复变函数和解析函数
§5.9复变函数的导数与解析函数
(1) e z e x , Arge z y 2k
(2) (3)
e e z1 z2 e z1 z2 , e z1 e z1 z2 e z2
周期性:e z2ki e z
(4) 处处解析,且有 (e z ) e z
注:(1)y 0 w ex (实指数函数)
x 0 w eiy cos y i sin y (Euler公式)
证:f (z) Re z Im z xy ,
u(x, y) xy , v(x, y) 0
ux (0,0)
lim
x0
u ( x,0)
u(0,0) x
0
vy (0,0)
uy
(0,0)
lim
y0
u(0,
y)
y
u(0,0)
0
vx (0,0)
满足C R条件.
但当z沿 y kx(x 0)趋于零时,有
例1. 求 f z z n (n 为正整数 ) 的导数.
解: f z lim f z z f z
z 0
z
lim z z n z n
z 0
z
lim
z 0
nz n1
C
2 n
z
n2
z
z n1
nz n1
z n nz n1
例2 讨论 f (z) z 的连续性与可导性。 解 f (z) z x iy 在复平面处处连续
如 ln( 1) ln 1 i arg(1) i Ln(1) ln( 1) 2ki (2k 1)i
x0
lim f z z f z lim x iy
z 0
z
(x,y)(0,0) x iy
不存在,因而f z z在复平面上处处不可导
复变函数与解析函数
复变函数与解析函数复变函数是数学中的一个重要概念,它涉及到复数的运算和函数的性质。
解析函数则是复变函数中的一种特殊情况,具有更加丰富的性质和应用。
本文将介绍复变函数和解析函数的概念、性质以及它们在数学和科学领域的应用。
一、复变函数的概念与性质复变函数是将复数集合映射到自身的函数,即函数的自变量和因变量都是复数。
通常用f(z)表示复变函数,其中z为复数。
复变函数可以通过实部和虚部进行表示,即f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)分别为实部和虚部,而x和y分别为实部和虚部的变量。
复变函数的性质与实数函数类似,包括函数的连续性、可导性、积分等。
然而,复变函数有些独特的性质,比如解析性。
二、解析函数的概念与性质解析函数是复变函数的一种特殊情况,它在其定义域内处处可导,即在定义域内的任意一点,函数都存在导数。
解析函数的导数可以通过常规的求导法则得到,与实数函数类似。
解析函数具有一系列重要的性质,包括解析函数的导数仍然是解析函数,解析函数的导数序列收敛于该函数在某一点的幂级数展开式,以及柯西—黎曼方程等。
这些性质为解析函数的研究和应用提供了坚实的数学基础。
三、复变函数与解析函数的应用复变函数和解析函数在数学和科学领域有广泛的应用。
首先,它们在复数的运算和分析中起着重要的作用,比如复数的加减乘除、复数的共轭和模等运算。
复变函数和解析函数还可以用于解决一些实变函数无法解决的问题,比如研究复变函数的奇点和留数等。
此外,复变函数和解析函数在物理学、工程学和金融学等领域也有广泛的应用。
在物理学中,它们可以用于描述电磁场、量子力学和热力学等现象。
在工程学中,它们可以应用于信号处理、电路分析和控制系统等。
在金融学中,它们可以用于描述金融市场的变动和风险评估等。
总结起来,复变函数和解析函数是数学中的重要概念,具有丰富的性质和应用。
它们不仅仅是理论研究的基础,还在实际问题的解决中发挥着关键作用。
第一章 复变函数和解析函数解析
u x u
v y
v
或
u
1
u
1
v
v
y x
是可导的必要条件.
2020/10/24
第一章 复变函数和解析函数
16
据导数定义,沿实轴和虚轴的比值极限都存在且相等,即
z x, lim f lim u(x x, y) iv(x x, y) u(x, y) iv(x, y)
z0的邻域: z z0 (是任意小的正数)
内点z0:z0及邻域 E 点集 E外点z0:z0及邻域 E
边界点z0:z0的邻域中z有0 E也有 E的点
2020/10/24
第一章 复变函数和解析函数
10
(开)区域Bba))具全有由连内通点性组成— B内任两点都可由内点组 成的折线连起来
闭区域B :区域B连同其境界线构成的点集
单连通:境线只有一线 区域的连通阶数 多连通:境界线在两条 及以上
境界线正向约定:沿正向前进,区域始终在左手一侧
2020/10/24
第一章 复变函数和解析函数
11
2)复变函数: 存在一个点集E,zE有一个或多个w对应,
则称w为z的函数
w=f(z) (zE),z称为宗量.
2020/10/24
第一章 复变函数和解析函数
❖ z的共轭复数z*或
2020/10/24
第一章 复变函数和解析函数
4
❖ 1.2复平面与复矢量 ❖ 复平面——横轴为实轴,纵轴为虚轴的平面
一个复数复平面上的一个点→复矢量
2020/10/24
第一章 复变函数和解析函数
5
1.3三角及指数式
复变函数解析函数例子
复变函数解析函数例子1. 什么是复变函数复变函数,即复数域上的函数,它将一个复数映射到另一个复数。
复变函数是数学中重要的概念,它在物理、工程等领域都有广泛的应用。
复变函数的解析函数是其中一个重要的概念,在本文中将详细介绍解析函数的例子及其应用。
2. 解析函数的定义解析函数,也称为全纯函数或可导函数,是指在某个区域内可导的复变函数。
具体而言,如果一个复变函数在某个区域内处处可导,则称该函数在该区域内是解析的。
解析函数具有一些重要的性质,主要包括:连续性、解析性、无奇点、全局可导等。
这些性质使得解析函数在许多领域都有广泛的应用。
3. 解析函数的例子3.1. 多项式函数多项式函数是最简单的解析函数之一。
对于一个具有形如f(z)=a n z n+a n−1z n−1+...+a1z+a0的多项式函数,它在整个复平面上都是解析的。
多项式函数的导数可以通过逐项求导得到,因此它是解析函数。
多项式函数的例子包括:f(z)=z2+2z+1、f(z)=z3−3iz2+z−i等。
这些函数在整个复平面上都是连续且解析的。
3.2. 指数函数指数函数是另一个常见的解析函数。
对于形如f(z)=e z的指数函数,它在整个复平面上都是解析的。
指数函数具有许多重要的性质,比如e z1+z2=e z1e z2和e iθ= cos(θ)+isin(θ)。
指数函数在数学、物理、工程等领域都有广泛的应用,比如在电路分析、量子力学等方面。
它可以表示增长速度、周期性等问题。
3.3. 三角函数三角函数也是常见的解析函数。
对于形如f(z)=sin(z)和f(z)=cos(z)的三角函数,它们在整个复平面上都是解析的。
三角函数具有许多重要的性质,比如sin(z)=12i (e iz−e−iz)和cos(z)=1 2(e iz+e−iz)。
它们在数学、物理、工程等领域中广泛应用,比如在波动、振动等问题中。
4. 解析函数的应用解析函数的应用非常广泛,下面列举其中一些常见的应用:4.1. 数学领域在数学领域中,解析函数被广泛应用于复分析、调和分析等方面。
复变函数2-1解析函数的概念
n1 ( 2) ( z ) nz , 其中n为正整数.
n
19
( 3) (4)
f ( z ) g( z ) f ( z ) g( z )
f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ) f ( z ) ( 5) . ( g ( z ) 0) 2 g (z) g( z )
x 2yi lim z 0 x yi
z
o
y 0
x
设z z沿着平行于 x 轴的直线趋向于z,
x x 2yi lim 1, lim x 0 x z 0 x yi
设z z沿着平行于 y 轴的直线趋向于z,
x 2yi 2yi lim lim 2, z 0 x yi y 0 yi
u v u v , . x y y x
23
证明:必要性
设f ( z )在z x iy处可导,记作 f ( z ) a ib,
'
则由定义有f ( z 源自 ) f ( z ) (a ib)z ( z )
(a ib)(x iy) ( z )
所以f ( z ) x 2 yi的导数 不存在.
o
x 0
y
z
y 0
x
9
二、解析函数的概念与求导法则
1. 解析函数的定义
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导,那末称 f ( z ) 在 z0 解析.
如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 个解析函数(全纯函数或正则函数).
复变函数、解析函数
(2) f ( z ) x y ixy
解 f ( z)在 z 1 i 处 可 导 , 在 复 平 面 上 处
处不 解 析.
( 3 ) f ( z ) x 2 iy
1 解 f ( z )在 直 线 x 上可 导 , 在 复 平 面 上 处 处 2 不 解 析.
例5 证明:如果w u ( x, y ) iv( x, y )为解析函数,
1 2 1 2 f ( z ) u iv x y xy i (2 xy y x C ) 2 2 i 2 i 2 2 (令x z , y 0) z z Ci (1 ) z Ci, 2 2 1 i 2 i f (i ) 1 i, c f ( z ) (1 ) z 2 2 2
复变函数、解析函数
复数域与复数的表示法
复数集: C z x iy x, y R x Re z, y Im z , i
复 数 z x iy 有 序 数 组 ( x, y ) 注 意 : 复 数 不 能 比 较 小
1
复数的表示法:
1. z x iy 2. 复平面上的点P ( x, y )或向量OP 3. z r (cos i sin ) (三角表示法) 4. z rei (指数表示法)
一个复变函数 例如:
二个二元实函数
w f ( z ) z 2 ( x iy) 2 x 2 y 2 2ixy, u ( x, y ) x 2 y 2 , v( x, y ) 2 xy
可以利用二元实函数的极限,连续等概念来定义复变 函数的极限,连续。
极限 lim f ( z ) w0 ( w0 u0 iv0 )
21复变函数的导数与解析函数剖析
所以
lim
z0
f
( z0
z)
f (z0),
即f (z)在 z0 连续.
例3 f (z) z在z平面上处处连续但却处处不可导
解 (1) f(z)=z的连续性显然
(2)
f z
=
z
z z
z
=
z z
z
x
i y
x x
1
iy
x 0, y 0 1x 0, y 0
iy
f 1(x 0, y 0) z
lim x 2yi lim 2yi 2, z0 x yi y0 yi
所以f (z) x 2 yi的导数 不存在.
x 0 y
z o
y 0 x
2.可导与连续的关系:
函数 f (z) 在 z0 处可导则在 z0 处一定连续, 但 函数 f(z) 在 z0 处连续不一定在 z0 处可导.
所求 a 2, b 1, c 1, d 2.
例3 如果 f (z) 在区域 D内处处为零 , 则 f (z) 在
区域 D内为一常数 . 证 f (z) u i v v i u 0,
x x y y 故 u v u v 0,
x y y x
所以 u 常数, v 常数, 因此 f (z) 在区域 D内为一常数.
30
lim f lim f (z z) f (z) lim y 0,
z0 z z0
z
x0 x iy
y0
当点沿平行于虚轴的方向(x 0)而使z 0时,
lim f lim f (z z) f (z) lim y 1,
z0 z z0
z
y0 x iy i
x0
当点沿不同的方向使z 0时,极限值不同,
复变函数第二章 解析函数
第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}
′
= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念
复变函数与解析函数
复变函数与解析函数复变函数是数学中一个非常重要的分支,也是其它自然科学中涉及到复数的问题所必须掌握的基础知识。
它的研究对象是由复变量组成的函数,在复平面上有非常丰富的性质和应用。
解析函数是复变函数中的一个重要概念,是指在某个区域内可导的复变函数,它在物理、工程、数学等领域中有着广泛的应用。
一、复变函数基础复数包含实数和虚数两个部分,即 $z=a+b i$,其中 $a$ 和$b$ 是实数,$i$ 是虚数单位,满足 $i^2=-1$。
复平面可使用一个点 $(a,b)$ 表示一个复数 $z=a+b i$,其中向上为正方向,向右为正方向。
我们可以将复平面分为实轴和虚轴两部分,实轴上的点是实数 $a$,虚轴上的点是复数 $b i$。
对于一个复变量 $z=x+y i$,可以分别表示为实部 $x$ 和虚部$y$,即 $x=Re(z), y=Im(z)$。
其中,共轭复数(conjugate complex)的实部不变、虚部相反,即 $z^* = x - yi$。
绝对值定义为模长(modulus)或者复数的模数(magnitude):$|z|=\sqrt{x^2+y^2}$。
表示复数 $z$ 在复平面上到原点的距离。
二、复变函数的概念在实数域上,函数是由一个或多个自变量构成的表达式或规则,对应一个或多个因变量。
像$y=f(x)$ 这样的表达式就是一个函数。
在复数域上,一个函数 $f(z)$ 由一个复变量 $z=x+y i$ 构成,可看作 $(x,y)$ 上的某种标量函数。
即对于 $x,y \in \mathbb{R}$,$z=x+y i \in \mathbb{C}$,$f(z)$ 可以表示为$f(x+yi)=u(x,y)+v(x,y)i$ 的形式,其中 $u(x,y)$ 和 $v(x,y)$ 是实函数。
我们可以把 $\mathbb{C}$ 中的点 $z$ 对应到复平面上,把点$z$ 对应的函数值 $f(z)$,对应到复平面上的另一个点 $w$。
复变函数解析函数
(2)求导公式与法则
----实函数中求导法则的推广
① 常数的导数 c=(a+ib)=0. ② (zn)=nzn-1 (n是自然数). 证明 对于复平面上任意一点z0,有 n z n z0
z lim
z z0
lim
z z0
z z0
n ( z z0 )(z n1 z n 2 z0 z0 1 ) n lim nz0 1 z z0 z z0
与z=(w)互为单值的反函数,且(w)0。
思考题
2
实 函 数 中 f ( x ) x 在( , )内 可 导 , ; 复 函 数 中 f (z) z 的 可 导 性 , ?
2
1 例2 已 知 f ( z ) ( z 5 z ) , 求f ' ( z ) z 1 1 2 解 f ( z ) 2( z 5 z )(2 z 5) ( z 1)2 例3 问:函数f (z)=x+2yi是否可导?
v u x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设 f (z) = u (x, y) + iv(x, y)在 D 内有定义, 则 f (z)在点 z=x+iy ∈D处可导的充要条件是
u(x, y) 和 v(x, y) 在点 (x, y ) 可微,且满足
Cauchy-Riemann方程
z 0
lim f ( z0 z ) f ( z0 ), 所 以f ( z )在z0连 续
二. 解析函数的概念
定义 如果函数w=f (z)在z0及z0的某个邻域内处处 可导,则称f (z)在z0解析;
如果f (z)在区域D内每一点都解析,则称
(最新整理)(完整版)复变函数解析函数
成立, 则称当z趋于z0时, f(z)以A为极限,并记做 limf(z)A 或 f(z) A (z z0 ).
zz0
注意: 定义中zz0的方式是任意的.
几何意义
y
(z)
v
w f(z)
z0 d
o
xo
(w)
e
A
u
几何意义: 当变点z一旦进
入z0 的充分小去 心邻域时,它的象
点f(z)就落入A的
(最新整理)(完整版)复变函数解析函数
2021/7/26
1
第二章 解析函数
2.1 复变函数的概念 2.2 解析函数的概念 2.3 解析的充要条件 2.4 初等函数
2.1 复变函数的概念、极限与连续性
复变函数的概念
1. 复变函数的定义 2. 映射的概念 3. 反函数或逆映射
1. 复变函数的定义—与实变函数定义相类似
0)
A
zz0 g(z) l i mg(z) zz0
B
zz0
以上定理用极限定义证!
例1
证明 wx2yi(xy2)在平面上处处 . x2 y, x y2在平面上处处有极限
例2
求 f(z)zz
z 在 z0时的极 . 限 z
f(z)2(xx22yy22)在(0,0)处极限不 . 存在
例3
证 明 f(z)Rez z在z0时 的 极 限.不 存
y (z)
v (w)
w z2
2
o
x
o
u
y (z)
v (w)
w z2
w z2
o
6
x w z2 o
3
u
x2 y2 4
3. 反函数或逆映射
复变函数与积分变换第二章_解析函数
z0 可微等价.
与一元实函数类似, 记
df ( z0 ) f ( z0 ) z f ( z0 ) dz ,
称之为 f ( z ) 在 z0 处的微分. 如果函数 f ( z ) 在区域D内处处可微, 则称
f ( z ) 在区域D内可微, 并记为
df ( z ) f ( z ) dz .
也称 z0 是 f ( z ) 的解析点. (2) 若 f ( z ) 在区域D内每一点都解析,则称
f ( z ) 在区域D内解析, 或者称 f ( z ) 是区域D内的
解析函数.
(3) 设G是一个区域,若闭区域 D G , 且 f ( z ) 在G内解析,则称 f ( z ) 在闭区域 D 上 解析. 函数 f ( z ) 在 z0 处解析和在 z0 处可导意义 不同,前者指的是在 z0 的某一邻域内可导, 但后者只要求在 z0 处可导. 函数 f ( z ) 在 z0 处解析和在 z0的某一个邻 域内解析意义相同.
连续,但处处不可导.
定理1.1
例2.2 证明 f ( z ) x 2 yi 在复面内处处
设 f ( z ) u( x , y ) iv ( x , y ), 则 f (x)
(3) 求导法则
复变函数中导数的定义与一元实函数
导数的定义在形式上完全一致,同时,复变函
数中的极限运算法则也和实函数中一样,因而
当 z0 0 时, 由 z zz , z0 z0 z0 得
2
2
f ( z ) f ( z0 ) z 2 z z0 2 z0
( z 2 z z0 2 z ) ( z0 2 z z0 2 z0 ).
f ( z ) f ( z0 ) 2 z z0 ( z z0 ) z z 0 . 故 z z0 z z0
复变函数理论与解析函数的性质
复变函数理论与解析函数的性质复变函数理论是数学中的一个重要分支,它研究的是具有复变量的函数。
复变函数与实变函数有着明显的区别,它们的性质和行为也有很大的不同。
本文将探讨复变函数理论的一些基本概念和解析函数的性质。
一、复变函数的定义和基本性质复变函数是指定义在复数域上的函数。
复数可以表示为实部与虚部的和,即z = x + iy,其中x和y分别是实数部分和虚数部分。
一个复变函数可以表示为f(z) = u(x, y) + iv(x, y),其中u和v分别是实部和虚部的函数。
复变函数的定义域是复平面上的一个开集。
复变函数的基本性质包括解析性、连续性和可微性。
解析性是指函数在其定义域内处处可导,即函数的导数存在。
连续性是指函数在其定义域内连续。
可微性是指函数在某一点处可导。
对于复变函数来说,解析性和可微性是等价的,即函数在某一点处可导当且仅当函数在该点处解析。
二、解析函数的性质解析函数是复变函数中的一类特殊函数,它具有许多重要的性质。
首先,解析函数是无穷可微的,即它的导数、二阶导数、三阶导数等都存在。
这个性质使得解析函数在数学和物理中有广泛的应用,例如在电磁场的分析和量子力学中的波函数描述等。
其次,解析函数满足柯西-黎曼方程,即它的实部和虚部满足柯西-黎曼方程的偏导数条件。
这个方程表明解析函数的实部和虚部是相互独立的,它们的变化是相互约束的。
柯西-黎曼方程的满足使得解析函数具有一定的几何性质,例如保角性和共形映射等。
此外,解析函数还具有唯一性定理和辐角原理等重要性质。
唯一性定理指出,如果两个解析函数在某个区域内的实部和虚部都相等,那么它们在该区域内是相等的。
辐角原理是指解析函数的辐角的变化是连续的,且在某个区域内的辐角变化总和为零。
三、解析函数的应用解析函数在数学和物理中有广泛的应用。
在数学中,解析函数常用于复积分、级数和变换等问题的求解。
在物理学中,解析函数常用于电磁场的分析、流体力学中的势函数描述等。
复变函数:第2章 解析函数
• 知 zlim f ( z ) = f ( z 0 ),故 →z
0
f (z )在点 z 0 处连续.
• 2.1.3 复变函数的微分 • 定义2 称函数 f (z)的改变量 ∆w的线性部分 定义 f ′( z0 )∆z 为函数 f (z)在点 z 0 处的微分,记作
n
k ( z + ∆z ) n = ∑ C n z k ( ∆ z ) n − k = n k =0
1 2 n ( ∆z ) n + C n (∆z ) n −1 z + C n ( ∆z ) n − 2 z 2 + ⋯ + C n ( ∆z ) n − n z n
所以,由导数定义有
n
( z + ∆z ) − z f ′( z ) = ( z )′ = lim ∆z →0 ∆z
n
n
= lim [(∆z )
∆z →0
n −1
+ C (∆z )
1 n
n−2
z +⋯+ C
n −1 n −1 n
z
]
= nz
n −1
• 例2 求 f ( z ) = • 解 由例1
z 的导数.
2
df f ′( z ) = = 2z dz
• 2.1.2 可导与连续的关系 • 若函数 w = f (z )在点 z 0处可导,则 点 z 0 处必连续. • 证 因为
dw 或 dz
,即
z = z0
dw f ′( z0 ) = dz
z = z0
f ( z0 + ∆z ) − f ( z0 ) = lim ∆z →0 ∆z
复变函数与积分变换第一章 复变函数和解析函数
|z|=2的内接正方形的四个顶点(如图).
1
一般情况下, n z z n
n个根就是以原点为中心、
y
w1
w0
1
半径为 r n 的圆的内接正多边
o
x
形的n个顶点所表示的复数.
w2
w3
1.1.5 复球面与无穷远点
第一章 复变函数与解析函数
§1.1 复 数
1 复数的概念 2 复数的四则运算 3 复数的表示方法 4 乘幂与方根
1.1.1 复数的概念
由于解代数方程的需要, 人们引进了复数. 例如,简单的代数方程
x2 1 0 在实数范围内无解. 为了建立代数方程的普遍 理论,引入等式
i2 1. 由该等式所定义的数称为虚数单位
cosq i sinq n (cos nq i sin nq )
称为De Moivre公式.
如果定义负整数幂为
zn
1 zn
,
那么
De Moivre公式仍然成立. 设
z1 r1(cosq1 i sinq1 ), z2 r2(cosq2 i sinq2 ),
当 z2 0 (即 r2 0 )时,
y
y
为起点而以点P为终点的向
量表示(如图).
o
Pz x iy
x
x
这时复数加、减法满足向量加、减法中的平
行四边形法则. 用 OP表示复数z时, 这个向量在x轴和y轴上
的投影分别为x和y.
把向量 OP 的长度r 称为复数z的 模 或称为z
的绝对值, 并记做|z|. 显然 z r x2 y2 ,
q r1
o
q1
q2
•
r2
z2
z2 r2(cosq2 i sinq2).
复变函数第2章解析函数
当 f (z) z时,dw= dz ,z 所以 f 在(z)点
z 0处的微分又可记为
dw zz0 f (z0 ) d z
亦即
dw
dz zz0
f (z0 )
由此可知,函数 w f (z)在点 z处0 可导与可微 是等价的.
复变函数的求导法则与高数完全类似:
则称 gx, y为 D内的调和函数
定理2.3 设 f z u i,v 若 f 在z 区域 内D 解
析,则 与u 均v 为 内D的调和函数.
定义2.4 若在区域 D内, u与 v均为调和函数
且满足C-R条件
ux vy , uy vx 则称 u 为 v的共轭调和函数
定理2.4 设 ux, y在区域 D内为调和函数,则
z0
)
lim
zz0
f (z) f (z0) z z0
0 f (z0 ) 0
知
lim
zz0
f (z)
f (z0 ),故
f在(z)点 处z 0连续.
同高数一样,称函数 f (z) 的改变量 w的线性部 分 f (z0 )z为函数 f (z在) 点 z处0 的微分,记作 dw 或 zz0 df(z) z,z0 即
2.1 复变函数的导数
定义2.1 设函数 w f z定义在区域 D
内,z0 D ,(z0 z) D ,若极限
lim f z0 z f z0
z0
z
存在,则称此极限为函数 f z在点 z0处的导数,
记作 f z0 或
df ,即
dz zz0
f
z0
df dz
z z0
lim
z0
f
z0
2-2复变函数及 函数解析的充要条件
(1) ( 2)
u (4u2 1) 0, 将(2)代入(1)得 x u 2 0, 由 (4u 1) 0 x
12
u 由(2)得 0, y
所以 u c (常数),
2
于是 f ( z ) c ic (常数).
课堂练习
设 my 3 nx 2 y i ( x 3 lxy2 ) 为解析
如果 u y 和 v y 中有一个为零, 则另一个必不为零 , 两族中的曲线在交点处 的切线一条是水平的 另 , 一条是铅直的, 它们仍然相互正交 .
17
例8
证明函数 f ( z ) Im z 2 的实、虚部在点
z 0 满足柯西-黎曼方程 但在点 z 0 不可微. ,
证
因为 f ( z ) 2 xy , 所以 u 2 xy , v 0,
函数 f ( z ) xy 在点 z 0 不可导.
11
例5 设 f ( z ) u( x , y ) iv( x , y ) 在区域 D 内解
析, 并且 v u , 求 f ( z ).
2
解
u v u 2u , x y y u v u 2 u , y x x
域 D 内解析的充要条件是: u( x , y )与 v ( x , y ) 在 D 内可微, 并且满足柯西-黎曼方 . 程
3
解析函数的判定方法:
(1) 如果能用求导公式与求 导法则证实复变函 数 f ( z ) 的导数在区域 D 内处处存在, 则可根据 解析函数的定义断定 f ( z ) 在 D 内是解析的.
u(0, y ) u(0,0) 0 v x (0,0), u y (0,0) lim y 0 y0
复变函数解析函数
面积分公式
总结词
面积分公式是复变函数解析函数的另一个重要性质,它描述了函数在一个平面区域上的 积分与边界路径之间的关系。
详细描述
如果一个复函数在一个平面区域D内有定义,且在区域D的边界周围解析,那么该函数 在区域D内的积分可以通过在区域D的边界上的函数值和边界周围的路径上的积分来表
示。
体积分公式
未来研究还可以进一步探索解 析函数在各个领域中的应用, 例如在人工智能、大数据分析 、量子计算等领域的应用。
THANKS
感谢观看
解析函数在其定义域内的任意点都可微,且 其一阶导数不为零。
整体性质
解析函数在其定义域内是单值的,即对于定义域内的 任意两个不同的点z1和z2,f(z1)≠f(z2)。
柯西定理
如果f(z)是单连通域内的解析函数,且z0是域 内任意一点,则对于任意正实数r,有∫(c: z0→z0+r) f'(z) dz = f(z0+r) - f(z0)。
复变函数解析函数
• 引言 • 解析函数的定义与性质 • 解析函数的表示方法 • 解析函数的积分公式 • 解析函数的应用 • 结论
01
引言
复数与复变函数简介
复数
由实数和虚数组成的数,表示为 a+bi, 其中 a 和 b 是实数,i 是虚数单位, 满足 i^2=-1。
复变函数
以复数为自变量的函数,其值也是复 数。
解析函数的重要性
解析函数的性质
在数学分析中,解析函数是一类具有导数的函数,其导数在定义域内连续且具有连续的偏导数。解析函数的性质 包括具有连续的导数、可微性、可积性等。
解析函数的应用
解析函数在数学、物理、工程等领域有广泛的应用。例如,在解决偏微分方程、积分方程、复变积分等数学问题 时,解析函数可以提供有效的解决方案。此外,在信号处理、控制系统等领域,解析函数也具有实际应用价值。
复变函数课件02章 解析函数
试求: f (i)
答案:-3
复变函数与积分变换
第2章 解析函数
定理2.3(解析的充要条件)
函数f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件是: u(x,y)和v(x,y)在D内可微,且满足柯西——黎曼方程。
u v , v u x y x y
复变函数与积分变换
第2章 解析函数
和、差、积、商(除z 去0 分母为0点)仍为解析函数;
由解析函数构成的复合函数也是解析函数。
复变函数与积分变换
第2章 解析函数
§2.2 复变函数可导与 解析的充要条件
定理2.2(可导的充要条件)
函数f(z)=u(x,y)+iv(x,y)在定义域内一点z=x+iy可导的 充要条件是:u(x,y)和v(x,y)在点(x,y)可微,且满足柯 西——黎曼方程。
u v , v u x y x y 则称v(x,y)为u(x,y)的共轭调和函数。
定理2.6
函数f(z)=u(x,y)+iv(x,y)在区域D内是解析的函数的充 要条件为:虚部v(x,y)是实部u(x,y)的共轭调和函数。
复变函数与积分变换
第2章 解析函数
例2.12 试求一解析函数f(z) ,使其实部为 u(x,y)=x2+y2-2xy.
第2章 解析函数
例2.1 求函数 f (z) zn 的导数(n为正
整数)。
f (z) (zn ) lim (z z)n zn nzn1
z 0
z
例2.2 求函数 f (z) z2 的导数(n为正
整数)。
(z2 ) 2z
复变函数与积分变换
第2章 解析函数
某点可导
该点连续
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位.
对虚数单位的规定:
cos x 1 e ix e ix 2
i 1 i2=–1
sin x 1 eix e ix 2i
2020/10/20
定义
i-虚数单位 满足:i2=-1
对于" x, y R, 称 z x iy 为复数
.
实部 记做:Rez=x
虚部 记做:Imz=y
当 x 0, y 0 时, z iy 称为纯虚数;
2020/10/20
5
2020/10/20
6
学习要求与内容提要
目的与要求:掌握复变函数的基本概念和复函数可导 必要条件、掌握解析函数的概念、函数 解析的充要条件、复势的概念。
教学重点: 柯西-黎曼条件、复变函数解析的充要条件;
教学难点: 柯西-黎曼条件与复变函数可导充要条件、 复变函数解析的充要条件
当 y 0 时, z x 0i, 我们把它看作实数 x.
C {z | z x iy, x, y R}称为为复数集
2020/10/20
11
两复数相等当且仅当它们的实部和虚部分 别相等.
设:z1=x1+i·y1 z2=x2+i·y2
z1=z2 x1 x2 , y1 y2
复数 z 等于0当且仅当它的实部和虚部同时 等于0.
2020/10/20
3
复变函数论(theory of complex functions)的目的: 把微积分延伸到复域。使微分和积分获得新的深度和意
义。
2020/10/20
4
主要内容:
1 复变函数和解析函数 2 复变函数积分 柯西定理和柯西公式 3 复变函数级数 泰勒级数和洛朗级数等(自学) 4 解析函数(自学) 5 定积分的计算(自学) 6 δ函数 其余拉普拉斯变换的内容(自学) 7 傅立叶变换和色散 8 线性常微分方程的级数解法和某些特殊函数
显然由复数的复平面表示,有下列各式成立
x z,
2020/10/20
y z,
z x y.
14
y
y
z
P(x,y)
在 z 0的情况下, 以正实轴为始边 , 以o 表示 x x
z 的向量oP 为终边的角的弧度数 称为 z 的幅角,
记作 arg z .
说明 任何一个复数 z 0有无穷多个幅角,
Euler把 1 作为特 2020/10殊/20的数
cos x 1 e 1x e 1x 2
sin x 1 e 1x e 1x 2 1 9
1.1 复数的基本概念
1 复数及其代数运算
(1). 复数的代数形式
考虑解方程: x2 1。 显然,此方程在实数集中是无解的。
为了求出方程的解,引入一个新数i,称为虚数单
2020/10/20
7
2020/10/20
• 莱昂哈德·保罗·欧拉(Leonhard Paul Euler,1707年4月15日- 1783年9月18日)是一位瑞士数 学家和物理学家,近代数学先驱 之一,他一生大部分时间在俄罗 斯帝国和普鲁士度过。
• 欧拉在数学的多个领域,包括 微积分和图论都做出过重大发现。 他引进的许多数学术语和书写格 式,例如函数的记法"f(x)",一直 沿用至今。此外,他还在力学、 光学和天文学等学科有突出的贡 献。
2020/10/20
2
课程讲授计划
• 第一章 复变函数和解析函数(5) • 第二章 复变函数积分 柯西定理和柯西公式(5) • 第六章 点源和瞬时源 函数(2) • 第七章 傅里叶变换和色散关系(6) • 第八章 线性常微分方程的级数解法和某些特殊函数(8) • 第九章 数学物理方程的定解问题(6) • 第十章 行波法和分离变量法 本征值问题(6) • 第十一章 积分变换法(4) • 第十二章 球坐标下的分离变量法(8) • 第十三章 柱坐标下的分离变量法 Bessel函数(8)
(3)复数的指数函数表示
复数的三角函数表示式
z(cosisin)
利用欧拉公式 eicosisin,
如果 是其中一个幅角, 那么 z 的全部幅角为
arg z 2kπ (k为任意整数).
特殊地, 当 z 0时, z 0, 幅角不确定.
2020/10/20
15
幅角主值的定义:
在z(≠0)的幅角中,把位于0< <2π的 称 为arg z 的主值。而复数的辐角与幅角主值间有关系
arg z 2kπ (k为任意整数).
复数的矢量表示法
y
y
P(x,y)
z
o
xx
2020/10/20
13
y
如图:
y
P(x,y)
x cos
x2 y2
z
y
sin
arctan
y x
o
那么复数(复矢量)可以表示为
xx
z= x iy= c o s isin . 复数的三角表示式
复矢量的长度称为复数的模或绝对值
z =ρ= x2 +y2 .
x x
Leibniz :不可能有负数的对数
dx d ln x x
只对正数成立
Euler: 在1747年指出
ln(x), lnx 差一常数
1740年,Euler 给Bernoulli的信中说: y2cosx 和 ye 1x e 1x 是同一个微分方程的解,因此应该相等
1743年,发表了Euler公式
2020/10/20
1
教材及指导书
一、教材: 胡嗣柱等 编著,《数学物理方法》,第二版, 北京
大学出版社,2002年7月
二、主要的参考书: 于涛等 编 《数学物理方法知识要点与习题解析》,
哈尔滨工程大学出版社,2007年6月
成绩测定:作业20%+上课出席参与10% +考试70% 联系方式:zyx@
说明 两个数如果都是实数,可以比较它们的大 小, 如果不全是实数, 就不能比较大小, 也就 是说:
复数不能比较大小!!!
2020/10/20
12
(2)复平面表示与复数三角式
复数z=x+iy可以用平面上的一个点(x,y)或 一个矢量表示,通常把横轴叫实轴,纵轴叫虚 轴,而把这种用来表示复数的平面叫复平面。
• 欧拉是18世纪杰出的数学家, 同时也是有史以来最伟大的数学 家之一。他也是一位多产作者, 其文学著作约有60-80册。法国 数学家皮埃尔-西蒙·拉普拉斯曾 这样评价欧拉对于数学的贡献: “读欧拉的著作吧,在任何意义 上,他都是我们8的大师”
1.0问题的提出
负数有对数吗?
Bernoulli:负数的对数是实数 d(x)dx ln(x)lnx