拉压-轴力与轴力图以及横截面上应力计算
轴力与应力计算
FN3
F
2F
FN2
FN 2 F
FN 3 F
轴力图
F
2F A
2F B
F
FN
F
F x
F
例2:已知F1=10kN;F2=20kN; F3=35kN; F4=25kN;试画出图示杆件的轴力图。
A
B
F1
F2
C
D
F3
F4
A 1B
F1
1 F2
FN / kN 10
2 C 3D
2 F3 3 F4
25
P
三、轴向拉压时横截面上的应力
已知轴力的大小,是否就可以判定构件是否发生破坏?
如果轴力很大,而杆件的横截面面积也很大,杆件是 否一定发生破坏? 如果轴力很小,而杆件的横截面面积也很小,杆件是 否一定不发生破坏?
不能只根据轴力就判断杆件是否有足够的强度; 还必须用横截面上的应力来度量杆件的受力程度。 在拉压杆的横截面上,与轴力对应的应力是正应力。
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
例1、 起吊三角架,如图所示,已知AB杆由2根截 面面积为10.86cm2的角钢制成,P=130kN,=30O。 求AB杆横截面上的应力。
B
C
A
P
NAB
变形前
受载后
F
F
所有的纵向线伸长都相等,而横向线保持为直 线且与轴线垂直。
1.平面假设 (Plane assumption)
变形前原为平面的横截面,在变形后仍保持为平面, 且仍垂直于轴线.
5-3拉伸(压缩)时横截面上的应力-正应力
B
F1
F2
Q
N F 20 KN 1 1 200 MPa BC杆: 1 2 A A mm 1 1 100
N F 17 . 32 KN 2 2 86 . 6 MPa 2 2 AB杆: A A 200 mm 2 2
2 p cos cos
为横截面正应力
p sin sin cos sin 2
2
第三节 拉伸(压缩)时横截面 上的应力——正应力
第三 节 拉伸或压缩杆横截面上的应力
1、应力的概念
为了描写内力的分布规律,我们将单位面积的内力 称为应力。 在某个截面上,
与该截面垂直的应力称为正应力。 记为:
与该截面平行的应力称为剪应力。 记为:
应力的单位:Pa
2 1Pa 1N/ m
2 6 1 MPa 1 N /mm 10 Pa
P P cos 这是斜截面上与 p cos A A 轴线平行的应力
P
n pα
τα
t 下面我们将该斜截面上的应力分解为正应力和剪应力
斜截面的外法线仍然为 n, 斜截面的切线设为 t 。
根据定义,沿法线方向的应力为正应力
利用投影关系,
沿切线方向的应力为剪应力
(2)、计算机各段的正应力
AB段:
3 F 50 10 1 MPa 125 MPa AB A 400 1
3 F 30 10 2 MPa 100 MPa BC段: BC A 300 2
3 F 10 10 3 MPa 33 . 3 MPa CD段: CD A 300 2
轴向拉、压杆的内力及应力计算
AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
拉压-轴力与轴力图以及横截面上应力计算
F
F 作用线也与杆件的轴线重
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
F 压为负
Fx 0 FN F 0
FN F
4、轴力图:轴力沿杆件轴 线的变化
11
§5-2 Axial Force and Axial Force Diagrams
Example 2-1
A
F1 F1 F1
应力(stress)—内力在一点的分布集度(Density)
lim Δ FN
ΔA0 Δ A lim Δ FQ
Δ A0 Δ A
p
C
F4 F3
20
§5-3、Stress on lateral
Relationship about Internal Force and Stress
Example 2-2:Do the Diagram of Axial Force
轴力图(FN图)显示了各 段杆横截面上的轴力。
FN,max FN2 50 kN 思考:为何在F1,F2,F3作用着的B,C,D 截面处轴力图
发生突变?能否认为C 截面上的轴力为 55 kN? 16
§5-2 Axial Force and Axial Force Diagrams
FF
F
8
§5-1、 Introduction and Engineering Examples
9
§5-2 Axial Force and Axial Force Diagrams
1、轴力(Axial Force):
F
m
F
2、截面法求轴力(Method of
Section)
m
内容Chp拉压概念轴力轴力图应力要求
cos sin
2
sin 2
k
F
α pα
α
k
可见,斜截面上既有正应力,也有切应力。
讨论
sin 2
cos
2
2
ⅰ α = 0 , σαmax= σ , τα = 0 ⅱ α =45° ,σα = σ/2 , ταmax = σ/2
ⅲ α = 90° , σα = 0 ,
F α
F 斜截面面积
F
k k pα
α
Pα
Aα =A/cosα 内力 Pα = F,
k k
F
α pα
αk
全应力为
p
P A
F
A/ cos
cos
将斜截面k-k上的全应力分解为正应力σ α 和切应力τα ,
则 p cos cos2
p
sin
上节回顾
材料力学的任务
等直杆的 强度条件 刚度条件 稳定性条件
上节回顾
材料力学的基本概念
1.内力—— 指某个截面内分布内力
的三个主矢分量和三个主矩分量: 轴力FN ,剪力FQ (Fy ,Fz) 扭矩T ,弯矩M (My ,Mz)
2.应力——正应力σ,切应力τ 3.应变——线应变ε,切应变γ
上节回顾
cos sin
2
sin 2
k
F
α pα
α
k
可见,斜截面上既有正应力,也有切应力。
讨论
cos2
2
sin 2
第2讲 轴向拉压杆的内力和应力
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
A
1.9m
拉伸
F
F
压缩
F
F
目录
§2.1 轴向拉伸与压缩的概念和实例 举例说明:
A
计算简图
P1
拉杆
P1
B P2
压杆
P2
C
F
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
yF
FN 2 45° B x
F
Байду номын сангаас1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN 2 A2
(3)内力均匀分布,各点正应力相等,为常量
ac
轴向拉伸与压缩时横截面上的应力
例 一正中开槽的直杆,承受轴向载荷F =20kN的作用, 如图4-7a所示。已知h = 25mm,h0 = 10mm,b = 20mm。试求 杆内的最大正应力。
1 2
F
1 2
F
解 (1) 计算轴力 由截面法可求得杆中 各横截面上的轴力均为
a)
FN F
b)
图4-7
FN = -F = -20kN
A1
图4-6
由材料的均匀性、连续性假设可以推断出轴力在横截面 上的分布是均匀的,而且都垂直于横截面,故横截面上的正 应力也是均匀分布的,如图4-6c所示。因此,轴向拉伸与压 缩时的横截面上的正应力计算公式为
FN σ= A
σ 式中, 为横截面上的正应力;FN 为横截面上的内力(轴
力);A 为横截面面积。 正应力的正负号与轴力的正负号一致。即拉应力正, 压应力为负。
h0 h
A2
h
b b
c)
(2)计算最大正应力 图4-7 由于整个杆件轴力相同,故最大正应力发生在面积较小 的横截面上,即开槽部分的横截面上如图4-7c,其面积为
A = (h-h0 )b = (25-10)
则杆件内的最大正应力 σ max 为
×20mm2 =
300mm2
σ max
拉压-轴力与轴力图以及横截面上应力计算
F´ P
AsB Ea l l
B Aa Es
Fixed rigid plate
A FP
C F´ P
28
§5-3、变 Biblioteka 2形计算解:首先分析钢杆和铝筒的受力:钢杆BC承
F´P B Aa Ea A l
FP 受拉伸,铝筒承受压缩。C点的位移等于钢
B As Es
C
杆的伸长量与铝筒的压缩量之和: 其中
15
§5-2、 轴
力
与
杆
件
横
截
面
应
力
、横截面上的应力: 截面应力与轴力的分布关系:
16
§5-2、 轴
力
与
杆
件
横
截
面
应
力
圣 文 南 原 理
17
§5-2、 轴
力
与
杆
件
横
截
面
应
力
、横截面上的应力:
公 式:
σ = N/A
18
§5-2、 轴
力
与
杆
件
横
截
面
应
力
19
§5-2、 轴
力
与
杆
件
横
截
面
应
力
A
§5-2、 轴
力
与
杆
件
横
截
面
应
力
12
§5-2、 轴
力
与 结
杆
件 论
横
截
面
应
力
由上述轴力计算过程可推得: 任一截面上的轴力的数值等于对应截面一侧所有外力的 代数和,且当外力的方向使截面受拉时为正,受压时为负。
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
工程力学 第二章 轴向拉伸与压缩.
2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F
轴向拉压
FN 3 A3 5000 8.33MPa 600
FN 1
○ -
s max s1 10MPa s 12MPa
∴ 此杆满足强度条件。 29
5kN
[例]图示结构中,拉杆AB由等边角钢制成,容许应力 [s]=160MPa,试选择等边角钢的型号。。
B
解:取杆AC。
m
40 kN
FN AB
3
19
三、斜截面的应力
m
P
m m
P
P
m
m
k
p
N
A——斜截面面积
P p A A
FN
P
m
sห้องสมุดไป่ตู้
p
2
FN A
FN A / cos
s p cos s cos s p sin s sin cos sin 2
A=80mm2,容许应力[s]=160MPa,试校核杆CD的强度并 计算容许荷载。 D A
30
N C B A 30 C
a
解:
a
XA
B P
P
YA
1 m A 0; 2 FN a P 2a 0 ∴ CD 杆满足 FN 4 P 8kN 强度条件。 FN 8000 s 100MPa s A 80
4)圣维南(Saint-Venant)原理:
厚度为1mm 100N 1mm 100N
厚度为1mm 50N 50N 1mm
50N
50N
厚度为1mm 1mm 100MPa 100MPa
二、横截面的正应力 拉压杆横截面上只有正应力而无剪应力,忽略应力集中
材料力学——第一章 轴向拉伸和压缩
形象表示轴力随截面的变化情况,发现危险面;
材料力学
例题1-1 已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。 1 B 2 C 3 D A 解:1、计算各段的轴力。
F1 F1 F1
FN kN
1 F2
2
F3 3
F4
AB段 BC段
FN1 FN2
F
F
F
F
d变) 拉伸ε'<0、 压缩ε’>0 ;
'
d
d
材料力学
2、泊松比 实验证明:
称为泊松比;
注意
(1)由于ε、ε‘总是同时发生,永远反号, 且均由
(2)
s 产生,
故有
=-
‘
0 FN 1 F1 10kN
x x
F
0 FN 2 F2 F1
FN 2 F1 F2
F2
FN3
10
CD段
F4
25
10 20 10kN Fx 0
FN 3 F4 25kN
2、绘制轴力图。
10
x
材料力学
画轴力图步骤
1、分析外力的个数及其作用点; 2、利用外力的作用点将杆件分段; 3、截面法求任意两个力的作用点之间的轴力; 4、做轴力图; 5、轴力为正的画在水平轴的上方,表示该段杆件发生 拉伸变形
材料力学
例题1-3 起吊钢索如图所示,截面积分别为 A2 4 cm2, A1 3 cm2,
l1 l 2 50 m, P 12 kN, 0.028 N/cm3,
试绘制轴力图,并求
截面正应力计算公式
截面正应力计算公式
1. 基本概念。
- 对于轴向拉压杆件,其横截面上的正应力计算公式为σ=(F_N)/(A)。
其中σ表示正应力,F_N为轴力(拉力为正,压力为负),A为横截面面积。
- 在计算轴力F_N时,通常采用截面法。
即假想地用一截面将杆件截开,研究其中一部分的受力平衡,从而确定轴力的大小和方向。
2. 梁弯曲时的正应力。
- 对于纯弯曲梁(梁的横截面上只有弯矩而无剪力的情况),其正应力计算公式为σ=(My)/(I_z)。
- 这里M为横截面上的弯矩,y为所求应力点到中性轴的距离,I_z为横截面对中性轴z的惯性矩。
- 对于横力弯曲(梁的横截面上既有弯矩又有剪力的情况),当梁的跨度l与横截面高度h之比l/h>5时,纯弯曲正应力公式σ=(My)/(I_z)仍可近似使用。
3. 组合变形下的正应力。
- 当杆件发生组合变形(如拉压与弯曲的组合、扭转与弯曲的组合等)时,可分别计算每种基本变形产生的正应力,然后根据叠加原理求出组合变形下的正应力。
- 例如对于拉压与弯曲组合变形的杆件,横截面上某点的正应力
σ=σ_N+σ_M,其中σ_N = (F_N)/(A)(拉压正应力),σ_M=(My)/(I_z)(弯曲正应力)。
轴向拉伸与压缩1(内力与应力)
1 4、作内力图 P 1 FN P P
2
3 P
2
3
P
P
x
[例2] 图示杆的A、B、C、D点分别作用着大小为5P、8P、 4P、 P 的力,方向如图,试画出杆的轴力图。
O
A
PA PB
B
C
PC
D
PD D PD
FN1
A PA
B PB
C PC
解: 求OA 段内力FN1,设置截面如图
F
x
0 F N 1 P A PB PC P D 0
解: 1、求1-1截面上内力 FN1,设置截面如图
F
x
0
1 P 1 FN1 P P P
2
3
P
FN 1 P 0 FN 1 P
P
2
3
2、2-2截面上的内力
F
x
0
P
FN2
P P
FN 2 0
3、3-3截面上的内力
FN 3 P
P
FN3
FN 1 P FN 2 0
FN 3 P
2
s
α
t
Pa
1 2
t p sin s cos sin
s sin 2
四、sα 、tα出现最大的截面
1、=0º 即横截面上,s达到最大
s s cos s
2
t 0
t max s cos sin
1 2
2、=45º 的斜截面上, t剪应力达最大
P -3P x
★轴力图的特点:
1)遇到集中力,轴力图发生突变;
2)突变值 = 集中载荷的大小
5kN FN 5KN
轴向拉伸和压缩
2、横向变形
△b=b1-b
b1 b
Db b
横向线应变
泊松比
图示直杆,其抗拉刚度为EA,试求杆件 的轴向变形△L,B点的位移δB和C点的 位移δC
F A
F
B DLAB
C
FL EA
B
L
L
FL C B EA
图示结构,横梁AB是刚性杆,吊杆CD是等截面直杆, B点受荷载F作用,试在下面两种情况下分别计算B点的位 移δB。1、已经测出CD杆的轴向应变ε;2、已知CD杆 的抗拉刚度EA.
F
A B
C
l
l 2
一等直拉杆在两端承受拉力作用,若其一半为钢,另 一半为铝,则两段的( B )。 A.应力相同,变形相同;B.应力相同,变形不同; C.应力不同,变形相同;D.应力不同,变形不同。
6.5 材料在拉伸和压缩时的力学性能
力学性能———指材料受力时在强度和变形方面表现
出来的性能。
塑性变形 变形 弹性变形
20kN E
18kN 4m 4m
30
O
FNCD
CFNBCFra bibliotek BC
FNBC ABC
A
1m
CD
B
FNCD ACD
(轴向接触问题)左端固定的等直杆,长度和拉(压)刚 度分别为l和EA,右端作用一轴向拉力F,杆伸长δ后,右 端与支撑刚性接触,然后,外力F继续加大。设杆件始终 在线弹性范围内工作,试分析外力F的施加过程中杆件轴 力FN的变化。
a
F D
FNAB B C
a
a
计算图示结构BC和CD杆横截面上的正应力值。 已知CD杆为φ28的圆钢,BC杆为φ22的圆钢。
1拉压杆横截面上的应力
1拉压杆横截面上的应力6.1.1 应力的概念同一种材料制成横截面积不同的两根直杆,在相同轴向拉力的作用下,其杆内的轴力相同。
但随拉力的增大,横截面小的杆必定先被拉断。
这说明单凭轴力F N 并不能判断拉(压)杆的强度,即杆件的强度不仅与内力的大小有关, 图6-1而且还与截面面积有关,即与内力在横截面上分布的密集程度(简称集度)有关,为此引入应力的概念。
要了解受力杆件在截面m-m 上的任意一点C 处的分布内力集度,可假想将杆件在m-m 处截开,在截面上围绕C 点取微小面积ΔA ,ΔA 上分布内力的合力为Δp (图6-1a),将Δp 除以面积ΔA ,即Ap p ∆∆=m (6-1) p m 称为在面积ΔA 上的平均应力,它尚不能精确表示C 点处内力的分布状况。
当面积无限趋近于零时比值Ap ∆∆的极限,才真实地反映任意一点C 处内力的分布状况,即 lim 0dAdp A p p A =∆∆=→∆ (6-2) 上式p 定义为C 点处内力的分布集度,称为该点处的总应力。
其方向一般既不与截面垂直,也不与截面相切。
通常,将它分解成与截面垂直的法向分量和与截面相切的切向分量(图6-1b ),法向分量称为正应力,用σ 表示;切向分量称为切应力,用τ表示。
将总应力用正应力和切应力这两个分量来表达具有明确的物理意义,因为它们和材料的两类破坏现象——拉断和剪切错动——相对应。
因此,今后在强度计算中一般只计算正应力和切应力而不计算总应力。
应力的单位为“帕”,用Pa 表示。
1Pa=1N/m 2, 常用单位为兆帕MPa ,1MPa=106Pa=1MN/mm 2=1N/mm 2,1GPa=109Pa 。
6.1.2 轴向拉伸和压缩时横截面上的正应力取一等截面直杆,在其侧面作两条垂直于杆轴的直线ab 和 cd ,然后在杆两端施加一对轴向拉力F 使杆发生变形,此时直线ab 、 cd分别平移至a 'b '、 c 'd '且仍保持为直线(图6-2a )。
轴向拉伸与压缩—轴向拉(压)杆横截面上的正应力(工程力学课件)
• 与截面垂直的应力称为正应力,用σ表示。 • 与截面相切的应力称为剪应力,用τ表示。
应力单位:帕(Pa)、千帕(kPa)、兆帕 (MPa)、吉帕(GPa)。
➢ 2.轴向拉(压)杆横截面上的正应力 平面假设:变形前原为平面的横截面,变形后仍保持为平面,
且垂直于杆轴线。
结论:轴向拉(压)杆横截面上只有正应力,且均匀分布。
第一节 轴向拉(压)杆的内力与轴力图 第二节 轴向拉(压)杆横截面上的正应力 第三节 轴向拉(压)杆的强度计算 第四节 轴向拉(压)杆的变形计算 第五节 材料在拉伸和压缩时的力学性能
➢ 1.应力的概念
应力——内力在单位面积上的分布集度。反映了内力在横截面上分布 的密集程度。
1Pa 1N / m2 1kPa 103 Pa 1Mpa 1N / mm2 106 Mpa 1Gpa 109 Pa
X 0 N BA sin 30 P 0
Y 0 N BA cos 30 N BC 0
P 15 NBA sin 30 0.5 30kN
N BC N BA cos 30 30 0.866 26kN
(2)计算各杆的应力
AB
N BA ABA
4 N BA
d 2
4 30 103 3.14 162
149.3MPa
BC
N BC ABC
26 10 2
103 10 2
2.6MPa
结论:拉杆横截面上产生的应力为均匀分布的正应力。 轴向拉(压)杆横截面上的正应力计算公式为:
N
A
N——横截面上的轴力; A——横截面面积。
σ 的符号:正号表示拉应力;Байду номын сангаас号表示压应力。
例题3 有一根钢丝绳,其截面积为0.725 cm2,受到3000N 的拉力,试求这根钢丝绳的应力是多少?
第7章 轴向拉压杆件的强度与变形计算
F NBC 56 . 6 kN (压力) F NBA 40 kN
(拉力)
(2)由强度条件确定各杆截面尺寸 对BA杆
A BA
d
4
2
F NBA
s
d
4 F NBA
s
17 . 8 mm
可取
d 18 mm
F NBC
对BC杆
A BC a
2
w
a
F NBC
【例】已知AB梁为刚体,CD为拉杆,拉杆直径
d=2cm,E=200GPa,FP=12kN, 求B点位移。
C 0.75m A D B
1m
1.5m
FP
解:(1)受力分析,求轴力
FN
F Ax
A
D
B
F Ay
1m
1.5m
FP
M
A
0
F P AB F N AD sin
FN
解:(1)受力分析, 求各杆轴力
F NBD
F x 0, Fy 0
2 F P 31 . 4 kN
(2)求各杆应力
BD
F NCD F P 22 . 2 kN
F NBD A BD F NCD A CD 22 . 2 kN 31 . 4 kN
CD
3
m
DD BB
AD AB
B B D D /(
AD AB
)
4 . 17 10
3
m
7.4 轴向拉压杆的强度计算
• 工作应力
FN A
• 失效:工作应力超过了杆件材料所能承受的极 限应力;
《材料力学》第2章-轴向拉(压)变形-习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a ) 解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。
(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。
(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。
(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为: x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σ MPa mm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FN FN
m F
m
F
3、轴力正负号:拉为正、 F 压为负
0 FN F 0 FN F
F
x
4、轴力图:轴力沿杆件轴 线的变化
11
§5-2 Axial Force and Axial Force Diagrams
Exercise :做出下列杆件的轴力图。
F
F F + F
q
F l
F l 2l l F +
FN
18
§5-2 Axial Force and Axial Force Diagrams
轴力(Axial Force)与构 件的那些因素有关? 截面形状? 外力大小? 截面尺寸? 构件材料?
19
§5-3、Stress on lateral
§5-4、Deformation of Axially Loaded Bar §5-5、Strength Condition, Allowable Stress and Safety Factor §5-6、Mechanical Behavior of Materials
§5-7、Statically Indeterminate Problem
N IV-IV 0
2. 轴力图如图。
32
§5-3、Stress on lateral
Example 2-4
3. 求应力
N AB N BC AB 52MPa, BC 95.5MPa AAB ABC
CD
N CE N 79.6MPa, DE DE 141.5MPa ACD ADE
14
§5-2 Axial Force and Axial Force Diagrams
Example 2-2:Do the Diagram of Axial Force
FN2=50 kN(拉力)
为方便取截面3-3右边为 分离体,假设轴力为拉力。
FN3=-5 kN (压力),同理,FN4=20 kN (拉力)
杆件的强度不仅与轴力有关,还与横截面面积 有关。必须用应力来比较和判断杆件的强度。 应力(stress)—内力在一点的分布集度(Density)
Δ FN lim Δ A0 Δ A
lim
Δ FQ ΔA
Δ A0
p
C
F4
F3
20
§5-3、Stress on lateral
Relationship about Internal Force and Stress
7
§5-1、 Introduction and Engineering Examples The Character of Axial Tension and Compression:
作用在杆件上的外力合力的作用线与杆件轴线 重合,杆件变形是沿轴线方向的伸长或缩短。
杆的受力简图为 Tension
F
工程力学——材料力学
1
工程力学——材料力学 第五章
轴向拉伸与压缩
2
第五章 轴向拉伸与压缩
§5-1、Introduction and Engineering Examples
§5-2、Axial Force and Axial Force Diagrams §5-3、Stress on lateral Section
C
2
FN 1
y
2、计算各杆件的应力。 FN 1 28.3 103 1 A1 20 2 10 6 B 4 90 106 Pa 90MPa F
FN 2 45° B
F
x
FN 2 20 103 2 2 6 A2 15 10 89 106 Pa 89MPa
max max{ AB , BC , CD , DE , EF } 141.5MPa
N EF EF 0 AEF
可见最大正应力并不一定发生在最大轴力处。
33
§5-3、Stress on lateral
注意:
轴力的一般情况:
若外力沿截面变化(比如由于考 虑构件的自重),截面的尺寸也沿轴线变 化时,这时截面上的轴力将是截面位置x的 函数N(x),如左图示。在计算x 截面上的轴 力时,应利用微积分求。一般地,构件各 截面的内力、应力和截面面积都是位置x的 函数,为:
16
§5-2 Axial Force and Axial Force Diagrams
Conclusion
由上述轴力计算过程可推得:
任一截面上的轴力的数值等于对应截面一侧所 有外力的代数和,且当外力的方向使截面受拉时为 正,受压时为负。
N=Σ P
17
§5-2 Axial Force and Axial Force Diagrams
Compression
F F
F
8
§5-1、 Introduction and Engineering Examples
9
§5-2 Axial Force and Axial Force Diagrams
1、轴力(Axial Force):
m F m F FN FN F
F
2、截面法求轴力(Method of
Section)
切: 假想沿m-m横截面将杆 切开 留: 留下左半段或右半段 代: 将抛掉部分对留下部分 的作用用内力代替
Fx 0 FN F 0 FN F
平: 对留下部分写平衡方程 10 求出内力即轴力的值
§5-2 Axial Force and Axial Force Diagrams
28
§5-3、Stress on lateral
A 1
45°
Example 2-3
C
2
FN 1
y
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。 B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) F 用截面法取节点B为研究对象
22
§5-3、Stress on lateral
轴力(Axial Force)分布规律:
23
§5-3、Stress on Lateral
Stress on Lateral: 应力分布规律:
24
§5-3、Stress on lateral
Stress on Lateral: 截面应力与轴力的分布关系:
FN 2 45° B
F
Fx 0
x
FN 1 cos 45 FN 2 0 FN 1 sin 45 F 0
FN 2 20kN
29
F
y
0
FN 1 28.3kN
§5-3、Stress on lateral
A 1
45°
FN 1 28.3kN
FN 2 20kN
25
§5-3、Stress on lateral
Stress on Lateral: Formula: σ =N/A
26
§5-3、Stress on lateral
FN A
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 文 南 原 理
27
§5-3、Stress on lateral
30
§5-3、Stress on lateral
Example 2-4
一受轴向荷载的阶梯轴,如图所示。求各段 横截面上的应力。并画轴力图。
31
§5-3、Stress on lateral
Example 2-4
解:1.求轴力
N I-I 50kN
N IIII 30kN
N III-III 25kN
Example 2-1
A
1 B 1 F2
2 C 2
3 D
F1 F1 F1
FN kN
F3
3
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 F4 出图示杆件的轴力图。 解:1、计算各段的轴力。
AB段
0 FN1 F1 10kN
x x
FN1 FN2
F
F2
FN3
10
杆件横截面 尺寸沿轴线缓慢 变化时的应力:
N ( x) ( x) A( x )
34
Homework:P128
5-1b、d
The End!
15
§5-2 Axial Force and Axial Force Diagrams
Example 2-2:Do the Diagram of Axial Force
轴力图(FN图)显示了各 段杆横截面上的轴力。
FN, max FN2 50 kN
思考:为何在F1,F2,F3作用着的B,C,D 截面处轴力图 发生突变?能否认为C 截面上的轴力为 55 kN?
A A
x
dA FNx dAz M y
FP1
y
My
A
σx
FN x x
x
dA
x
dAy M z
FP2
z
Conclusion:求应力需的知道截面内力以及内力在该 21 截面上的分布规律!
§5-3、Stress on lateral
轴力(Axial Force)分布规律:
3
§5-1、 Introduction and Engineering Examples
4
§5-1
§5-1、 Introduction and Engineering Examples