标准差与方差.pptx

合集下载

《方差和标准差》课件

《方差和标准差》课件
金融风险评估
在金融领域,方差和标准差被用于评估投资组合的风险。通过计算投资组合收益率的方差 和标准差,投资者可以了解投资组合的风险水平。
质量控制
在生产过程中,方差和标准差可用于质量控制。通过监测产品特性的方差和标准差,可以 了解生产过程的稳定性和产品质量的一致性。
社会科学研究
在社会学、心理学和经济学等社会科学研究中,方差和标准差被用于分析调查数据和研究 结果。例如,通过比较不同群体之间的方差和标准差,可以了解它们之间的差异和相似性 。
中,可以用于分析消费者偏好的分散程度。
案例二:统计学中的方差和标准差应用
总结词
阐述方差和标准差在统计学中的重要性和应用,如何利用它们进行假设检验、回归分析和方差分析等 统计方法。
详细描述
在统计学中,方差和标准差是基础概念,广泛应用于各种统计方法。例如,在假设检验中,方差分析 可以用来比较两组或多组数据的差异;在回归分析中,方差和标准差可以用来评估模型的拟合度和预 测精度;在方差分析中,方差和标准差可以用来比较不同因素对数据变异的贡献程度。
《方差和标准差》ppt课件
• 方差概述 • 标准差概述 • 方差和标准差的应用 • 方差和标准差的比较 • 案例分析
01 方差概述
方差的定义
方差是用来度量一组数据分散程度的统计量,其计算公式为:方差 = Σ[(x_i μ)^2] / (n-1),其中x_i表示每个数据点,μ表示平均值,n表示数据点的数量。
标准差的作用和意义
总结词
标准差在统计学中具有重要的意义,它可以用于比较不同数据的离散程度、评估数据的稳定性、进行假设检验等 。
详细描述
标准差是衡量数据分散程度的重要指标,它可以用来比较两组或多组数据的离散程度,从而了解数据的稳定性或 波动性。在假设检验中,标准差可以用于计算样本的置信区间和显著性水平。此外,标准差也是许多统计模型和 算法的重要参数,如线性回归、方差分析等。

方差和标准差-PPT课件

方差和标准差-PPT课件
P 1 0.3 2 0.7
50 Dx=____, 2.已知x~B(100,0.5),则Ex=___, 25 99 D(2x-1)=____ E(2x-1)=____, 100
3、有一批数量很大的商品,其中次品占1%,现 从中任意地连续取出200件商品,设其次品数为 X,求EX和DX. 2,1.98
新课
对于一组数据的稳定性的描述,我们是用方 差或标准差来刻画的.
一组数据的方差:
在一组数:x1,x2 ,…,xn 中,各数据的平均数为 则这组数据的方差为: x
2

1 2 2 2 S [ ( x x ) ( x x ) ( x x ) ] 1 2 n n
方差反映了这组 数据的波动情况 类似于这个概念,我们可以定义随机变量的方差.. 5
下面的分析对吗? ∵ E 8 0.2 9 0.6 10 0.2 9 E2 8 0.4 9 0.2 10 0.4 9 ∴甲、乙两射手的射击水平相同. (你赞成吗?为什么?)
显然两名选手 的水平是不同的, 这里要进一步去 分析他们的成绩 的稳定性. 4
(1)均值是算术平均值概念的推广,是概率意义上的平均; (2)E(X)是一个实数,由X的分布列唯一确定,也就是说随 机变量X可以取不同的值,而E(X)是不变的,它描述的是 X取值的平均状态; (3)E(X)的公式直接给出了E(X)的求法.
18
例1. (2019· 衡阳模拟)一厂家向用户提供的一箱产品共10件,
27
题型三 期望与方差的综合应用 【例3】(14分)(2019· 广东)随机抽取某厂的某种产品200件,经质
检,其中有一等品126件,二等品50件,三等品20件,次品4件.已知
生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而 生产1件次品亏损2万元,设1件产品的利润(单位:万元)为ξ .

方差和标准差课件.ppt

方差和标准差课件.ppt

甲命中环数 7
8
8
8
9
乙命中环数 10 6 10 6
8
⑴ 请分别计算两名射手的平均成绩;
⑵ 请根据这两名射击手的成绩在 成绩(环) 下图中画出折线统计图; 10
⑶ 现要挑选一名射击手参加比 8
6
赛,若你是教练,你认为挑 4
选哪一位比较适宜?为什么?2
012
射 击 次 序
345
上述各偏差的平方和的大小还与什么有关?
3.标准差:方差的算术平方根叫做标准差.
S=
1 n
[ (x1-x)2+(x2-x)2+
+(xn-x)2 ]
计算一组数据的方差的一般步骤:
1、利用平均数公式计算这组数据的平均数X
2、利用方差公式计算这组数据的方差S2
小明的烦恼
在学校,小明本学期五次测验的数学成绩和英语 成绩分别如下(单位:分)
+(xn-x)2 ]
来表示,并把它叫做标准差.
课内练习P89 1、2
1、已知某样本的方差是4,则这个样本的标准差是————。
2、已知一个样本1、3、2、x、5,其平均数是3,则这个 样本的标准差是————。
3、甲、乙两名战士在射击训练中,打靶的次数相同, 且射击成绩的平均数x甲 = x乙,如果甲的射击成绩比 较稳定,那么方差的大小关系是S2甲————S2乙乙。
问哪种小麦长得比较整齐?
思考:求数据方差的一般步骤是什么?
1、求数据的平均数;
2、利用方差公式求方差。
S2=
1 n
[ (x1-x)2+(x2-x)2+ +(xn-x)2 ]
数据的单位与方差的单位一致吗?
为了使单位一致,可用方差的算术平方根:

方差与标准差课件

方差与标准差课件

离散程度的统计指标。
离差平方和法和枚举
根,衡量数据集的离
法。
散程度和平均偏离程
度。
4 方差和标准差在金融、质量控制等
领域有广泛应用。
5 方差和标准差的计算存在局限性。
品质控制
方差和标准差可以评估产品制造过程中的变异性,从而改进产品的质量。
研究统计
方差和标准差在科学研究中能够帮助分析实验数据的稳定性和结果的可靠性。
方差与标准差的局限性
方差和标准差是衡量数据离散程度的有力工具,但在某些情况下可能存在局限性,例如对异常值的敏感性。
结论和要点
1 方差是衡量数据集合 2 方差的计算方法包括 3 标准差是方差的平方
方差的计算方法
离差平方和法
将每个数据点与均值的差值平方,然后将这些差值 平方值相加得到离差平方和,再除以数据点的个数。
枚举法
逐个计算每个数据点与均值的差值的平方,然后将 这些差值平方值相加得到方差。
标准差的定义
标准差是方差的平方根,它衡量了数据集的离散程度,以及数据点与均值的 平均偏离程度。
标准差与方差的关系
1
相互关联
标准差是方差的平方根,两者的数值大小与数据集的离散程度息息相关。
2
共同应用
方差和标准差在统计学、金融、质量控制等领域具有广泛的应用,能够帮助揭示 数据的分布规律和稳方,而标准差更关注离散程度的平均偏离程度。
方差与标准差的应用
财务管理
方差和标准差可用于衡量投资组合中的风险,帮助投资者做出明智的决策。
方差与标准差ppt课件
欢迎来到方差与标准差的PPT课件!今天我们深入探讨方差和标准差的定义、 计算方法以及它们在实际应用中的重要性和局限性。
方差的定义

《方差与标准差》课件

《方差与标准差》课件

方差的意义
01
方差是衡量数据分散程度的重要指标,可以用 于比较不同数据集的离散程度。
02
方差在统计学中有着广泛的应用,如回归分析 、假设检验等。
03
通过对方差的分析,可以了解数据的波动情况 ,为决策提供依据。
02
标准差的概念
标准差的定义
01
标准差是用来衡量一组数据离散 程度的统计量,其计算方法为各 数据与平均数之差的平方的平均 数再取平方根。
方差与标准差的联系
方差和标准差都是衡量数据离散程度的统计量,它们之间存 在密切的联系。具体来说,标准差是方差的平方根,因此方 差和标准差的值会随着数据的波动而变化,但方向是一致的 。
当我们比较不同数据集的离散程度时,可以使用方差或标准 差来进行比较。由于标准差具有单位,因此在比较不同数据 集时,使用标准差更为直观和方便。
05
方差与标准差的实例分析
方差实例分析
1 2
3
方差实例1
一组学生的考试成绩,通过计算方差,可以了解成绩的离散 程度,即学生的成绩分布情况。
方差实例2
股票价格的波动,通过计算股票价格的方差,可以了解价格 的波动情况,从而评估投资风险。
方差实例3
体育比赛中的射击或者投篮成绩,通过计算方差,可以了解 运动员的技术稳定程度。
方差的大小表示数据点与平均值之间的离散程度,方差越大,数据点越离散;方 差越小,数据点越集中。
方差的计算方法
01
计算每个数据点与平均值的差值,即(x_i - μ) 。
03
将所有差值的平方相加,即Σ[(x_i - μ)^2]。
02
将每个差值平方,即(x_i - μ)^2。
04
将总和除以数据的数量减一,即Σ[(x_i - μ)^2] / (n1),得到方差。

方差与标准差.pptx

方差与标准差.pptx
x 甲 =8(环) x 乙 =8(环)
教练的烦恼
甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 6
8
8
8 10
乙命中环数 10 6 10 6
8
⑴ 请分别计算两名射手的平均成绩;
⑵ 请根据这两名射击手的成绩在 成绩(环)
下少?
1、方差是衡量数据稳定性的一个统计量; 2、要求某组数据的方差,要先求数据的平均数; 3、方差的单位是所给数据单位的平方; 4、方差越大,波动越大,越不稳定;
方差越小,波动越小,越稳定。
例题精选
例 为了考察甲乙两种小麦的长势,分别从中
抽出10株苗,测得苗高如下(单位:cm): 甲:12,13,14,15,10,16,13,11,15,11; 乙:11,16,17,14,13,19, 6, 8,10,16;
问:哪种小麦长得比较整齐?
解: X甲=
1 (12 13 14 15 10 16 13 1115 11) 13( cm) 10
X乙=
1 (11 16 17 14 13 19 6 8 10 16) 13(cm) 10
S2甲=110 (12 13)2 (13 13)2 (11 13)2 3.6(cm2)
B厂:39.8,40.2,39.8,40.2,39.9, 40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
现在可以判断了吗?试试看。
标准差的定义
为了使得与数据单位一致,可用方差的 算术平方根来表示(即标准差):
S 1 (x x) (x x)2 (x x)2
S2乙=
1 10
(11
13) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准差用来表示稳定性
从数学的角度考虑 人们有时用标准差的平方s2 方差 来代替标准差作为 测量样本数据分散程度的工具 :
s2
1 n
( x1
x)2
( x2
x)2
( xn
x)
2
.
用计算器可算出甲,乙两人的的成绩的标准差
s甲 2,s 乙 1 095
由 s甲 s乙可以知道,甲的成绩离散程度大,乙的
• 11、夫学须志也,才须学也,非学无以广才,非志无以成学。20.11.1715:18:3015:18Nov-2017-Nov-20
• 12、越是无能的人,越喜欢挑剔别人的错儿。15:18:3015:18:3015:18Tuesday, November 17, 2020
• 13、志不立,天下无可成之事。20.11.1720.11.1715:18:3015:18:30November 17, 2020
。2020年11月17日星期二下午3时18分30秒15:18:3020.11.17
• •
T H E E N D 15、会当凌绝顶,一览众山小。2020年11月下午3时18分20.11.1715:18November 17, 2020
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020年11月17日星期二3时18分30秒15:18:3017 November 2020
例如,在关于居民月均用水量的例子中,平均数 x 1.973
标准差s=0.868 ,所以
x s 2.841, x 2s 3.709
x s 1.105, x 2s 0.237.
这100个数据中,
在区间
x
2s,
x
2s
0.237,3.709外的只有4个。
也就是说,
x
2s,
x
2s几乎包含了所有样本数据。
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
如果你是教练,你应当如何对这次射击作出评价?
如果看两人本次射击的平均成绩,由于
x甲
7,x 乙
7
两人射击 的平均成绩是一样的.那么两个人
的水平就没有什么差异吗?
s甲
s乙 4 5 6 7 8 9 10
五、标准差与方差
0.5
0.4
0.3
0.2
0.1
o
12 345
678
1.0 0.9 0.8
x5
0.7
0.6
0.5 S=0.00
0.4
0.3
0.2
0.1
o 1 2 3 45 6 7 8
(1)
频率
x5
1.0
0.9 S=2.83
0.8
0.7 0.6 0.5
0.4 0.3 0.2 0.1
o 12 3 4 56 78
标准差还可以用于对样本数据的另外一种解释.
标准差与方差
复习:众数、中位数、平均数与频率分布直方 图的关系
1、众数:最高矩形的中点的横坐标。
2、中位数:在频率分布直方图中,中位数左边和右 边的直方图的面积应该相等,由此可估计中位数的 值。
3、平均数=每个小矩形面积乘以小矩形底边中点的 横坐标之和
问题
有两位射击运动员在一次射击测试中各射 靶10次,每次命中的环数如下:
(4) 2 , 2 , 2 , 2, 5 , 8 , 8 , 8 , 8 ; 解:四组样本数据的直方图是:
说明数据的分散程度是不一样的.
频率
频率
1.0 0.9
x5
0.8
0.7 S=0.82
0.6
0.5 0.4 0.3 0.2
0.1
o频率1
2
3 (2)
45
678
1.0 0.9 0.8
x5
0.7
0.6 S=1.49
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
作业:测试反馈p85:1-5 每周一练4 交
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。20. 11.1720.11.17Tuesday, November 17, 2020
• 10、人的志向通常和他们的能力成正比例。15:18:3015:18:3015:1811/17/2020 3:18:30 PM
s
1 n
(x1
x)2
(x2
x)2
(xn
x)2
.
那么,标准差刻画了数据的什么特征呢?
一个样本中的个体与平均数之间的距离关系可用下图表示:
考虑一个容量为2的样本:
x1
x2 ,其样本的标准差为
x2
2
x1
, 记a
x2
2
x1
.
a
x1
x1 x2
x2
2
显然,标准差越大,则a越大,数据的离散程度越大; 标准差越小,数据的离散程度越小.
成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.
例题1:画出下列四组样本数据的直方图,说明它们 的异同点.
(1) 5, 5, 5, 5, 5, 5, 5, 5, 5;
(2) 4, 4, 4, 5 , 5, 5, 6, 6, 6;
(3) 3 , 3 , 4 , 4 , 5, 6 , 6, 7 , 7;
标准差是样本数据到平均数的一种平均距离,一般用 s表示.
假设样本数据是x1, x2 ,...xn ,
x 表示这组数据的平均数
xi到
x的距离是
xi
x
(i
1,2,,
n).
于是, 样本数据x1, x2, xn到 x的“平均距离”是:
x1 x x2 x xn x
S
.
n
由于上式含有绝对值,运算不太方便,因此,通 常改用如下公式来计算标准差.
Hale Waihona Puke • 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。下午3时18分30秒下午3时18分15:18:3020.11.17
谢谢观看
相关文档
最新文档