频率特性的测量实验报告
自动控制频率特性测试实验报告
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
频率特性测试实验报告
频率特性测试实验报告引言频率特性测试是一种常用的电子设备测试方法,用于评估电子设备在不同频率下的性能表现。
本实验旨在通过测试不同频率下的信号响应,来探究被测试物体的频率特性。
实验步骤1.准备测试设备和被测试物体:选择一台信号发生器作为测试设备,并选择一个被测试物体,如一个电子电路板或一个音响设备。
2.连接测试设备和被测试物体:将信号发生器的输出端与被测试物体的输入端相连接。
确保连接稳固可靠。
3.设置信号发生器的频率:根据实验要求,设置信号发生器的频率范围和步进值。
频率范围应覆盖被测试物体可能的工作频率。
4.开始测试:依次设置不同的频率,观察被测试物体的响应情况。
记录下每个频率下的测试数据。
5.分析测试数据:将记录的测试数据整理,并进行进一步的数据分析。
可以绘制频率-响应曲线图,以直观展示被测试物体的频率特性。
6.结果讨论:根据频率-响应曲线图和数据分析结果,讨论被测试物体的频率特性。
可以探讨其在不同频率下的增益、相位差等表现,并与预期的理论模型进行比较。
7.结论:总结被测试物体的频率特性,给出实验结果的解释和评价。
实验数据示例频率 (Hz) 响应幅度 (dB) 相位差 (°)100 0.5 10500 1.2 201000 2.0 302000 1.8 405000 1.0 4510000 0.8 50数据分析与讨论通过绘制频率-响应曲线图,我们可以清楚地观察到被测试物体的频率特性。
从实验数据中可以看出,被测试物体在低频段(100 Hz和500 Hz)响应幅度较小,相位差也较小。
随着频率的增加,响应幅度逐渐增强,相位差也逐渐增大。
当频率达到2000 Hz时,响应幅度达到最大值,相位差也达到最大值。
随后,响应幅度逐渐减小,相位差也逐渐减小。
这种频率特性的变化可能与被测试物体的电路结构和元件特性有关。
与预期的理论模型进行比较后发现,实验结果与理论模型基本一致。
在低频段,被测试物体对输入信号的响应较弱,可能是由于电路的带宽限制或信号衰减等原因。
rc电路的频率特性实验报告
rc电路的频率特性实验报告 RC 电路的频率特性实验报告一、实验目的1、深入理解 RC 电路的频率响应特性。
2、掌握测量 RC 电路频率特性的方法。
3、学会使用实验仪器,如示波器、信号发生器等。
4、通过实验数据,分析 RC 电路对不同频率信号的衰减和相移情况。
二、实验原理RC 电路是由电阻 R 和电容 C 组成的简单电路。
在交流电路中,RC 电路的阻抗会随着输入信号的频率而变化,从而导致电路对不同频率信号的响应不同。
对于一个简单的 RC 串联电路,其阻抗 Z 可以表示为:\Z = R +\frac{1}{j\omega C}\其中,\(\omega\)是角频率,\(j\)是虚数单位。
电路的传递函数 H(\(\omega\))可以表示为:\H(\omega) =\frac{V_{out}}{V_{in}}=\frac{1}{1 +j\omega RC}\其幅值\(|H(\omega)|\)和相位\(\varphi(\omega)\)分别为:\|H(\omega)|=\frac{1}{\sqrt{1 +(\omega RC)^2}}\\\varphi(\omega) =\arctan(\omega RC)\从上述公式可以看出,当频率很低时,\(\omega RC \ll 1\),\(|H(\omega)|\approx 1\),\(\varphi(\omega)\approx 0\),电路几乎没有衰减和相移。
当频率很高时,\(\omega RC \gg 1\),\(|H(\omega)|\approx 0\),\(\varphi(\omega)\approx -90^\circ\),信号被大幅衰减且有很大的相移。
三、实验仪器1、信号发生器2、示波器3、电阻、电容若干4、面包板5、导线若干四、实验步骤1、按照电路图在面包板上搭建 RC 串联电路,选择合适的电阻值R 和电容值 C。
2、将信号发生器的输出端连接到 RC 电路的输入端,示波器的通道 1 连接到输入信号,通道 2 连接到输出信号。
频率特性实验报告
一、实验目的1. 理解频率特性的基本概念和测量方法。
2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。
3. 了解频率特性在系统设计和稳定性分析中的应用。
二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。
幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。
频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。
2. 将信号输入被测系统,并测量输出信号的幅度和相位。
3. 根据测量数据绘制幅频特性和相频特性曲线。
三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。
2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。
3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。
4. 记录不同频率下的幅度和相位数据。
5. 使用绘图软件绘制幅频特性和相频特性曲线。
五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。
一般来说,低频信号的衰减较小,高频信号的衰减较大。
根据幅频特性,可以判断系统的带宽和稳定性。
2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。
相频特性曲线通常呈现出滞后或超前特性。
根据相频特性,可以判断系统的相位裕度和增益裕度。
3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。
如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。
否则,系统可能是不稳定的。
六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。
实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。
相频特性曲线显示出系统在低频段滞后,在高频段超前。
根据频率特性分析,可以得出被测系统是稳定的。
频率特性测试_实验报告
频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。
2. 学习使用示波器进行频率特性测试。
3. 了解放大器的频率响应特性。
实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。
在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。
实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。
2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。
3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。
4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。
实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。
在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。
实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。
通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。
实验四 系统频率特性测量
实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
2、掌握系统及元件频率特性的测量方法。
二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。
图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。
IgGG3)G∕)Hg)H。
啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关运算器后在显示器中显示。
根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
频率特性实验报告
频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。
在电子领域中,频率特性实验是非常常见的实验之一。
本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。
一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。
通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。
二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。
在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。
1. 函数发生器:用于产生不同频率的信号作为输入信号。
可以调节函数发生器的频率、幅度和波形等参数。
2. 示波器:用于观测电路或系统的输入和输出信号波形。
示波器可以显示信号的幅度、相位和频率等信息。
3. 频谱分析仪:用于分析信号的频谱成分。
频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。
实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。
2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。
3. 设置函数发生器的频率和幅度,选择适当的波形。
4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。
5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。
实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。
如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。
如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。
2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。
相位谱可以显示信号的相位延迟或提前。
rc 频率特性实验报告
rc 频率特性实验报告RC 频率特性实验报告引言:RC 电路是一种常见的电路结构,由电阻(R)和电容(C)组成。
在电子领域中,我们经常使用 RC 电路来实现信号的滤波、延迟和放大等功能。
本实验旨在探究 RC 电路的频率特性,即电路在不同频率下的响应情况。
实验目的:1. 理解 RC 电路的基本原理和组成结构;2. 掌握测量 RC 电路的频率特性的方法;3. 分析 RC 电路在不同频率下的响应情况。
实验器材:1. 信号发生器2. 双踪示波器3. 电阻箱4. 电容器实验步骤:1. 搭建 RC 电路,将信号发生器与双踪示波器连接至电路;2. 调节信号发生器的频率,从低频到高频逐渐增加,并记录示波器上电压的变化;3. 将记录的数据整理并绘制成频率-电压响应曲线。
实验结果与分析:经过实验测量和数据处理,我们得到了 RC 电路在不同频率下的响应曲线。
从曲线可以看出,在低频时,电路对信号的传输几乎没有衰减,电压响应较为稳定。
随着频率的增加,电路开始出现衰减,响应幅度逐渐减小。
当频率达到一定值后,电路的响应幅度急剧下降,形成一个陡峭的下降区域。
这是因为在高频下,电容器对电流的导通能力变差,导致电路的响应能力下降。
进一步分析,我们可以发现 RC 电路的频率特性与电容器的特性有关。
在低频下,电容器可以充分充电,电流可以通过电容器流过,因此电路的响应较好。
但在高频下,电容器的充电和放电速度变慢,电流无法快速通过电容器,导致电路响应受限。
此外,电阻的阻值也会影响电路的频率特性。
较大的电阻值会使电路对高频信号的衰减更加明显。
结论:通过本次实验,我们深入了解了 RC 电路的频率特性。
我们发现,RC 电路在不同频率下的响应存在一定的规律性。
低频下电路响应稳定,高频下电路响应衰减明显。
这对于电子工程师来说,非常重要,因为它们可以用于设计和优化各种电子设备和电路。
然而,我们也要注意到实验中可能存在的误差和限制。
例如,电阻箱和电容器的质量和精度可能会对实验结果产生一定的影响。
频率特性法实验报告
一、实验目的1. 了解频率特性法的基本原理和测试方法。
2. 掌握用频率特性法分析系统性能的方法。
3. 熟悉实验仪器和实验步骤。
二、实验原理频率特性法是控制系统分析和设计的重要方法之一。
它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。
频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。
三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。
(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。
(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。
(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。
(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。
(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。
五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。
从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。
峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。
2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。
从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。
3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。
(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。
如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。
系统频率测试实验报告(3篇)
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
频率特性实验报告心得
一、实验背景随着科学技术的不断发展,电子设备在各个领域的应用越来越广泛。
频率特性作为电子设备的重要性能指标之一,对于设备的设计、调试和维护具有重要意义。
为了深入了解频率特性,我们开展了频率特性实验,通过实验验证理论知识,提高实践操作能力。
二、实验目的1. 理解频率特性的基本概念和原理;2. 掌握频率特性的测试方法;3. 分析频率特性对电子设备性能的影响;4. 培养实际操作能力,提高综合素质。
三、实验原理频率特性是指电子设备对输入信号的频率响应能力。
频率特性通常用幅频特性、相频特性和群延迟特性来描述。
幅频特性表示设备在不同频率下输出信号的幅度变化;相频特性表示设备在不同频率下输出信号的相位变化;群延迟特性表示设备在不同频率下输出信号的延迟时间。
四、实验过程1. 实验准备:首先,了解实验原理和仪器设备,熟悉实验步骤和注意事项。
实验仪器包括信号发生器、示波器、频谱分析仪等。
2. 实验步骤:(1)搭建实验电路,连接信号发生器、示波器和频谱分析仪;(2)调整信号发生器,输出不同频率的正弦波信号;(3)观察示波器显示的输出信号,记录幅度、相位和延迟时间;(4)利用频谱分析仪分析输出信号的频谱,得到幅频特性和相频特性;(5)重复步骤(2)至(4),获取不同频率下的频率特性数据。
3. 数据处理与分析:将实验数据整理成表格,绘制幅频特性曲线、相频特性曲线和群延迟特性曲线。
分析曲线特点,判断频率特性对电子设备性能的影响。
五、实验结果与分析1. 幅频特性曲线:在实验中,我们发现随着频率的增加,输出信号的幅度逐渐减小。
这说明该电子设备在高频段性能较差,可能存在信号衰减现象。
2. 相频特性曲线:实验结果显示,随着频率的增加,输出信号的相位逐渐滞后。
这表明该电子设备在处理高频信号时,存在相位延迟现象。
3. 群延迟特性曲线:从实验数据可以看出,随着频率的增加,输出信号的群延迟逐渐增大。
这说明该电子设备在高频段存在明显的群延迟现象。
串联电路的频率特性实验报告
串联电路的频率特性实验报告一、实验目的1、深入理解串联电路在不同频率下的特性。
2、掌握测量串联电路频率特性的实验方法和仪器使用。
3、观察并分析串联电路中电阻、电容和电感对频率的响应。
二、实验原理在串联电路中,通常包含电阻(R)、电感(L)和电容(C)三种元件。
当交流电源的频率发生变化时,电路中的电流和电压也会随之改变。
对于电阻元件,其阻抗(Z_R)等于电阻值(R),与频率无关。
电感元件的阻抗(Z_L)与频率成正比,即 Z_L =2πfL,其中 f 是频率,L 是电感值。
电容元件的阻抗(Z_C)与频率成反比,即 Z_C = 1 /(2πfC),其中 C 是电容值。
串联电路的总阻抗(Z)等于各个元件阻抗之和,即 Z = Z_R +Z_L + Z_C 。
电路中的电流 I = U / Z ,其中 U 是电源电压。
三、实验仪器1、信号发生器:用于产生不同频率的交流信号。
2、示波器:用于观测电路中的电压和电流波形。
3、电阻箱:提供可变的电阻值。
4、电感箱:提供可变的电感值。
5、电容箱:提供可变的电容值。
6、万用表:用于测量电阻、电容和电感的值。
四、实验步骤1、按照电路图连接好串联电路,包括电阻、电感和电容。
2、用万用表测量电阻、电感和电容的实际值,并记录下来。
3、打开信号发生器,设置起始频率和终止频率,以及频率步长。
4、调节信号发生器的输出电压,使其保持恒定。
5、用示波器分别测量电阻、电感和电容两端的电压,并记录不同频率下的电压值。
6、计算不同频率下电路中的电流值,根据公式 I = U / Z 。
7、绘制电阻、电感和电容两端电压以及电流与频率的关系曲线。
五、实验数据记录与处理|频率(Hz)|电阻电压(V)|电感电压(V)|电容电压(V)|电流(A)|||||||| 100 | 50 | 20 | 30 | 05 || 200 | 55 | 30 | 25 | 055 || 300 | 60 | 40 | 20 | 06 || 400 | 65 | 50 | 15 | 065 || 500 | 70 | 60 | 10 | 07 |根据上述数据,绘制出电压和电流与频率的关系曲线。
频率特性的测试实验报告
频率特性的测试实验报告频率特性的测试实验报告摘要:频率特性是描述系统对不同频率信号的响应能力的重要参数。
本实验旨在通过测试不同频率下的信号输入和输出,分析系统的频率特性。
实验结果表明,系统在不同频率下的响应存在一定的差异,频率特性测试可以有效评估系统的性能。
引言:频率特性是衡量系统对不同频率信号的响应能力的重要指标,对于各种电子设备和通信系统的设计和性能评估具有重要意义。
频率特性测试可以帮助我们了解系统在不同频率下的工作情况,为系统优化和故障排除提供依据。
实验方法:1. 实验器材准备:使用函数发生器作为信号源,连接到待测试系统的输入端;使用示波器连接到待测试系统的输出端,用于观测信号响应。
2. 实验参数设置:选择一系列不同频率的信号作为输入信号,设置函数发生器的频率范围和幅度。
3. 实验过程:逐一调节函数发生器的频率,观察示波器上输出信号的变化,并记录下输入信号和输出信号的幅度、相位差等参数。
4. 实验数据处理:根据记录的数据,绘制频率特性曲线,分析系统在不同频率下的响应情况。
实验结果:通过实验测试,我们得到了系统在不同频率下的响应数据,并绘制了频率特性曲线。
以下是实验结果的总结:1. 幅频特性:我们观察到系统在低频时具有较高的增益,随着频率的增加,增益逐渐下降。
在高频范围内,增益趋于平缓或下降较快,这可能是由于系统的带宽限制所致。
2. 相频特性:我们发现系统在不同频率下的相位差存在一定的变化。
在低频时,相位差较小,随着频率的增加,相位差逐渐增大。
这可能是由于系统的传递函数导致的相位延迟效应。
3. 频率响应范围:通过绘制频率特性曲线,我们可以确定系统的频率响应范围。
在曲线上观察到的3dB降低点可以作为系统的截止频率,超过该频率的信号将受到较大的衰减。
讨论与分析:频率特性测试结果对于系统的性能评估和优化具有重要意义。
通过分析实验结果,我们可以得出以下结论和建议:1. 频率特性的变化可能是由于系统中的电容、电感等元件的频率响应特性导致的。
11.频率特性测试仪实验报告
频率特性测试仪实验报告实验目的:1、了解频率特性测试仪的工作原理2、学会设计一个双T被测网络,并且能够达到所给要求3、了解频率特性测试仪设计的整体系统设计,以及各子系统设计的方案思路4、掌握频率特性测试仪的信号源产生方法,并能够设计DDS信号源电路5、掌握频率测试仪的检波显示原理并能够设计一个符合要求的峰值检波器。
实验原理:频率测试仪就是一个扫频仪,它体现的是输出电压随频率变化的关系。
它是根据扫频法的测量原理设计而成的,就是将扫频信号源和示波器的X-Y显示功能结合在一起,用示波管直接显示被测二端网络的频率特性曲线,是描绘网络传递函数的仪器。
频率特性测试仪组成框图扫频仪有一个输出端口和一个输入端口:输出端口输出等幅扫频信号,作为被测网络的输入测试信号;输入端口接收被测网络经检波后的输出信号。
可见,在测试时频率特性测试仪与被测网络构成了闭合回路。
一个频率测试仪应该有三个部分组成:信号源、被测网络和检波及显示部分。
扫频信号源:频率由低到高或由高到低变化的正弦波振荡源,称为扫频。
频率的变化可以是连续的,也可以是步进式的。
扫频信号的幅度、扫频的频率变化范围可以方便地控制。
扫频的速度与测量仪的其他部分的工作同步。
扫频信号源在扫频过程中,通过采用ALC(自动电平控制)技术使幅度保持一致(可视为恒等于1),这样,可省去对输入激励信号的幅度测量和求输出输入幅度比值的运算。
信号源的产生方法有多种,按需要可做成点频(连续波CW),频率自动步进(STEP),频率连续变化(扫频SWEEP)等形式。
采用锯齿波电压作为压控扫频振荡器(VCO)的控制量,同时用作显示的X 轴扫描电压以达到扫频和曲线显示的同步。
标量网络分析仪只作幅频测量,而矢量网络分析仪还作相频特性测量。
网络分析仪对信号源的质量要求比扫频仪高,通常采用频率合成器作为扫描源,合成器的频率由数字量控制。
常见的扫频信号产生方法:压控振荡(VCO ),函数发生器、锁相环(PLL :Phase Lock Loop )频率合成器、直接数字频率合成或直接数字合成(DDFS ,或DDS )和PLL+DDS本题属低频测试系统,DDS 信号源和8038芯片制作的VCO 信号源(反馈稳频或PLL )都可以采用。
自动控制原理实验报告 (频率特性测试)
自动控制原理实验报告(三)
频率特性测试
一.实验目的
1.了解线性系统频率特性的基本概念。
2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。
二.实验内容及步骤
被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告。
本实验将正弦波发生器(B4)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。
图3-2-1 被测系统的模拟电路图
实验步骤:
(1)将函数发生器(B5)单元的正弦波输出作为系统输入。
(2)构造模拟电路。
三.实验记录:
ω
ω=1
ω=1.6
ω=3.2
ω=4.5
ω=6.4
ω=8
ω=9.6
ω=16
实验分析:
实验中,一阶惯性环节的幅频特性)(ωL ,相频特性)(ωϕ随着输入频率的变化而变化。
惯性环节的时间常数T 是表征响应特性的唯一参数,系统时间常数越小,输出相应上升的越快,同时系统的调节时间越小。
频率特性的测量实验报告
课程名称: 控制理论乙 指导成绩:实验名称: 频率特性的测量 实验类型:同组学生__ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析〔必填〕 七、讨论、心得 一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数. 二、实验内容和原理1.实验内容〔1〕R-C 网络的频率特性.图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性. 〔2〕闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图. 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变.输出信号为其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω.不断改变()x t 的频率,就可测得被测环节〔系统〕的幅频特性和相频特性. 本实验采用李沙育图形法,图5-1为测试的方框图在表〔1〕中列出了超前于滞后时相位的计算公式和光点的转向.表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值.三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只. 四、操作方法和实验步骤 1.实验一〔1〕根据连接图,将导线连接好〔2〕由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地.〔3〕调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu,点击从Y-t变为X-Y显示.〔4〕改变函数发生器的频率,记录数据与波形.2.实验二:基本与实验一的实验步骤相同.五、实验数据记录和处理1.实验结果分析〔1〕实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线〔实验〕实验一相频特性曲线〔实验〕通过运用公式理论计算得到的曲线如下图所示:实验一幅频特性曲线〔计算〕实验一相频特性曲线〔计算〕通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差.(2)实验二根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线〔实验〕实验二相频特性曲线〔实验〕根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线〔计算〕实验二相频特性曲线〔计算〕通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近.但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别.这一点的主要原因为:...2.实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了.(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几.只能用display里面的连续记录显示功能来记录波形.这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的.(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差.(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的.(5)电阻和电容等非理想元件造成的误差3.思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真.(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确.(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前.七、讨论、心得1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大.所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小.2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察.3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差.4.在计算过程中,注意认真仔细.计算量繁杂,容易导致计算错误,可以多设几个变量来解决.5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观.当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力.6.通过本次实验,我了解到了频率特性测量的方法以与怎样求幅频特性|G<w>|和相频特性φ<w>的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识.这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义.。
频率特性测试实验报告
频率特性测试实验报告频率特性测试实验报告摘要:本实验旨在通过频率特性测试,研究和分析不同电路元件和电子设备在不同频率下的响应特性。
通过实验数据的收集和处理,我们可以了解电路的频率响应、频率特性以及其在不同频率下的性能表现。
实验结果显示,在不同频率下,电路元件和电子设备的频率响应存在差异,这对于电路设计和信号处理具有重要意义。
引言:频率特性是指电路或电子设备在不同频率下的响应能力。
了解电路在不同频率下的性能表现,对于电路设计、信号处理和通信系统的优化具有重要意义。
通过频率特性测试,我们可以分析电路的频率响应、幅频特性和相频特性,从而更好地了解电路的工作原理和性能。
实验方法:1. 实验仪器和设备:本实验使用了函数发生器、示波器、电阻、电容、电感等实验仪器和设备。
2. 实验步骤:(1)连接电路:根据实验要求,连接电路并确保电路连接正确。
(2)设置函数发生器:根据实验要求,设置函数发生器的频率和幅度。
(3)测量电压和相位:使用示波器测量电路中的电压和相位差。
(4)记录实验数据:根据实验要求,记录不同频率下的电压和相位差数据。
(5)数据处理:根据实验数据,绘制幅频特性曲线和相频特性曲线,分析电路的频率响应特性。
实验结果与分析:通过实验数据的收集和处理,我们得到了电路在不同频率下的电压和相位差数据,并绘制了幅频特性曲线和相频特性曲线。
实验结果显示,在低频率下,电路的幅频特性较为平缓,而在高频率下,幅频特性逐渐下降。
相位差随频率的变化呈现出一定的规律,这与电路元件的特性有关。
通过对实验结果的分析,我们可以进一步了解电路的频率响应特性。
实验应用:频率特性测试在电路设计、信号处理和通信系统中具有广泛的应用。
通过了解电路在不同频率下的响应特性,我们可以优化电路设计,提高信号处理的效果,以及改进通信系统的性能。
例如,在音频放大器设计中,对于不同频率的音频信号,需要了解放大器的频率响应特性,以保证音频信号的传输质量。
另外,在无线通信系统中,了解天线的频率特性,可以优化天线设计,提高信号的传输距离和稳定性。
频率特性的测量实验报告
频率特性的测量实验报告一、实验目的频率特性是系统在正弦输入信号作用下,稳态输出与输入的幅值比和相位差随频率变化的关系。
本次实验的目的是通过测量系统的频率特性,深入理解系统的性能和特性,掌握频率特性的测量方法和数据分析处理技巧。
二、实验原理1、频率特性的定义系统的频率特性可以表示为幅频特性和相频特性。
幅频特性是输出信号与输入信号的幅值比随频率的变化关系,相频特性是输出信号与输入信号的相位差随频率的变化关系。
2、测量方法本次实验采用扫频法测量系统的频率特性。
扫频法是通过改变输入正弦信号的频率,同时测量输出信号的幅值和相位,从而得到系统的频率特性。
三、实验设备1、信号发生器用于产生不同频率的正弦输入信号。
2、示波器用于测量输入和输出信号的幅值和相位。
3、被测系统本次实验中的被测系统为一个无源 RC 网络。
四、实验步骤1、按照实验电路图连接好实验设备,确保连接正确无误。
2、打开信号发生器,设置起始频率、终止频率和频率步长,产生扫频正弦信号。
3、在示波器上同时观察输入和输出信号的波形,调整示波器的参数,使波形清晰稳定。
4、测量不同频率下输出信号的幅值和相位,并记录下来。
5、改变输入信号的频率,重复步骤 4,直到完成整个频率范围内的测量。
五、实验数据及处理以下是本次实验测量得到的数据:|频率(Hz)|幅值比|相位差(度)||||||100|0707|-45||200|05|-634||300|0316|-716||400|0224|-760||500|0177|-787||600|0141|-813||700|0114|-832||800|0093|-848||900|0077|-861||1000|0064|-871|根据实验数据,绘制幅频特性曲线和相频特性曲线:1、幅频特性曲线以频率为横坐标,幅值比为纵坐标,绘制幅频特性曲线。
从曲线中可以看出,随着频率的增加,幅值比逐渐减小,表明系统对高频信号的衰减作用增强。
频率特性 实验报告
频率特性实验报告频率特性实验报告引言:频率特性是指某个系统或信号在不同频率下的响应情况。
在电子工程领域中,频率特性的研究对于设计和分析电路、滤波器以及信号处理系统至关重要。
本实验旨在通过实际测量和分析来探究不同电路元件的频率特性,并深入理解频率对于电路性能的影响。
实验目的:1. 理解频率特性的概念和重要性;2. 掌握频率特性的测量方法和分析技巧;3. 研究不同电路元件的频率响应特性。
实验器材和方法:1. 实验器材:信号发生器、示波器、电阻、电容、电感等;2. 实验方法:通过改变信号发生器的频率,测量电路中的电压响应,并记录数据。
实验过程与结果:1. 实验一:RC低通滤波器的频率特性测量在实验中,我们搭建了一个RC低通滤波器电路,并通过改变信号发生器的频率,测量了电路中的电压响应。
实验结果显示,随着频率的增加,电压响应逐渐减小,且在截止频率附近有明显的衰减。
这说明RC低通滤波器对高频信号有较好的抑制作用。
2. 实验二:RL高通滤波器的频率特性测量在实验中,我们搭建了一个RL高通滤波器电路,并通过改变信号发生器的频率,测量了电路中的电压响应。
实验结果显示,随着频率的增加,电压响应逐渐增大,且在截止频率附近有明显的增益。
这说明RL高通滤波器对低频信号有较好的传递作用。
3. 实验三:LC并联谐振电路的频率特性测量在实验中,我们搭建了一个LC并联谐振电路,并通过改变信号发生器的频率,测量了电路中的电压响应。
实验结果显示,在谐振频率附近,电压响应达到最大值,且有明显的共振现象。
这说明LC并联谐振电路在谐振频率处具有较大的电压增益。
讨论与分析:通过以上实验,我们可以得出一些结论和发现:1. 不同类型的滤波器具有不同的频率特性,可以用于特定频率范围的信号处理;2. 截止频率是滤波器性能的重要参数,决定了滤波器对信号的抑制或传递能力;3. 谐振频率是共振电路的重要特性,具有较大的电压增益。
结论:频率特性是电子工程中重要的研究内容,对于电路设计和信号处理具有重要意义。
频率特性的测量实验报告
频率特性的测量实验报告频率特性的测量实验报告引言:频率特性是电子设备和电路的重要性能指标之一,对于信号的传输、滤波、放大等应用起到关键作用。
本实验旨在通过实际测量,探究不同电路元件和电子设备在不同频率下的响应特性,以便更好地理解和应用频率特性。
实验一:RC电路的频率特性在本实验中,我们选择了一个简单的RC电路作为研究对象。
首先,我们使用函数发生器产生不同频率的正弦信号作为输入信号,然后通过示波器测量电路中的电压响应。
实验结果显示,当频率较低时,电路对输入信号的响应较强,但随着频率的增加,电路的响应逐渐减弱。
通过测量得到的幅频响应曲线,我们可以清晰地观察到截止频率的存在,这个频率点上电路的响应下降到-3dB。
实验二:LC电路的频率特性接下来,我们将研究LC电路的频率特性。
通过改变电感和电容的数值,我们可以调整电路的共振频率。
在实验中,我们使用函数发生器产生一系列频率的正弦信号,并测量电路中的电压响应。
实验结果表明,当输入信号的频率等于电路的共振频率时,电路的响应达到最大值。
而在共振频率附近,电路的响应曲线呈现出明显的谐振特性。
此外,我们还观察到在共振频率之上和之下,电路的响应逐渐减弱。
实验三:放大器的频率特性在实际应用中,放大器是非常常见的电子设备。
我们选择了一个简单的放大器电路,通过测量其频率特性,来了解放大器对不同频率信号的放大效果。
实验中,我们使用函数发生器产生一系列频率的正弦信号,并将其输入到放大器电路中。
通过测量输出信号的幅度和相位,我们可以绘制出放大器的幅频响应和相频响应曲线。
实验结果显示,放大器对不同频率的信号具有不同的放大倍数和相位延迟。
在特定频率范围内,放大器的增益较为稳定,而在截止频率附近,放大器的增益开始下降。
结论:通过本次实验,我们深入了解了不同电路元件和电子设备在不同频率下的响应特性。
我们发现,随着频率的增加,电路的响应会发生明显的变化,这对于电子设备的设计和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率特性的测量实验报告
课程名称:控制理论乙指导老师:成绩:
实验名称:频率特性的测量实验类型:同组学生姓名:
一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1.掌握用李沙育图形法,测量各典型环节的频率特性;
2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数。
二、实验内容和原理
1.实验内容
(1)R-C网络的频率特性。
图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性。
(2)闭环频率特性的测试
被测的二阶系统如图5-3所示,图5-4为它的模拟电路图。
取参考值0
51R
K
=,1
R 接470K 的电位器,2
510R
K
=,3
200R
K
=
2.实验原理
对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m
X t X
t
ω=,它的稳态输出是一与输入信号同频
率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变。
输出信号为 ()sin()()sin()m
Y t Y t G j t ωϕωωϕ=+=+
其中()m
m
Y
G j
X
ω=,()arg()
G j
ϕωω
=
只要改变输入信号的频率,就可以测得输出信号与输
入信号的幅值比()
G jω和它们的相位差()
ϕω。
不断改变()x t 的频率,就可测得被测环节(系统)的幅频特性和相频特性。
本实验采用李沙育图形法,图5-1为测试的方框图
在表(1)中列出了超前于滞后时相位的计算公式和光点的转向。
表中 0
2Y 为椭圆与Y 轴交点之间的长度,0
2X 为椭圆与X 轴交点之间的距离,m
X 和m
Y 分别为()X t 和()Y t 的幅值。
三、主要仪器设备
1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台; 3. 任意函数信号发生器一台; 4.万用表一只。
四、操作方法和实验步骤 1.实验一
(1)根据连接图,将导线连接好
(2)由于示波器的CH1已经与函数发生器的正极相连,
所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地。
(3)调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu ,点击从Y-t 变为X-Y 显示。
(4)改变函数发生器的频率,记录数据及波形。
2.实验二:基本与实验一的实验步骤相同。
五、实验数据记录和处理
实验一:求计算的相频特性与幅频特性的公式为:
727
24
434384
84747
4
1021000101100010)10)(10()10)(10(1010101010101010)
()
()(++++=+++++=+
⨯
+
++
=
=s s s s s s s s s s
s s s
s C s R s G
2
22727)
()21000()10()11000()10()(d c ad bc j bd ac dj c bj a j j j G +-++=
++=+-+-=ωωωωω
2
710ω-==c a
ω
11000=b ω
21000=d
2
22
22222222222lg
20)()(lg 20)(d c d a c b d b c a d c ad bc bd ac L ++++=+-++=ω
bd
ac ad
bc +-=arctan
)(ωϕ
实验二:求计算的幅频特性与相频特性的公式为:
50
550
10)2.0(10)(2
++=++=
s s s s s G
]
25)50[(]
5)50[(505)50(50)(22222ωωωωωωω+---⨯=
+-=j j j G
2
505arctan
)(ωω
ωϕ--=
]
25)50[(50
lg
20)(2
2
2ωωω+-=L
六、实验结果与分析
1.实验结果分析
(1)实验一
根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:
实验一幅频特性曲线(实验)
实验一相频特性曲线(实验)
通过运用公式理论计算得到的曲线如下图所示:
实验一幅频特性曲线(计算)
实验一相频特性曲线(计算)
通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:
由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差。
(2)实验二
根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:
实验二幅频特性曲线(实验)
实验二相频特性曲线(实验)
根据计算结果,在matlab上绘制幅频曲线如下图所示
实验二幅频特性曲线(计算)
实验二相频特性曲线(计算)
通过matlab程序仿真得到的幅频与相频曲线如下图所示:
由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近。
但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别。
这一点的主要原因为:。
2.实验误差分析
本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:
(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了。
(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几。
只能用display 里面的连续记录显示功能来记录波形。
这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的。
(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差。
(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的。
(5)电阻和电容等非理想元件造成的误差
3.思考题
(1)在实验中如何选择输入的正弦信号的幅值?
解:先将频率调到很大,再是信号幅值应该调节信号发
生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真。
(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?
便于读取数据,使测量结果更加准确。
(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?
若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前。
七、讨论、心得
1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大。
所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小。
2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察。
3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差。
4.在计算过程中,注意认真仔细。
计算量繁杂,容易导致计算错误,可以多设几个变量来解决。
5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观。
当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力。
6.通过本次实验,我了解到了频率特性测量的方法以及怎样求幅频特性|G(w)|和相频特性φ(w)的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识。
这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义。