信号之间的关系。

灵敏度越高,传感器能够更加敏感地感知到输入量的变化。

4. 线性度(Linearity)线性度是指传感器输出与输入之间的线性关系程度。

即传感器输出与输入之间的比例关系是否保持恒定。

线性度越高,传感器输出的误差越小,能够更准确地反映输入量的变化。

5. 偏移误差(Offset Error)偏移误差是指传感器输出与真实值之间的常量差异,也称为零位误差。

它表示了传感器在无输入信号时的输出偏离程度。

偏移误差可能由于传感器的制造缺陷或环境变化引起。

对于某些应用,需要经常校准传感器以减小偏移误差。

6. 非线性误差(Non-linearity Error)非线性误差是指传感器输出与输入之间的非线性关系导致的误差。

即传感器输出值与真实值之间的偏差不是恒定的,而是随着输入值的改变而变化。

非线性误差通常由传感器内部元件的非线性响应或环境因素引起。

传感器误差分析_图文

传感器误差分析_图文

二、误差分析
1.误差的概念
检测值与真实值之差称为误差。设被测量的真实值(真正的大小)
为a,检测值为x,误差为ε,则有
x-a=ε
(0-1)
事实上,由于不可能事先知道被测量的真实值,误差值多由统计估
计值和实际检测值的差表示。一般的估计值选用平均值。
Δ
Δ
满度相对误差是指绝对误差与测量的量程即满度的百分比值。即
1)采用线性化技术 要保证传感器的输出能够不失真地复现被测量,要求传 感器的输出与输入必须具有线 性关系,而实际的传感器特性或多或少都具有不同程度 的非线性,这就要求在设计和制造 传感器时对其输出输入特性进行必要的线性化处理,以 提高和改善传感器的性能。如在一定条件下忽略某些高次项 ,或者以直线代替曲线等。
2)采用闭环技术 利用电子技术和自动控制理论中的闭环反馈控制理论, 采用传感器、放大电路等组成闭环反馈测量控制系统,可以 有效地改善测量精度和控制系统的性能。
3)采用补偿和校正技术 在传感器产生误差的规律比较复杂时,可以设法 找出产生误差的特点,从而进行补偿。如进行温度补 偿、应用计算机软件实行误差修正等。
4)采用差动技术 用两个相同的传感器,使其输入信号大小相等而方向相 反,并且使两个传感器的输出相减,则差值中的非线性项将 只存在奇次项,差值输出曲线关于坐标原点对称,并且在坐 标原点附近的一定范围内近似为直线。这种方法不仅可以减 小非线性误差,还能很好地抵消共模误差,使灵敏度提高1 倍 。差动技术在电阻应变式传感器、电容式传感器、电感式传 感器等传感器中得到了广泛应用。
此外,采用平均技术,零位法和微差法,集成化和智能 化,抗干扰技术,稳定性处理技术等方法,对改善传感器的 性能,提高其技术指标都有着积极的意义。

传感器计算题详细讲解

传感器计算题详细讲解

〈传感器与传感器技术》计算题解题指导(供参考)第1章传感器的一般特性1-5某传感器给定精度为2%F • S,度值为50mV,零位值为10mV,求可能出现的最大误差以mV计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论?解:满量程(F?S)为50~10=40(mV)可能出现的最大误差为:m = 40 2%=0.8(mV)当使用在1/2和1/8满量程时,其测量相对误差分别为:0 8! 100% =4%40 12斗0.82 100% =16%40叫1-6有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度K。

(1)30dy3y =1.5 10*T dt式中,y为输出电压,V; T为输入温度,C。

(2) 1.4史4.2y =9.6xdt式中,y——输出电压,J V; x——输入压力,Pa。

解:根据题给传感器微分方程,得(1) T =30/3=10(s) ,力--------------- sin[4t arctan(_,「)]1 Cv)21 . --------------- sin[4t —arctan(4=<0.1) 1 (4 0.1)2 = 0.93sin(4t -21.8 )1%⑴〔1(40 0.1)2=0.049sin(40t -75.96 )0.2sin[40t —arctan(40 0.1)]K =1.5 10勺3=0.5 10'(V/ C );(2)T =1.4/4.2=1/3(s),K =9.6/4.2=2.29( J V/Pa)。

1-7 设用一个时间常数=0.1s 的一阶传感器检测系统测量输入为x (t )=sin4 t +0.2sin40 t 的信号,试求其输出y (t )的表达式。

设静态灵敏度 K =1。

解 根据叠加性,输出y (t )为X !(t )=sin4 t 和X 2(t )= 0.2sin40 t 单独作用时响应 y 1(t )和 y 2(t )的叠加,即 y (t )= y 1(t )+ y 2(t )。

传感器的测量误差与准确度

传感器的测量误差与准确度

外 界 信 息
五种感官
人脑
四肢等
图1-1 人机对应关系
2.传感器的应用领域 如图1-2所示,传感器是任何一个自动控制系统必不可少的 环节。如今,传感器的应用领域已涉及到科研、各类制造 业、农业、汽车、智能建筑、家用电器、安全防范、机器 人、人体医学、环境保护、航空航天、遥感技术、军事等 各个方面,人们已经离不开各种各样的传感器了。 控 制 对 象 输 入 接 口 计 算 机 输 出 接 口 显示与 记录设备
输出量增量 y K= 输入量增量 x
线性传感器的灵敏度k为常数;非线性传感器的灵敏度K 是随输入量变化的量。
2.分辨力 传感器在规定的测量范围内能够检测出的被测量的最 小变化量称为分辨力。它往往受噪声的限制,所以噪声电 平的大小是决定传感器分辨力的关键因素。 实际中,分辨力可用传感器的输出值表示:模拟式传 感器以最小刻度的一半所代表的输入量表示,数字式传感 器则以末位显示一个字所代表的输入量表示。注意不要与 分辨率混淆。分辨力是与被测量有相同量纲的绝对值,而 分辨率则是分辨力与量程的比值。 3.测量范围和量程 在允许误差范围内,传感器能够测量的下限值(y min)到上 限值(y max)之间的范围称为测量范围,表示为y min~ y max;上 限值与下限值的差称为量程,表示为y F.S= y max- y min。如 某温度计的测量范围是-20~100℃,量程则为120℃。
1.3 传感器的基本特性 传感器的特性参数有很多,且不同类型的传感器,其特性 参数的要求和定义也各有差异,但都可以通过其静态特性和动 态特性进行全面描述。 1.3.1 传感器的静态特性 静态特性表示传感器在被测各量值处于稳定状态时的输出 与输出的关系。它主要包括灵敏度、分辨力(或分辨率)、测量 范围及误差特性。 1.灵敏度 灵敏度是指稳态时传感器输出量y和输入量x之比,或输出 量的增量△y和相应输入量△x的增量之比。

传感器与自动检测技术

传感器与自动检测技术

成分量传感器 如:气敏传感器等
状态量传感器 如:各种接近开关 等 探伤传感器等 如:超声波探伤仪等
模拟传感器 (3)按输出量种类来分 数字传感器 直接传感器 (4)按传感器结构来分 差动传感器
补偿传感器
(2)命名
传感器常常按工作原理及被测量性质两种分 类方式合二为一进行命名。 例如:①电感式位移传感器 ②光电式转速计 ③压电式加速度计 光电式转速计
弹簧管受力动画演示
(2)波纹管
压力p
自由端的位移x
波纹管示意图
波纹管受力动画演示
(3)等截面薄板 压力 p 或者 压力 p 应变ε 等截面薄板示意图 位移 x
(4)波纹膜片和膜盒 压力差p 位移x 膜盒示意图
(5)薄壁圆筒和薄壁半球 压力 p 应变ε
薄壁圆筒和薄壁半球示意图
光敏电阻
铂电阻测温传感器
解:按最坏的情况考虑,每次误差都达到技术指标 规定的极限值,即: 基本误差 x1 1.25% 附加误差 x 2 0.5%
x x1 x 2 (1.25% 0.5%) 1.75%
求其均方根值为:
x
2 xi
1.25 % 0.5% 1.35 %
例:木块刚度小,铁块刚度大 2.灵敏度
dx K 1/ k dF
弹性特性曲线图
灵敏度为常数,此弹性特性是线性
二、弹性敏感元件的形式及应用范围 等截面轴 变换力 1.弹性敏感 元件的形式 环状弹性敏感元件 悬臂梁
扭转轴
弹簧管 波纹管 变换压力 等截面薄板 波纹膜片和膜盒 薄壁圆筒和薄壁半球
2.变换力的弹性敏感元件 (1)等截面轴 力F 应变ε
等截面轴示意图
等截面轴受 力动画演示

“机械工程测试技术”教材第1-3章习题与答案

“机械工程测试技术”教材第1-3章习题与答案

一、判断题.(本题共23分,对则打“√”,不对则打“×”)1.对多次测量的数据取算数平均值,就可以减少随机误差的影响。

( √ )2.传感器的线性范围越宽,表明其工作量程越大。

( √ )3.一台仪器的重复性很好,但测得的结果并不准确,这是由于存在随机误差的缘故。

( √ )4.一台仪器的重复性很好,但其静态测量结果也可能存在很大的误差。

( √ )5.频率不变性原理是指任何测试装置的输出信号的频率总等于输入信号的频率。

( √ )6.固有频率600=n f Hz 的振动子测量600Hz 的谐波信号,输出不会失真。

( × )7.若振动子的固有频率400=n f Hz ,则其工作频率范围为400~0Hz 。

( × )8.测试系统的幅频特性在工作频带内通常是频率的线性函数,而线性测量系统的灵敏度是时间的线性函数。

( × )9.线性测量系统的灵敏度是时间的线性函数。

( × )10.测量系统的固有频率越高,其灵敏度也越高。

( × )11.测量小应变时,应选用灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应变片。

( √ )12.测量系统的固有频率越高,其灵敏度也越高。

( × )13.一般来说,测试系统的灵敏度越高,则其测试范围越窄。

( √ )14.同一测量系统,测量有效频带不同的信号时肯定表现出不同的幅频特性。

( × )15.由于H(s)=Y(s)/X(s),即将X(s)减小时,H(s)将增大,因此H(s)和输入有关。

( × )16.一阶系统的时间常数τ越小越好。

( √ )17.一般的机械系统都可近似看成是二阶的“质量-弹簧-阻尼”系统。

( √ )18.在线性时不变系统中,当初始条件为零时,系统输出量与输入量之比的拉氏变换称为传递函数。

( √ )19.当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(t H ,而与系统的物理模型无关。

温度传感器温度误差标准

温度传感器温度误差标准

温度传感器温度误差标准温度传感器在各种工业应用中扮演着重要角色,用于对环境或过程温度进行准确测量。

为了确保温度传感器的测量精度和可靠性,制定了一系列的误差标准。

这些标准主要涉及测量范围、稳定性、分辨率、精度、线性度、响应时间、长期稳定性和环境影响等方面。

1.测量范围:2.温度传感器的测量范围通常是根据具体应用的需求来选择的。

一般来说,测量范围越宽,传感器的误差也会相应增加。

通常,测温范围在-50℃到150℃之间的传感器,其允许误差在±0.5℃左右。

测温范围在-100℃到300℃之间的传感器,其允许误差在±1℃左右。

3.稳定性:4.稳定性是指温度传感器在长时间内保持其性能参数的能力。

对于温度传感器而言,稳定性通常是指在规定的时间和温度范围内,传感器的零点和灵敏度保持不变的能力。

一般而言,稳定性越好的传感器,其误差越小。

5.分辨率:6.分辨率是指温度传感器能够分辨的最小温度变化量。

一般来说,分辨率越高,传感器的灵敏度越高,对温度变化的响应越快。

对于高精度测量应用,选择高分辨率的传感器是非常重要的。

7.精度:8.精度是衡量温度传感器测量结果偏离真实值程度的指标。

通常用百分比或绝对温度表示。

一般来说,精度越高,传感器的价格也越高。

在选择温度传感器时,应根据实际应用需求选择适当的精度。

9.线性度:10.线性度是指温度传感器输出的温度值与实际温度值之间的线性关系程度。

线性度越高的传感器,其误差越小。

一般来说,线性度在±0.2%FS(满量程)以内的传感器被认为是高精度的。

11.响应时间:12.响应时间是衡量温度传感器对温度变化作出反应快慢的指标。

对于快速变化的温度过程,选择响应时间短的传感器更为合适。

一般而言,响应时间越短,传感器的误差越小。

13.长期稳定性:14.长期稳定性是指温度传感器在长时间使用过程中保持其性能参数的能力。

对于需要长期监测温度的应用,选择长期稳定性好的传感器是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 误差的分类—— 随机误差
对于随机误差不能用简单的修正值来修正,当测量次 数足够多时, 随机误差就整体而言,服从一定的统计规 律,通过对测量数据的统计处理可以计算随机误差出现的 可能性的大小。 思考:随机误 差处理方法?
误差的分类——
系统误差
2.系统误差:在同一测量条件下,多次测量被测量时, 绝对 值和符号保持不变,或在条件改变时,按一定规律(如线性、 多项式、 周期性等函数规律)变化的误差称为系统误差。前者 为恒值系统误差, 后者为变值系统误差。
标称值(示值):各种仪表读数。
测量误差的基本概念——
测量误差定义
测量误差:测得结果与被测量的量的真实值。 但在测
量过程中由于种种原因,例如,传感器本身性能不十分优良, 测量方法不十分完善,外界干扰的影响等,造成被测量的测 得值与真实值不一致,因而测量中总是存在误差。
予以修正。
误差的分类——
粗大误差
3. 粗大误差:超出在规定条件下预期的误差称为粗大误 差, 粗大误差又称疏忽误差。 这类误差的发生是由于测量者疏忽大意,测错、读错或环 境条件的突然变化等引起的。含有粗大误差的测量值明显地 歪曲了客观现象, 故含有粗大误差的测量值称为坏值或异常 值。 在数据处理时,要采用的测量值不应该包含有粗大误差, 即所有的坏值都应当剔除。
测量误差的基本概念——
相对误差的定义由下式给出:
误差表示方法
2. 相对误差:测量的绝对误差与被测量真实值之比。
100 % L
式中:δ——实际相对误差, 一般用百分数给出 Δ——绝对误差 L——真值。 由于被测量的真值 L无法知道,实际测量时用测量值 x代替 真值L进行计算,称为标称相对误差, 即
思考:系统误 差如何修正?
误差的分类——
系统误差的原因
系统误差
如材料、零部件及工艺缺陷,环境温度和湿度,压力变
化和外界干扰,测量方法不完善,零点未调整,采用近似的
计算公式,测量者的经验不足等等。
系统误差的修正 对于系统误差,首先要查找误差根源,并设法减小和 消除,系统误差有规律,可以通过实验方法或引入修正值
100 % x
测量误差的基本概念——
误差表示方法
3. 满度(引用)相对误差:绝对误差与测量仪表满量程值 比,又称满量程相对误差。 即
100% 测量范围上限 测量范围下限
式中: γ——引用误差; Δ——绝对误差。
仪表精度等级是根据最大引用误差来确定的。 我国仪表分七级,即0.1、0.2、0.5、1.0、1.5、2.5、5.0. 例如, 0.5 级表的引用误差的最大值不超过±0.5%; 1.0 级表的 引用误差的最大值不超过±1%
测量误差的基本概念——
按使用条件分类:
误差表示方法
4. 基本误差 :是指传感器或仪表在规定的标准条件下所具 有的误差。例如,某传感器是在电源电压(220±5)V、 电网 频率 (50±2) Hz、环境温度 (20±5)℃、湿度 65%±5%的条 件下标定的。如果传感器在这个条件下工作,则传感器所具 有的误差为基本误差。 5. 附加误差:是指传感器或仪表的使用条件偏离额定条件 下出现的误差。例如,温度附加误差、频率附加误差、 电 源电压波动附加误差等。
测量误差的基本概念—— 误差表示方法
测量误差的表示方法有多种,含义各异。 1. 绝对误差:被测量的示值与约定真值之间的差值。
绝对误差可用下式定义:
Δ=x-L 式中: Δ——绝对误差; x——测量值; 、
思考:绝对误 差能否客观说 明测量质量?
L——真值,一般为约定真值或相对真值。
绝对误差是有正、 负,并与被测量同量纲。
1-3 传感器基本误差和精度
测量误差的基本概念 误差的分类 测量数据的处理
测量误差的基本概念——
真值:被测量的真正值。它是一个理想的概念,一般是 无法得到的,未知的。 约定真值:用基准期的量值代替真值。是一个接近真值 的值,它与真值之差可忽略不计。譬如基准单位米、克等的 定义。实际测量中以在没有系统误差的情况下,足够多次的 测量值之平均值作为约定真值。 实际测试中真值无法确定,一般用约定真值来代替。
误差的分类——
随机误差
根据测量数据中的误差所呈现的规律及产生的原因可将其 分为系统误差、随机误差和粗大误差。 1. 随机误差:由于偶然因素影响引起的误差。在同一测量 条件下,对同一被测量进行无限多次测量所得结果的平均值 之差。重复性条件包括: 相同的测量程序,相同的观测者, 在相同的条件下使用相同的测量仪器,相同的地点,在短时 间内重复测量。
相关文档
最新文档