【高考解读】2017年高考全国卷(坐标系与参数方程)分析与启示

合集下载

坐标系与参数方程全国高考新课程卷试题分析与启示

坐标系与参数方程全国高考新课程卷试题分析与启示

备注:此论文于2015年4月已发表在《教学考试》(理论版2双月刊)杂志上。

坐标系与参数方程试题分析与启示748200 甘肃省渭源县第一中学何伟军“坐标系与参数方程”是新课标新增内容,是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化.从2007年到至今已经走过整整八年的考试历程,研究它的命题规律,有助于把握命题动向,整体感知,有利于实施具体的备考计划,这成为高考备考独一无二的选择.纵观历年考题,我们可以从以下几个方面分析:一、坐标系与参数方程试题的综合分析1、坐标系与参数方程考点分析题型不变、第23题位置固定不变,文理同题不变,分值10分不变,命题本源是选修4-4:坐标系与参数方程,是以直线、圆参数方程和极坐标方程、仅以及椭圆的参数方程为背景,求曲线的交点坐标、点的轨迹的参数方程、弦长、取值范围等;考题涵盖《考纲》所涉及的知识点,现分析如下:2、试题源于课本课本是什么?课本是数学知识结构的外在呈现,是高中教学的依据;课本是试题的基本来源;是高考命题的主要依据;是中低档题的直接来源;是解题能力的生长点.集中考察八年坐标系与参数方程考题,分析对比,不难发现大多数试题的产生都是课本中的例习题、探究和思考为源题,在此基础上组合、加工和发展的结果,如表2所示.二、命题方法再现由表1所考查的知识点和表2所涉猎的课本题不难看出,大多数考题由课本题变化而来.课本习题为素材的变式题,通过变形、延伸与拓展来命制高考数学题.这些题目(1)选编源题,采用串并方式的仿制题;(2)精编源题,与三角函数巧结合,“题”高一筹;(3)改装源题条件,深层加工,力图创新;(4)课本源题做“引子”,传承精髓,题在书外,理在书中.下面我们将遴选高考真题,分别给予剖析.1.选编源题,采用串并方式的仿制题;1.1并联方式,重现源题案例1(2007年全国新课标卷Ⅱ)1O e 和2O e 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O e 和2O e 的极坐标方程化为直角坐标方程; (Ⅱ)求经过1O e ,2O e 交点的直线的直角坐标方程.解析:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=.所以224x y x +=.即2240x y x +-=为1O e 的直角坐标方程.同理2240x y y ++=为2O e 的直角坐标方程.(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩.即1O e ,2O e 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-.源题:(1)把极坐标方程θρcos 10-=,θρsin 2=化为直角坐标方程;(2)已知圆0882:221=-+++y x y x C ,圆0244:222=---+y x y x C ,试判断圆1C 与圆2C 的位置关系.思考:考题第(Ⅰ)问是课本习题重现,剥去极坐标“外装”后,第(Ⅱ)问也是必修2所学内容,是课本源题的重现,背景熟悉,朴实无华,基本上是并联方式构成命题. 2.2、串联方式,多层“拼接”、叠加案例2(2008年全国新课标卷Ⅱ)已知曲线C 1:cos ()sin x y θθθ=⎧⎨=⎩为参数,曲线C 2:()x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C .写出1'C ,2'C 的参数方程.1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解析:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =.2C的普通方程为0x y -+=.因为圆心1C到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数)2C ':2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数) 化为普通方程为:1C ':2241x y +=,2C ':12y x =+,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.源题:(1)把下列参数方程化为普通方程,并说明它们各表示什么曲线:①⎩⎨⎧==θθsin 2cos 2y x ;②⎩⎨⎧--=-=t y t x 4123(t 为参数)(2)已知直线063:=-+y x l 和圆心为C 的圆04222=--+x y x ,判断直线l 与圆的位置关系;如果相交,求出它们交点坐标.(3)在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧='='y y xx 32后的图形.①032=+y x ;②122=+y x .(4)求直线023=+-y x 和椭圆141622=+y x 的交点坐标.思考:考题两问,考题其实由课本4道题稍加“包装”“拼接”叠加而成.若把源题(2)的直线方程和圆方程化为参数方程后就与考题相差无几.换言之,考题以参数方程“包装”,化为普通方程后,发现两题形异质同,而这正是高考命题的基本依据和发源地.高考复习中单打一显然不能应对多层次组合的考题,串通教材为提高能力之为,只有平时扎实的基础才能从容不迫应对综合考题.2.精编源题,与三角函数精巧结合,“题”高一筹 2.1与三角交汇,主体结构和源题基本一致案例3:(2009年全国新课程卷Ⅱ)已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩(t 为参数),C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数). (Ⅰ)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (Ⅱ)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t=+⎧⎨=-+⎩(t 为参数)距离的最小值. 解析:(Ⅰ)222212:(4)(3)1,:1.649x y C x y C ++-=+=1C 为圆心是(4,3)-,半径是1的圆.3(4,4).(8cos ,3sin ),(24cos ,2sin ).2P Q M θθθθ--++故2C 是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (Ⅱ)当2t π=时,3C 为直线072=--y x ,M 到3C 的距离13sin 3cos 455--=θθd ,从而当43cos ,sin 55θθ==-时,558min =d 源题:(1)把下列参数方程化为普通方程,并说明它们各表示什么曲线:①⎩⎨⎧=+=θθsin cos 3y x (θ为参数);②⎩⎨⎧==ϕϕsin 3cos 5y x (ϕ为参数);(2)在椭圆14922=+y x 上求一点M ,使点M 到直线0102=-+y x 的距离最小,并求出最小距离.思考:考题设置两问,第(Ⅰ)课本习题类型,第(Ⅱ)中PQ 中点M 的坐标和课本和椭圆14922=+y x 上的点)sin 2,cos 3(θθ完全类似,主体结构和课本题基本一致,直接取材于课本,选编源题,与三角函数精巧结合,串通例习题的思想方法,“题”高一筹. 2.2将源题抽象化、模型化,求解参数化案例4(2012年全国新课标卷Ⅱ)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(Ⅰ)求点,,,A B C D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围. 解析:(Ⅰ)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ 点,,,A B C D的直角坐标为1,1)-- (Ⅱ)设00(,)P x y ;则⎩⎨⎧==ϕϕsin 3cos 200y x (ϕ为参数)2222224440t PA PB PC PD x y =+++=++25620sin [56,76]ϕ=+∈源题:(1)在图1-9中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.(2)已知点的极坐标分别为),23(),2,4(),32,2(),4,3(ππππ,求它们的直角坐标. (3)已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值.思考:以椭圆的参数方程和圆的极坐标方程为载体,已知圆内接正方形的一个顶点的极坐标,求其它各顶点的坐标,此问与源题相似,将源题抽象化、模型化就是考题,将考题生活化、具体化就是源题,这是常见命题方法,该题目就是课本源题的深层次变形.第(2)问是将源题(3)中的圆改编为椭圆参数的方程后,从题干到设问就“酷似”考题.因此扎根教材,夯实基础策略永远不变.3.改装源题条件,深层加工,力图创新 3.1 变更源题载体,构成形异质同题图1-9E案例5 (2010年全国新课程卷Ⅱ)已知直线C 1x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2x cos sin y θθ=⎧⎨=⎩(θ为参数). (Ⅰ)当α=3π时,求C 1与C 2的交点坐标;(Ⅱ)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线. 解析:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩,解得1C 与2C 的交点为)23,21(),0,1(-.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=.A 点坐标为()2sin cos sin ααα-,故当α变化时,P 点轨迹的参数方程为:⎪⎪⎩⎪⎪⎨⎧-==αααcos sin 21sin 212y x (α为参数),P 点轨迹的普通方程为161)41(22=+-y x .故P 点轨迹是圆心为)0,41(,半径为14的圆. 源题:(1)设直线l 经过点)5,1(0M 、倾斜角为3π.①求直线l 的参数方程;②求直线l 和圆1622=+y x 的两个交点到点0M 的距离的和与积.(2)求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长. (3)已知O 是直角坐标原点,B A ,是抛物线)0(22>=p px y 上异于顶点的两动点,且AB OM OB OA ⊥⊥,并与AB 相交于点M ,求点M 的轨迹方程.思考:两题有极大的相似性,第(Ⅰ)与课本题十分接近,如果把必修②中4.2直线、圆的位置关系一节的题目的普通方程用参数方程改装,就已经相差无几了.第(Ⅱ)问与源题(3)外形稍有不同,一个是以定圆与动直线为载体,求以过原点与动直线的垂线段的中点轨迹;一个是以定抛物线与动直线为载体,求过原点与动直线垂直时垂足的轨迹.两者都有垂直的情结,都是以动直线中参数为变量来表示点M 的轨迹方程的,求解问题思想方法一脉相承,试题所承载的知识、思想方法没变. 3.2 多重组合,深层加工,交汇创新案例6(2011年全国新课标Ⅱ)在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x α(为参数),M 为1C 上的动点,P 点满足OM OP 2=,点P 的轨迹为曲线2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .解析(Ⅰ)设),(y x P ,则由条件知)2,2(yx M .由于M 点在1C 上,所以⎩⎨⎧+==⇒⎪⎪⎩⎪⎪⎨⎧==ααααsin 44cos 4sin 22cos 22y x y x,从而2C 的参数方程为⎩⎨⎧+==ααsin 44cos 4y x (α为参数)(Ⅱ)曲线1C 的极坐标方程为θρsin 4=,曲线2C 的极坐标方程为θρsin 8=.射线3πθ=与1C 的交点A 的极径为3sin41πρ=,射线3πθ=与2C 的交点B 的极径为3sin 82πρ=.所以3212=-=ρρAB .源题:(1)圆O 的半径为2,P 是圆上的动点,)0,6(Q 是x 轴上的定点,M 是PQ 的中点.当点P 绕O 作匀速圆周运动时,求点M 的轨迹的参数方程.(2)在极坐标系中,求适合下列条件的直线或圆的极坐标方程:①过极点,倾斜角是3π的直线;②圆心在)2,(πa ,半径为a 的圆. (3)在极坐标系中,已知两点)32,1(),3,3(ππB A -,求B A ,两点间的距离. 思考: 多重组合的痕迹从源题上可以看得出来,从源题的问题再设计和改动,并赋予向量进行条件的改装,第(I )问条件中P 点满足2=,与源题中M 是PQ 的中点高度吻合.求曲线的参数方程和求轨迹方程是类似的,即“建系、设点、列式、化简”.第(Ⅱ)问可在源题中找到“影子”,也可找到解决问题的方法,这就是求极坐标系下的两点间的距离除了转化成直角坐标方程,在同一极角下两点间的距离,可以用极经的差来计算.关键要掌握两种坐标系下的曲线与方程的关系与其他知识的联系.3.3紧扣教材立意、创新,推陈出新案例7 (2013年全国新课标卷Ⅱ)已知动点,P Q 都在曲线⎩⎨⎧==ββsin 2cos 2:y x C (β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解析:(Ⅰ)依题意有)2sin 2,2cos 2(),sin 2,cos 2(ααααQ P , 因此)2sin sin ,2cos (cos αααα++M .M 的轨迹的参数方程为⎩⎨⎧+=+=.2sin sin ,2cos cos ααααy x (α为参数,πα20<<) (Ⅱ)M 点到坐标原点的距离αcos 2222+=+=y x d )20(πα<<.当πα=时,0=d ,故M 的轨迹过坐标原点.源题:(1)经过抛物线)0(22>=p px y 的顶点O 任作两条互相垂直的线段OA 和OB ,以直线OA 的斜率k 为参数,求线段AB 的中点M 的轨迹的参数方程.(2)圆O 的半径为2,P 是圆上的动点,)0,6(Q 是x 轴上的定点,M 是PQ 的中点.当点P 绕O 作匀速圆周运动时,求点M 的轨迹的参数方程. 同案例6源题(1)相同.思考:两题外形基本一致,结构相同,紧扣教材立意,属于课本试题的多层改装.第(Ⅰ)问,是将源题中抛物线改为圆,并以圆的参数方程呈现,改090=∠AOB 为α=∠POQ ,并且以直线OA 的斜率k 为参数,其实与直线OA 的倾斜角有关,这样两题从本质也是相同的.第(Ⅱ)用两点之间的距离公式转化为关于参变量α的三角函数,精巧构思、与三角结合,天衣无缝,具有深度和“一箭双雕”功效,有力考查学生灵活运用知识解决问题能力.实现同一源题,不同的“组装”,衍生不同题,辐射不同的考点的目的.4.课本源题做“引子”,传承精髓,题在书外,理在书中例8(2014年全国新课标卷Ⅱ)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.解析:(Ⅰ)C 的普通方程为).10(1)1(22≤≤=+-y y x 可得C 的参数方程⎩⎨⎧=+=ty tx sin cos 1(t 为参数,π≤≤t 0) (Ⅱ)设)sin ,cos 1(t t D +.由(Ⅰ)知C 是以)0,1(G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.3,3tan π==t t . 故D 的直角坐标为)3sin,3cos1(ππ+,即).23,23( 源题:(1)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,求半径为a ,圆心坐标为)0)(0,(>a a C 的圆的极坐标方程. (2)把极坐标方程θρcos 10-=化为直角坐标方程. (3)把圆1)3(22=+-y x 化为参数方程.(4)判断直线5034=-y x 与圆10022=+y x 的位置关系.如果有公共点,求出公共点的坐标.思考:考题源于教材“探究”“思考”的问题中,串通教材改编,第(Ⅱ)问结合必修2的内容,用切线、垂直、合情推理,精巧构思,拾级而上,给人以耳目一新的感觉. 明确参数t 是该圆的离心角,离心角的正切值就是等于3,即l GD //,抓住3tan ===t k k GD l 这一关键.研究教材,抓住知识要点,挖掘知识形成过程中蕴含的思想方法是高考复习的重要目标.二、备考启示1、研读《考纲》和《考试说明》,重视回归课本我们应认真研读《考纲》和《考试说明》,明确“考什么”、“考多难”、“怎么考”这三个问题.对比《考纲》研究直线、圆、椭圆的极坐标方程和参数方程与应用;研究高考试题,不难发现试题有如下特征:极坐标与直角坐标、参数与普通方程的互化,是属于课本最基本的内容,只变其形不变其质,万变不离其宗.题目以“极参”包装,考查点的轨迹、直线与圆、椭圆位置关系的量.与必修2中直线与圆珠联璧合,通常可化为普通方程解决.选修课本与必修相比少了练习题、B 组题,总复习参考题,由此选修课本中的习题很珍贵,非常具有代表性,在习题教学中,要突破照本宣科和就题论题的教学模式,越是到复习的后期,我们教师就越要有“花招”,以“大显身手”,充分以课本例习题为题根,引导学生分析、整合、拓展、创新进行新的构建,进行“一题多变”训练,同时链接高考,剖析同根同源查证.我们必须带着“考纲”回归课本,特别是考纲上与往年不同的地方,近几年没有考到的点,一定要重点复习,做到不遗漏,扎实的基础是智取的法宝.2、注重交汇综合,提升解决问题的能力学科内跨章节知识交汇问题常常是命题的高频考点,直线、圆、椭圆的极坐标方程只是在两种坐标系下“数”的“外现”,而参数方程与普通方程是同一动点轨迹“数”的直接和间接关系的两种表达.由于参数方程中常常以角为参数,极坐标方程中的极角,这为命题者提供丰富资源与联系,往往与三角函数问题交汇、融合,成为考查能力的“佳品”,象2009年第Ⅱ问,2010年第Ⅱ问,2012年第Ⅱ问,均与三角函数的最值有关,一石击二鸟.高考复习回归课本时要有意将必修2中《直线与圆方程》一章的例习题以极限或参数“包装”后,重新审视新情景下所设置的问题有如何作答,教师的功夫花在组合、加工课本题,使其与高考题充分的“逼真”.领会课本中各知识点的内在联系,揭示问题的实质,培养学生抓住问题本质的思维能力,提升解决问题能力就是高效备考.3、强化训练,志在必得仔细研究试题不都是课本原题,都是重组、加工和改造的创新题,没有一年是“拼盘式”、原题复制式的,而是命题专家精心由浅入深,层次递进,智慧与灵感撞击的佳题,似曾相识,比较“眼熟”,有亲切感,考生没有心理压力.此题虽然属于中档题,是属于送分题,是志在必得的夺分题,但对能力要求并不低.高考复习要强化落实,不能只是“刀光剑影”“雨过地皮湿”“匆匆而过”要渗透下去.要查找盲区,夯实基础,重视方法,学会知识迁移.数学大师陈省升先生说:“做数学要做得很熟练,要多做,要反复做,要做很长时间,你就明白其中的奥妙,你就可以创新了.灵感完全是苦功的结果,要不灵感不会来.”数学解答需要有扎实的基础,否则基础分是不能轻易拿到手的.参考文献[1]人民教育出版社中学数学室.选修4—4:坐标系与参数方程[M].北京:人民教育出版社,2007.1第2版.[2]人民教育出版社中学数学室.必修 A版[M].北京:人民教育出版社,2007.2第3版.。

《推荐》2017高考数学考试大纲解读系类微刊《下册》理科专题十四选考内容Word版含解析

《推荐》2017高考数学考试大纲解读系类微刊《下册》理科专题十四选考内容Word版含解析

1.坐标系与参数方程(1)坐标系①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.(2)参数方程①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.2.不等式选讲(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①.②.③会利用绝对值的几何意义求解以下类型的不等式:;;.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.①柯西不等式的向量形式:;②;≥(此不等式通常称为平面三角不等式.)(3)会用参数配方法讨论柯西不等式的一般情形:.(4)会用向量递归方法讨论排序不等式.(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.(6)会用数学归纳法证明伯努利不等式:(,为大于1的正整数)了解当为大于1的实数时伯努利不等式也成立.(7)会用上述不等式证明一些简单问题,能够利用平均值不等式、柯西不等式求一些特定函数的极值.(8)了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.高考仍会考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;常见曲线的参数方程与极坐标方程及应用,以极坐标方程、参数方程与普通方程互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.不等式选讲在高考中属于选考型题目,从历年全国高考中进行分析预计2017年高考仍会考查绝对值不等式的解法与解绝对值不等式相关问题可能性较大,另外证明不等式思想在试题中也必会有体现,集即可.为参数)相交于不同的两点.(1)若,求线段中点的坐标;(2)若,其中,求直线的斜率.。

坐标系与参数方程的分析与启示

坐标系与参数方程的分析与启示

3.思想方法 (1)通过极坐标或参数方程解决直线、圆、 椭圆等问题,考查数形结合思想. (2)解决问题时采用何种形式的方程比较 方便,考查化归与转化思想.
二、亮点扫描 【例题一】(2016 课标Ⅱ)
在直角坐标系 xOy 中,圆 C 的方程为 (x 6)2 y2 25 .
(Ⅰ)以坐标原点为极点, x 轴正半轴为极轴 建立极坐标系,求 C 的极坐标方程;
谢谢您的光临!
(Ⅱ)直线 l
的参数方程是
x
y
t cos
(t
t sin
为参数),
l
与C
交于
A,
B
两点,|
AB
|
10 ,
求 l 的斜率.
知识:圆的普通方程化为极坐标方程,直线参数方程参数和 极坐标极角,极径的应用.
方法:求过原点的直线与曲线相交距离问题. (1)把直线的极坐标方程 ( R)与曲线的极坐标方程联立, 两个交点距离为 1 2 (1 2)2 412 . (2)把直线的参数方程与曲线的普通方程联立,两个交点距离 为 t1 t2 (t1 t2 )2 4t1t2 . (3)把直线与曲线全部化为普通方程,两个交点距离为
(Ⅰ)求曲线 C1 的直角坐标方程;
(Ⅱ)已知直线 l 与曲线 C1 交于 A, B 两点,点 P(2,0) ,求 PA PB 的值.
四、复习启示
1. 重视基础知识的复习 ①写出点的极坐标,与直角坐标的互化; ②写出圆、椭圆、抛物线或相关轨迹的参 数方程; ③极坐标方程、参数方程、普通方程的互 化;不断强化,提高准确率,减少失误.
【例题二】(2017 年福州市第一次检测)
x 在平面直角坐标系 xOy 中,在以 O 为极点, 轴的正半轴为极轴的极坐标系中,

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析高考数学是许多考生最担心的一门科目,而其中的坐标系与参数方程更是让许多人感到头疼。

这两个知识点涉及到的内容较多,而且给学生设置的考查题目也相对难度较大。

本文将针对坐标系与参数方程在高考中的考查情况进行分析,帮助考生更好地应对这一部分的考试内容。

首先来看坐标系的考查情况。

在高考试卷中,坐标系通常涉及到直角坐标系、极坐标系和空间直角坐标系。

对于直角坐标系来说,考生需要掌握平面直角坐标系的性质、方程和应用,在平面几何、函数和方程中经常会涉及到直角坐标系。

极坐标系则会涉及到平面向量、极坐标方程和直角坐标系与极坐标系的相互转化等知识点。

而空间直角坐标系则会涉及到空间中的点、直线、平面以及它们之间的位置关系等内容。

在高考试题中,通常会通过图形、空间位置关系、距离等方式考查考生对坐标系的掌握程度。

除了坐标系,参数方程也是高考数学的一个重要考查点。

参数方程是描述曲线的一种常见方法,它通过引入参数来表示曲线上的点的位置,常见的参数方程有直角坐标系、极坐标系和参数方程的相互转化等内容。

在高考试卷中,参数方程通常会涉及到曲线的方程、参数方程的性质、参数的确定和解释等内容。

考生需要掌握参数方程和一般方程、参数曲线与一般曲线的关系,以及参数曲线的对称性、单调性和渐近线等知识点。

坐标系与参数方程是高考数学中的一个重要考查部分,它们不仅涉及到数学知识本身的掌握,还需要考生具备一定的数学建模和解题能力。

在备考过程中,考生可以通过多做习题,加强对知识点的理解和掌握。

还可以通过查阅相关资料和听取老师的指导,来提升自己对这一部分知识点的掌握程度。

而对于教师和学校来说,也可以针对坐标系与参数方程这一部分的知识点进行针对性的讲解和练习安排,帮助学生更好地掌握这部分知识。

在日常教学中也可以加强对数学建模和解题能力的培养,提升学生的数学素养和解题能力。

最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编

最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编

新课标全国卷Ⅰ文科数学汇编坐标系与参数方程一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

2017高考全国卷1数学试题及答案解析(理科)

2017高考全国卷1数学试题及答案解析(理科)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .AB =RC .{}1=>A B x xD .A B =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题,则正确的是()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p , 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x的取值范围是() A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<<D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 二、 填空题:本题共4小题,每小题5分,共20分。

2013---2017年全国1卷高考理科数学分类汇编---坐标系与参数方程

2013---2017年全国1卷高考理科数学分类汇编---坐标系与参数方程

2013---2017年全国1卷高考理科数学分类汇编---坐标系与参数方程 (2017全国1.理数.22)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为 4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .【考点】:参数方程。

【思路】:(1)将参数方程化为直角方程后,直接联立方程求解即可(2)将参数方程直接代入距离公式即可。

【解析】:将曲线C 的参数方程化为直角方程为2219x y +=,直线化为直角方程为11144y x a =-+- (1)当1a =时,代入可得直线为1344y x =-+,联立曲线方程可得:22134499y x x y ⎧=-+⎪⎨⎪+=⎩,解得21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩或30x y =⎧⎨=⎩,故而交点为2124,2525⎛⎫- ⎪⎝⎭或()3,0 (2)点3cos ,sin ,x y θθ=⎧⎨=⎩到直线11144y x a =-+-的距离为d =≤,即:3cos 4sin 417a θθ++-≤,化简可得()()1743cos 4sin 174a a θθ---≤+≤--,根据辅助角公式可得()135sin 21a a θϕ--≤+≤-,又()55sin 5θϕ-≤+≤,解得8a =-或者16a =。

(2016全国1.理数.23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(2015全国1.理数.23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C : x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积 .23.解:(Ⅰ)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=, 解得122ρ=,22ρ. 故122ρρ-=2MN =2C 半径为1,所以2C MN ∆的面积为12.…10分(2014全国1.理数.23)(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,求PA 的最大值与最小值.【解析】: (1) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-= ………5分(2)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,最大值为225; 当()sin 1θα+=时,||PA 取得最小值,最小值为25. …………10分 (2013全国1.理数. 23)(本小题10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).23. 将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=, 即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=, ∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+= (Ⅱ)2C 的普通方程为2220x y y +-=, 由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 2,4π),(2,)2π.(2012全国1.理数. 23)23.(本题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是2cos3sinxyϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,π3).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.23.解:(1)由已知可得A(π2cos3,π2sin3),B(ππ2cos()32+,ππ2sin()32+),C(2cos(π3+π),2sin(π3+π)),D(π3π2cos()32+,π3π2sin()32+),即A(1),B(,1),C(-1,,D,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ. 因为0≤sin2φ≤1,所以S的取值范围是[32,52].。

2017年高考坐标系与参数方程试题分析——以2017年全国Ⅰ、Ⅱ、Ⅲ卷为例

2017年高考坐标系与参数方程试题分析——以2017年全国Ⅰ、Ⅱ、Ⅲ卷为例

坐标为 (P ,0),再利用 I() I·I I=16这个等式 ,即可得 到轨迹 c 的极坐标方程 ,最后利 用极坐标 与直角坐标 的互
化 公 式 ,就 可 得 到 轨 迹 C 的直 角 坐 标 方 程 .(2)首 先 ,可 利 用极坐标公式将 三角 形相应 的边 表示 出来 ,然后再 选择 合 适 的 面 积 表 达 式 去计 算 面积 ,根 据 式 于:的 特 点 ,得 到 最 大值 .
化 以 及 根 据 已 知 条 件 求 未 知 参 数 的 值. 试 题 分 析 (1)可 以用 平 方 消 元 法 和 代 人 法 分 别 将 曲
线 c和直线 z的参数方程化成普通方程 ,然后联立两方程 即 可求 出交 点坐标 ;(2)由题 意 知 ,直线 z的普 通方 程 为 4y一。一4=0,设 C上 的 点 为 (3cos0,sin0),易 求 得 该 点 到 Z
的距离为 d:旦 兰 二
17
. 对 。再 进 行 讨 论 ,即 当
o≥ 一4和 0<一4时,求出 。的值.
注意 化参数方程 为普通 方程 的关 键是 消参 ,可 以利
用加减消元 、平 方消 元 、代 入法 ,等等.对 于 求 未知 参数 的
题 ,最 重要 的是 找到等量关 系 ,利用等量 关系反解 出未知数
注意 本题重 点考查 了转 化与化 归 能力 ,遇 到求 曲线
交点 、距离 、线段长 等几何 问题 时 ,求 解 的 一般 方 法是 分别 化 为普 通 方 程 和 直 角 坐 标 方 程 后 求 解 ,或 者 直 接 利 用 极 坐 标 的几 何 意 义求 解 .解 题 时 要 结 合 题 目 自身 特 点 ,确 定 选 择
(2)设点A的极坐标为f 2,— l,点B在曲线C2上,求

浅谈全国卷解极坐标与参数方程的高考题

浅谈全国卷解极坐标与参数方程的高考题

浅谈全国卷解极坐标与参数方程的高考题作者:赖淑青来源:《新丝路杂志(下旬)》2017年第01期摘要:从2016年开始广东将使用全国卷,观察比较广东卷与全国卷的最大区别在于极坐标与参数方程的题型不同,极坐标参数方程从广东卷选做的5分小题变成了全国卷的选做题的10分大题。

观察近几年来全国卷高考题目中关于极坐标与参数方程的题目每年必考的选择题,而且难度不大,学生掌握的好的话,得到分数的情况也会很好,本文主要是针对全国卷高考中出现的一些极坐标与参数方程题目进行探究,希望通过探究给高考的学生在做选做题中的解题的方法得到一些帮助。

关键词:极坐标与参数方程;解法;全国卷;高考题【DOI】10.19312/ki.61-1499/c.2017.01.091本文将从本质出发正真理解极坐标与直角坐标的关系及其互换;参数方程与直角坐标方程的互换。

近年来,坐标系与参数方程在高考中选做题必然出现,而且是三题选做题中最简单的一题,现就此出发,探讨高考试题的一些有效解法通法。

一、极坐标与直角坐标的互换关系1.互化背景。

把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图1所示:图12.互化公式。

设M是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如下:在一般情况下,由确定角时,可根据点所在的象限最小正角.二、参数与普通s方程的互换关系参数方程化为普通方程的过程就是消参过程常见方法有三种。

1.加减消元如:(t是参数)和(t是参数)(注意:x的取值范围)2.代入法如:(t是参数)3.三角代换如:(是参数)三、近年全国卷高考题1.利用三角函数辅助角公式求点到直线的最值问题三角函数的值域为【-1,1】分析带入可速求解例1.(09新课标)已知曲线C1:(t为参数),C2:(为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为,Q为C2上的动点,求PQ中点到M直线(t为参数)距离的最小值.解:(Ⅰ)C1为圆心是(-4.3),半径是1的圆.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,C3为直线到C3的距离从而当时,d得最小值解题反思:本题第一问关键在于利用进行消参;第二问关键在于利用,所以对动点到直线的距离问题可以转化为三角函数问题,解法简单,增强学生学习数学的兴趣。

专题14 坐标系与参数方程专题-2017年高考数学文考纲解

专题14 坐标系与参数方程专题-2017年高考数学文考纲解

【2017年高考考纲解读】 高考对本内容的考查主要有: (1)直线、曲线的极坐标方程; (2)直线、曲线的参数方程; (3)参数方程与普通方程的互化;(4)极坐标与直角坐标的互化,本内容的考查要求为B 级. 【重点、难点剖析】 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=α;(2)直线过点M (a,0)(a >0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴:ρsin θ=b . 3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为: ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)当圆心位于M ⎝⎛⎭⎪⎫r ,π2,半径为r :ρ=2r sin θ.(4)圆心在点M (x 0,y 0),半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).圆心在点A (ρ0,θ0),半径为r 的圆的方程为r 2=ρ2+ρ20-2ρρ0cos(θ-θ0).4.直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. 5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧ x =a sec θ,y =b tan θ(θ为参数).(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).【题型示例】题型一 极坐标方程和参数方程【例1】【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【举一反三】 (2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,点A的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________.【答案】522【解析】依题已知直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2和点A ⎝ ⎛⎭⎪⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522. 【变式探究】(2015·北京,11)在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.【答案】1【举一反三】(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.【答案】 6【解析】 由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x -y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6.【变式探究】(2014·辽宁)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.【命题意图】本题主要考查参数方程与普通方程、极坐标方程与普通方程间的转化.结合方程的转化和应用考查考生的应用意识和转化思想.【思路方法】(1)先列方程,再进一步转化为参数方程. (2)解出交点,再求得直线方程,最后转化为极坐标方程.【解析】(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).【感悟提升】若极坐标系的极点与直角坐标系的原点重合,极轴与x 轴正半轴重合,两坐标系的长度单位相同,则极坐标方程与直角坐标方程可以互化.求解与极坐标方程有关的问题时,可以转化为熟悉的直角坐标方程求解.若最终结果要求用极坐标表示,则需将直角坐标转化为极坐标.题型二 极坐标方程与直角坐标方程、参数方程与普通方程的互化 【例2】【2016高考新课标2理数】选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线的参数方程是cos sin x t y t αα=⎧⎨=⎩(为参数),与C 交于,A B两点,||AB =,求的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±.【解析】(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 83αα==±,所以的斜率为或. 【变式探究】 (2015·新课标全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.【变式探究】在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【解析】(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2,由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以AB=|ρ2-ρ1|=2 3.【规律方法】解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【变式探究】(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.题型三 参数方程及其应用【例3】 【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1【举一反三】(2015·重庆,15)已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________. 【答案】(2,π)【解析】 直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).【变式探究】(2014·福建)已知直线l的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【命题意图】本小题主要考查直线与圆的参数方程等基础知识,意在考查考生的运算求解能力及化归与转化思想.【解题思路】(1)消去参数,即可求出直线l 与圆C 的普通方程.(2)求出圆心的坐标,利用圆心到直线l 的距离不大于半径,得到关于参数a 的不等式,即可求出参数a 的取值范围.【感悟提升】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参和三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.【变式探究】(2015·福建,21(2))在平面直角坐标系xOy 中,圆C 的参数方程为13cos ,23sin x t y t =+⎧⎨=-+⎩ (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=m (m ∈R ). ①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.【举一反三】(2015·湖南,16Ⅱ)已知直线l:2,12x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 【解析】 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将2,212x y t ⎧=+⎪⎪⎨⎪=⎪⎩代入②式,得t 2+53t +18=0. 设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知, |MA |·|MB |=|t 1t 2|=18.。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【考点】交集运算;集合中的表示方法【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C 2D .2【答案】C 【解析】试题分析:由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i21i2z===+.故选C.【考点】复数的模【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6)1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选A.【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律.4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D 【解析】试题分析:函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确;当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D 【解析】试题分析:阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为A.24-B.3-C.3 D.8 【答案】A【解析】试题分析:设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .6 B .3 C .2 D .13【答案】A 【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为 A .3B .2C 5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

2017年全国卷高考数学复习专题——坐标系与参数方程

2017年全国卷高考数学复习专题——坐标系与参数方程

2017年全国卷高考数学复习专题——坐标系与参数方程考点一坐标系与极坐标1.(2014安徽,4,5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是x=t+1,y=t-3(t为参数),圆C的极坐标方程是ρ=4cos θ,则直线l被圆C截得的弦长为( )A.14B.214C.2D.22答案 D2.(2014湖南,11,5分)在平面直角坐标系中,倾斜角为π4的直线l与曲线C:x=2+cosα,y=1+sinα(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是. 答案2ρcos θ+π4=13.(2014广东,14,5分)(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.答案(1,1)4.(2014天津,13,5分)在以O为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a相交于A,B两点.若△AOB是等边三角形,则a的值为.答案 35.(2014重庆,15,5分)已知直线l的参数方程为x=2+t,y=3+t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ= .答案56.(2014陕西,15C,5分)(坐标系与参数方程选做题)在极坐标系中,点2,π6到直线ρsin θ-π6=1的距离是.答案 17.(2014辽宁,23,10分)选修4—4:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解析(1)设(x1,y1)为圆上的点,在已知变换下变为C上点(x,y),依题意,得x=x1, y=2y1,由x12+y12=1得x2+y22=1,即曲线C的方程为x2+y24=1.故C的参数方程为x=cos t,y=2sin t(t为参数).(2)由x2+y24=1,2x+y-2=0解得x=1,y=0或x=0,y=2.不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为12,1,所求直线斜率为k=12,于是所求直线方程为y-1=12 x-12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sinθ-2cosθ.考点二参数方程8.(2014北京,3,5分)曲线x=-1+cosθ,y=2+sinθ(θ为参数)的对称中心( )A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上答案 B9.(2014江西,11(2),5分)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( )A.ρ=1cosθ+sinθ,0≤θ≤π2B.ρ=1cosθ+sinθ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2 D.ρ=cos θ+sin θ,0≤θ≤π4答案 A10.(2014湖北,16,5分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是x=t,y=3t3(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.答案(3,1)11.(2014课标Ⅰ,23,10分)选修4—4:坐标系与参数方程已知曲线C:x 24+y 29=1,直线l:x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值.解析 (1)曲线C 的参数方程为 x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为 d= 55|4cos θ+3sin θ-6|. 则|PA|=dsin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA|取得最小值,最小值为2 55.12.(2014课标Ⅱ,23,10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈ 0,π2 . (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l:y= 3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解析 (1)C 的普通方程为(x-1)2+y 2=1(0≤y≤1).可得C 的参数方程为 x =1+cos t ,y =sin t(t 为参数,0≤t≤π).(2)设D(1+cos t,sin t).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆. 因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t= 3,t=π3. 故D 的直角坐标为 1+cosπ 3,sin π3 ,即 32,32. 13.(2014江苏,21C,10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为x =1- 22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A,B 两点,求线段AB 的长.解析将直线l的参数方程x=1-22t,y=2+22t代入抛物线方程y2=4x,得2+2 2t2=41-22t,解得t1=0,t2=-82.所以AB=|t1-t2|=82.14.(2014福建,21(2),7分)选修4—4:坐标系与参数方程已知直线l的参数方程为x=a-2t,y=-4t(t为参数),圆C的参数方程为x=4cosθ,y=4sinθ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.解析(1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16.(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d=5≤4,解得-25≤a≤25.。

2017年高考理科数学精彩试题及问题详解 全国卷3

2017年高考理科数学精彩试题及问题详解 全国卷3

实用文档文案大全2017年普通高等学校招生全国统一考试(全国3卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合22{(,)1}Axyxy???,{(,)}Bxyyx??,则A B中元素的个数为A.3 B.2 C.1 D.02.设复数z满足(1)2izi??,则||z?A12 B22 C2 D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.5()(2)xyxy??的展开式中33xy的系数为()A.-80 B.-40 C.40 D.805.已知双曲线2222:1(0,0)xyCabab????的一条渐近线方程为52yx?,且与椭圆221123xy??有公共焦点.则C的方程为()A221810xy?? B22145xy?? C22154xy?? D22143xy??6.设函数()cos()3fxx???,则下列结论错误的是()实用文档文案大全A.()fx的一个周期为2?? B.()yfx?的图像关于直线83x??对称C.()fx??的一个零点为6x?? D.()fx在(,)2??单调递减7.执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.? B34?C2? D4?9.等差数列{}n a的首项为1,公差不为0.若236,,aaa成等比数列,则{}n a前6项的和为A.-24 B.-3 C.3D.810.已知椭圆2222:1xyCab??(0ab??)的左、右顶点分别为12,AA,且以线段12AA为直径的圆与直线20bxayab???相切,则C的离心率为()A63 B33 C23 D1311.已知函数211()2()xx fxxxaee???????有唯一零点,则a?()A12? B13 C12 D.112.在矩形ABCD中,1,2ABAD??,动点P在以点C为圆心且与BD相切的圆上.若APABAD????,则???的最大值为A.3B22 C5 D.2二、填空题:(本题共4小题,每小题5分,共20分)13.若,xy满足约束条件0,20,0xyxyy???????????则34zxy??的最小值为________..14.设等比数列{}n a满足12131,3aaaa??????,则4a?________..实用文档文案大全15.设函数1,0,()2,0x xxfxx???????.则满足1()()12fxfx???的x的取值范围是________..16.,ab为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与,ab都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60角时,AB与b成30角;②当直线AB与a成60角时,AB与b成60角;③直线AB与a所成角的最小值为45;④直线AB与a所成角的最大值为60.其中正确的是________(填写所有正确结论的编号)三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.(12分)ABC?的内角,,ABC的对边分别为,,abc,已知sin3cos0,27,2AAab????(1)求c;(2)设D为BC边上一点,且ADAC?,求ABD△的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y的数学期望达到最大值?(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形.ABDCBD??,19.ABBD=.(1)证明:平面ACD^平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分.求二面角DAEC--的余弦DABCE.实用文档文案大全值.20.(12分)已知抛物线2:2Cyx=,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2-),求直线l与圆M的方程.21.(12分)已知函数()1lnfxxax???.(1)若()0fx≥,求a的值;(2)设m为整数,且对于任意正整数n,2111(1)(1)(1)222n m++鬃?<,求m 的最小值.(二)选考题:共10分。

高考数学(命题热点突破)专题19 坐标系与参数方程 文(2021年最新整理)

高考数学(命题热点突破)专题19 坐标系与参数方程 文(2021年最新整理)

2017年高考数学(考点解读+命题热点突破)专题19 坐标系与参数方程文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学(考点解读+命题热点突破)专题19 坐标系与参数方程文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学(考点解读+命题热点突破)专题19 坐标系与参数方程文的全部内容。

专题19 坐标系与参数方程 文【命题热点突破一】极坐标系与简单曲线的极坐标方程例1、【2016年高考北京理数】在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A,B 两点,则||AB =______.【答案】2【解析】直线310x y --=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】[2015·全国卷] 在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程是θ=错误!(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【特别提醒】根据直角坐标化为极坐标的公式,可以把直线、曲线的直角坐标方程化为极坐标方程,反之亦然.使用直线、曲线的直角坐标方程和极坐标方程解题各有利弊,要根据情况灵活选取.【变式探究】在直角坐标系xOy 中,曲线C :错误!(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=错误!(ρ∈R ),l 与C 相交于A ,B 两点.(1)写出直线l 的参数方程和曲线C 的普通方程;(2)设线段AB 的中点为M ,求点M 的极坐标.【解析】:(1)直线l 的直角坐标方程为y =错误!x ,则直线l 的参数方程为错误!(t 为参数).曲线C 的普通方程为y =x 2-6。

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析

“坐标系与参数方程”高考考查分析【摘要】在高考数学中,“坐标系与参数方程”是一个重要的考查内容。

本文首先对坐标系和参数方程的基本概念进行了介绍,然后分析了高考中常见的考点,包括坐标系相关考点和参数方程相关考点。

接着探讨了如何结合坐标系与参数方程进行考查。

通过解析典型考题,帮助读者更好地理解这一知识点。

最后总结了解题技巧,并对“坐标系与参数方程”在高考中的考查进行了概括。

通过本文的学习,读者可以更好地掌握和应对这一重要的数学考查内容。

【关键词】引言、坐标系与参数方程、高考考查、坐标系、参数方程、结合考查、典型考题、解析、解题技巧、总结。

1. 引言1.1 坐标系与参数方程高考考查概述坐标系与参数方程是高中数学中的重要内容,也是高考中经常考查的知识点。

在考试中,考生需要熟练掌握坐标系的基本知识和参数方程的应用,才能更好地解答相关的题目。

在高考中,关于坐标系的考查主要涉及直角坐标系、极坐标系和空间直角坐标系等内容。

考生需要理解坐标系的概念及特点,能够进行坐标变换和图形的平移、旋转等操作。

参数方程的考查也往往与坐标系密切相关,考生需要掌握参数方程的表示方法和求解技巧,能够正确地进行参数方程的应用分析。

2. 正文2.1 坐标系相关考点分析在高考中,坐标系是数学中的一个基础知识点,也是解决几何问题的重要工具。

学生需要掌握直角坐标系、极坐标系以及球坐标系等各种坐标系的基本概念和性质。

在考试中,常见的坐标系相关考点包括:1. 直角坐标系:学生需要了解直角坐标系的定义、性质以及表示点的坐标等基本知识。

在解题过程中,要能够灵活运用直角坐标系解决几何问题。

坐标系是解决数学中各种几何问题的基础工具,学生需要熟练掌握各种坐标系的概念和性质,并能够灵活运用于解答问题。

在备考高考时,建议多做相关的练习题,加深对坐标系的理解和掌握。

2.2 参数方程相关考点分析参数方程是解决平面上曲线方程的一种方法,通过参数方程可以描述一条曲线上的任意一点的位置。

2017-201高考真题数学坐标系与参数方程-三年(文)分项汇编(解析版)(1)

2017-201高考真题数学坐标系与参数方程-三年(文)分项汇编(解析版)(1)

的极坐标方程为
2cos 3π 4
π.
( 2)设 P ( , ) ,由题设及( 1)知
若0
若π 4
若 3π 4
π ,则 2cos
4 3π
,则 2sin 4
π,则 2cos
3 ,解得 3 ,解得 3 ,解得
π

6 π

3 5π

6


3
综上, P的极坐标为
3, π 或 3, π 或 3, 2π 或 3, 5π .
π 2sin
4
3π 4 , M 3 的极坐标方程为
3π 2cos
4
π.
2
( 2)
π 3, 或
π 3, 或
3, 2π 或
3, 5π .
6
3
3
6
【解析】( 1 )由题设可得,弧 AB, BC, CD 所在圆的极坐标方程分别为
2cos .
所以 M 1 的极坐标方程为
2cos 0
π ,M 2 的极坐标方程为 4
( 2)由( 1)知 C 2 是圆心为 A( 1,0) ,半径为 2 的圆.
由题设知, C1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为 l1 , y 轴左边的射线为
l 2 .由于 B 在圆 C2 的外面,故 C1 与 C2 有且仅有三个公共点等价于 l1 与 C2 只有一个公共点且 l2 与 C2 有
1,所以 C的直角坐标方程为
x2 y2 1(x 4
1) .
l 的直角坐标方程为 2x 3y 11 0 .
x cos ,
( 2)由( 1)可设 C的参数方程为
( 为参数, π

2017年高考数学(深化复习+命题热点提分)专题19 坐标系与参数方程 文

2017年高考数学(深化复习+命题热点提分)专题19 坐标系与参数方程 文

专题19 坐标系与参数方程1.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为ρsin (θ-π6)=12,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α.(1)写出直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的距离的最大值. 【解析】:(1)∵ρsin (θ-π6)=12,∴ρ(32sin θ-12cos θ)=12, ∴32y -12x =12,即x -3y +1=0.故直线l 的直角坐标方程是x -3y +1=0.(2)方法一:由已知可得,曲线C 上的点的坐标为(2+2cos α,2sin α),∴曲线C 上的点到直线l 的距离d =|2+2cos α-2 3sin α+1|2=⎪⎪⎪⎪⎪⎪4cos (α+π3)+32≤72,故最大距离是72. 方法二:曲线C 是以(2,0)为圆心,以2为半径的圆,圆心到直线l 的距离为32,∴最大距离为32+2=72. 2.在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos α,y =-4+2sin α(α为参数).(1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)已知A(-2,0),B(0,2),圆C 上任意一点M(x ,y),求△ABM 面积的最大值.3.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+12t ,y =32t (t 为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)将直线l 的参数方程化为极坐标方程;(2)求直线l 和曲线C 交点的极坐标(ρ≥0,0≤θ<2π).4.已知曲线C 的极坐标方程为ρ=2cos θ-4sin θ.以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =-1+t sin α(t 为参数).(1)判断直线l 与曲线C 的位置关系,并说明理由;(2)若直线l 和曲线C 相交于A ,B 两点,且|AB|=3 2,求直线l 的斜率. 【解析】:(1)∵ρ=2cos θ-4sin θ,∴ρ2=2ρcos θ-4ρsin θ, ∴曲线C 的直角坐标方程为x 2+y 2=2x -4y , 即(x -1)2+(y +2)2=5.∵直线l 过点(1,-1),且该点与圆心间的距离为(1-1)2+(-1+2)2<5,∴直线l 与曲线C 相交.(2)方法一:当直线l 的斜率不存在时,直线l 过圆心(1,-2),|AB|=2 5≠3 2,则直线l 的斜率必存在,设其方程为y +1=k(x -1),即kx -y -k -1=0,圆心(1,-2)到直线l 的距离d =1k 2+1=(5)2-(3 22)2=22,解得k =±1,∴直线l 的斜率为±1.方法二:将⎩⎪⎨⎪⎧x =1+t cos α,y =-1+t sin α代入(x -1)2+(y +2)2=5,得(t cos α)2+(1+t sin α)2=5, 整理得t 2+2sin α·t-4=0.设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-2sin α,t 1t 2=-4, 则|AB|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+16=3 2, ∵α为直线l 的倾斜角,∴sin α=22(舍去负值),则α=π4或3π4,∴直线l 的斜率为±1. 5.已知点P 的直角坐标是(x ,y),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系.设点P 的极坐标是(ρ,θ),点Q 的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q 的直角坐标是(m ,n).(1)用x ,y ,θ0表示m ,n ;(2)若m ,n 满足mn =1,且θ0=π4,求点P 的直角坐标(x ,y)满足的方程.6.已知平面直角坐标系xOy ,以O 为极点,x 轴的正半轴为极轴,并取相同的长度单位建立极坐标系.点M 的直角坐标为(-1,0),曲线C 的极坐标方程为ρ=8cos θ1-cos 2θ.(1)求点M 的极坐标(ρ>0,0≤θ<2π)和曲线C 的直角坐标方程;(2)过点M 的直线l 与曲线C 相交于不同的两点A ,B ,若MA →=2MB →,求直线l 的参数方程.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=21+sin 2θ,直线l 的极坐标方程为ρ=42sin θ+cos θ. (1)写出曲线C 1与直线l 的直角坐标方程;(2)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值.【解析】:(1)由ρ2=21+sin 2θ,得ρ2(cos 2θ+2sin 2θ)=2,所以x 22+y 2=1;ρ=42sin θ+cos θ,即ρcos θ+2ρsin θ=4,所以x +2y =4.所以曲线C 1的直角坐标方程为x 22+y 2=1,直线l 的直角坐标方程为x +2y -4=0.(2)设Q(2cos θ,sin θ),则点Q 到直线l 的距离d =|2sin θ+2cos θ-4|3=|2sin (θ+π4)-4|3≥23=2 33.当且仅当θ+π4=2k π+π2(k ∈Z),即θ=2k π+π4(k ∈Z)时取等号,所以Q 点到直线l 距离的最小值为2 33.8、在直角坐标系xOy 中,l 是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴正半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)求曲线C 的直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M ,N ,求|PM|+|PN|的取值范围.9、已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin (θ-π6).(1)求圆C 的直角坐标方程;(2)若P(x ,y)是直线l 与圆面ρ≤4sin (θ-π6)的公共点,求3x +y 的取值范围.【解析】:(1)因为圆C 的极坐标方程为ρ=4sin (θ-π6),所以ρ2=4ρsin (θ-π6)=4ρ(32sin θ-12cos θ).又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=2 3y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -2 3y =0. (2)方法一:设z =3x +y ,由圆C 的方程x 2+y 2+2x -2 3y =0⇒(x +1)2+(y -3)2=4, 所以圆C 的圆心是(-1,3),半径是2, 将⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t代入z =3x +y 得z =-t.又直线l 过C(-1,3),圆C 的半径是2,所以-2≤t≤2, 所以-2≤-t ≤2,即3x +y 的取值范围是[-2,2].方法二:直线l 的参数方程化成普通方程为x +3y =2.由⎩⎨⎧x +3y =2,(x +1)2+(y -3)2=4,解得P 1(-1-3,3+1),P 2(-1+3,3-1). ∵P(x ,y)是直线l 与圆面ρ≤4sin (θ-π6)的公共点,∴点P 在线段P 1P 2上,∴3x +y 的最大值是3×(-1+3)+(3-1)=2, 最小值是3×(-1-3)+(3+1)=-2, ∴3x +y 的取值范围是[-2,2].10.在平面直角坐标系xOy 中,曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).(1)将C 1的方程化为普通方程;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系.设曲线C 2的极坐标方程是θ=π3,求曲线C 1与C 2的交点的极坐标.11.已知曲线C 1:⎩⎪⎨⎪⎧x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |的值.12.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),已知过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t (t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 【解析】 (1)y 2=2a x ,y =x -2.(2)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t (t 为参数),代入y 2=2ax ,得到t 2-22(4+a )t +8(4+a )=0,则有t 1+t 2=22(4+a ),t 1·t 2=8(4+a ), ∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2, 即a 2+3a -4=0.解得a =1或a =-4(舍去).13.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.14.在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线C 1的方程是ρ=1,将C 1向上平移1个单位得到曲线C 2.(1)求曲线C 2的极坐标方程;(2)若曲线C 1的切线交曲线C 2于不同两点M ,N ,切点为T .求|TM |·|TN |的取值范围. 【解析】:(1)依题,因为ρ2=x 2+y 2, 所以曲线C 1的直角坐标方程为x 2+y 2=1, 所以曲线C 2的直角坐标方程为x 2+(y -1)2=1, 又y =ρsin θ,所以ρ2-2ρsin θ=0, 即曲线C 2的极坐标方程为ρ=2sin θ.(2)解法一 由题令T (x 0,y 0),y 0∈(0,1],切线MN 的倾斜角为θ,所以切线MN 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos θy =y 0+t sin θ(t 为参数).联立C 2的直角坐标方程得,t 2+2(x 0cos θ+y 0sin θ-sin θ)t +1-2y 0=0, 即由直线参数方程中t 的几何意义可知,|TM |·|TN |=|1-2y 0|,因为1-2y 0∈[-1,1),所以|TM |·|TN |∈[0,1].解法二 设点T (cos α,sin α),则由题意可知当α∈(0,π)时,切线与曲线C 2相交, 由对称性可知,当α∈⎝ ⎛⎦⎥⎤0,π2时切线的倾斜角为α+π2,则切线MN 的参数方程为⎩⎪⎨⎪⎧x =cos α+t cos ⎝⎛⎭⎪⎫α+π2=cos α-t sin αy =sin α+t sin ⎝⎛⎭⎪⎫α+π2=sin α+t cos α(t 为参数),与C 2的直角坐标方程联立,得t 2-2t cos α+1-2sin α=0, 则|TM |·|TN |=|t 1t 2|=|1-2sin α|,因为α∈⎝⎛⎦⎥⎤0,π2,所以|TM |·|TN |∈[0,1].15.将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.16.已知点P 的直角坐标是(x ,y ).以平面直角坐标系的原点为极坐标的极点,x 轴的正半轴为极轴,建立极坐标系.设点P 的极坐标是(ρ,θ),点Q 的极坐标是(ρ,θ+θ0),其中θ0是常数.设点Q 的直角坐标是(m ,n ).(1)用x ,y ,θ0表示m ,n ;(2)若m ,n 满足mn =1,且θ0=π4,求点P 的直角坐标(x ,y )满足的方程.【解析】:(1)由题意知⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,且⎩⎪⎨⎪⎧m =ρθ+θ0,n =ρθ+θ0,所以⎩⎪⎨⎪⎧m =ρcos θcos θ0-ρsin θ sin θ0,n =ρsin θcos θ0+ρcos θsin θ0,所以⎩⎪⎨⎪⎧m =x cos θ0-y sin θ0,n =x sin θ0+y cos θ0.。

高考试题分析坐标系与参数方程

高考试题分析坐标系与参数方程

2013—2017新课标云南高考数学试题分析 (选修4——4坐标系与参数方程)位置和权重坐标系与参数方程通常位于高考试题的第23题,选考题的第二题,删去几何证明选讲后位于第22题,选考题的第一题。

分值10分,占全卷总分的6.7%。

在高考中有着至关重要的作用。

知识点1.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点o ,叫做极点,自极点o 引一条射线ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点ο与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为()θρ,M . 2.极坐标与直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是()y x ,,极坐标为),(θρ,则它们之间的关系为θρcos =x ,θρsin =y .另一种关系为222y x +=ρ,)0(tan ≠=x xyθ. 3.直线的极坐标方程若直线过点),(00θρM ,且极轴到此直线的角为α,则它的方程为:).sin()sin(00αθραθρ-=-几个特殊位置的直线的极坐标方程: (1)直线过极点:0θθ=和0θπθ+=;(2)直线过点)0,(a M ,且垂直于极轴:a =θρcos ; (3)直线过)2,(πb M ,且平行于极轴:b =θρsin .4.圆的极坐标方程若圆心为),(00θρM ,半径为r ,则圆的方程为0)cos(2220002=-+--r ρθθρρρ几个特殊位置的圆的极坐标方程: (1)圆心位于极点,半径为r :r =ρ; (2)圆心位于)0,(a M ,半径为a :θρcos 2a =; (3)圆心位于)2,(πa M ,半径为a :θρsin 2a =.5.曲线的参数方程在平面直角坐标系xoy 中,如果曲线上任意一点的坐标y x ,都是某个变量t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,上式所确定的点),(y x M 都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数 .6.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为 x =x 0+t cos α,y =y 0+t sin α (t 为参数).(2)圆的方程(x-a)2+(y-b)2=r 2的参数方程为 x =a +r cos θ ,y =b +r sin θ (θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a>b>0)的参数方程为 x =a cos θ ,y =b sin θ(θ为参数).(4)抛物线方程y 2=2px(p>0)的参数方程为 x =2pt 2 ,y =2pt(t 为参数).方法与技巧1.在使用伸缩变换时,要分清新旧坐标:P ′(x ′,y ′)是变换图形后的点的坐标,P (x ,y )是变换前图形的点的坐标.注意从三角函数的图像变换来理解抽象的坐标伸缩变换公式,以加深理解和记忆.2.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.3.如果要判断曲线的形状,我们可以将方程化为直角坐标方程再进行判断,这时我们直接应用x =ρcos θ,y =ρsin θ即可.高考试题分析(2013年全国课标卷二).(本小题满分10分)选修4-4;坐标系与参数方程已知动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π). (中点坐标公式)(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). (两点间的距离公式)当α=π时,d =0,故M 的轨迹过坐标原点.(2014年全国课标卷二) (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【思路方法】 (1)直接根据参数方程与普通方程的互化求解;(2)两直线垂直的斜率运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考全国卷(坐标系与参数方程)分析与启示一、特色解读2017年高考新课标卷对《坐标系与参数方程》的考查,题型没有变、第23题位置没有变,文理同题没有变,分值10分没有变,命题本源为选修内容没有变,命题延续了以往对主干知识的考查,以直线、椭圆参数方程为背景,求曲线的交点坐标和最值问题,注重基本运算及知识的应用,中规中矩,基本符合预期.近6年的全国课标卷在本专题考查的知识点如下:根据(2012—2017)的考查统计,可以看出,高考课标卷对《坐标系与参数方程》的考查主要体现在平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;常见曲线(直线、圆、椭圆、抛物线)的参数方程及参数方程的简单应用,以极坐标、参数方程与普通方程的互化,直线与曲线位置关系为主要考查形式.知识:极坐标方程⇔普通方程⇔参数方程之间转化;方程 椭圆 表示出椭圆上的点(ϕϕsin ,cos b a ); 离(最值)等问题;抛物线 表示出抛物线上的点(22,2pt pt ); 2.能力(1)通过不同坐标系或不同形式的方程之间转换,考查运算求解能力.(2)某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,因些,极坐标的几何意义,参数方程的应用是高考命题的频点.3.思想方法(1)通过极坐标或参数方程解决直线、圆、椭圆等问题,考查数形结合思想.(2)解决问题时采用何种形式的方程比较方便,考查化归与转化思想.二、亮点扫描【例题一】(2016课标Ⅱ)在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.【解析】(Ⅰ)C 的极坐标方程为2+12cos 110ρρα+=.(Ⅱ)【解法一】直线l 的极坐标方程为()R θαρ=∈∈;联立圆C 的极坐标方程;由 2+12cos 110θαρρθ=⎧⎨+=⎩ 得2+12cos 110ρρα+=,22121212()4144cos 44AB ρρρρρρα=-=+-=-.【解法二】直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数)代入圆C 的普通方程22(6)25x y ++=, 得2+12cos 110t t α+=,22121212()4144cos 44AB t t t t t t α=-=+-=-.【解法三】直线l 的普通方程为tan y kx α==,由22(6)25y kx x y =⎧⎨++=⎩ 得22(1)12110k x x +++=, 222121212214411()4441AB k x x k x x x x k=+-=++-=-+. 知识:圆的普通方程化为极坐标方程,直线参数方程参数和极坐标极角,极径的应用. 方法:求过原点的直线与曲线相交距离问题.(1)把直线的极坐标方程()R θαρ=∈∈与曲线的极坐标方程联立,两个交点距离为2121212()4ρρρρρρ-=+-.(2)把直线的参数方程与曲线的普通方程联立,两个交点距离为2121212()4t t t t t t -=+-.(3)把直线与曲线全部化为普通方程,两个交点距离为22212121211()4k x x k x x x x +-=++-.【例题二】(2017全国课标Ⅱ)在直角坐标系xoy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(Ⅰ)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(Ⅰ)设点P 的极坐标为(,)ρθ,点M 的极坐标为1(,)ρθ,OP ρ= 14cos OM ρθ==,||||16OM OP ⋅=,1.16ρρ=,点P 的轨迹2C 的极坐标方4cos ρθ=,从而2C 的普通方程;22(2)4x y -+=(Ⅱ)点B 在曲线2C 上,点B 的极坐标为2(,)ρθ,24cos ρθ=,OAB ∆面积 213.sin 4cos sin()2sin(2)2332S OA AOB ππρααα=∠=-=--. 知识:极坐标方程化普通方程,轨迹问题,极坐标极角,极经的几何意义及其应用应用. 方法:某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,在教学中要十分重视极坐标方程,极坐标极角,极经的几何意义,而不是一味的转化为普通方程问题处理. 【例题三】(2017全国课标III ) 在直角坐标系xoy 中,直线1l 的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (Ⅰ)写出C 的普通方程;(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3:(cos sin )20l ρθθ+-=,M 为3l 与C 的交点,求M 的极径.【解析】(Ⅰ)直线1l 的普通方程为(2)y k x =-,直线2l 的普通方程为1(2)y x k=+,由(2)1(x 2)y k x y k =+⎧⎪⎨=-⎪⎩,消去k 得224(0)x y y -=≠.(Ⅱ) 【解法一】直线3l 的普通方程为20x y +=,曲线C 的普通方程为224x y -=,两曲线的交点322()22M 求得M 的极径. 【解法二】直线3l 的参数方程为22222y y t ⎧=⎪⎪⎨⎪=⎪⎩代入曲线C 的普通方程224x y -=,得1t =-,322(,)M -求得M 的极径. 【解法二】曲线C 的极坐标方程为2222cos sin 4ρθρθ-=(02,θπθπ<<≠)直线3l 的极坐标方程为(cos sin )20ρθθ+-=,联立2222cos sin 4(cos sin )20ρθρθρθθ⎧-=⎪⎨+-=⎪⎩,5ρ=. 知识:直线参数方程化为普通方程,轨迹问题,极坐标方程和参数方程的应用, 方法:求直线与曲线的交点坐标问题.(1)把直线与曲线分别化为普通方程,联立求交点坐标.(2)把直线与曲线分别化为参数方程和普通方程,联立求参数,得交点坐标.(3)把直线与曲线分别化为极坐标方程,求交点极坐标,获得极径,【例题四】(2017江苏高考)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t t y =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 参数方程为22,22x s y s ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C 上,设2(2,22)P s s , 点P 到直线l 的的距离2222|2428|2(2)45(1)(2)s s s d -+-+==-+-,知识:直线的参数方程化为普通方程,参数的应用.方法:抛物线的普通方程为22y px =,参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),抛物线上的点可以设为2(2,2)P pt pt ,转化为数形结合思想.三、佳题欣赏【例题一】(2017年厦门市第二次检测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 3cos 1t y t x (t 为参数),其中πα<≤0.在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线1C :θρcos 4=.直线l 与曲线1C 相切.(Ⅰ)将曲线1C 的极坐标方程化为直角坐标方程,并求α的值;(Ⅱ)已知点)02(,Q ,直线l 与2C :1322=+y x 交于B A ,两点,求ABQ ∆面积. 【解析】(Ⅰ)1C 的普通方程为0422=-+x y x ,将直线l 参数方程代入曲线得0)cos 2sin 32(2=-+t t αα,0∆=6πα=∴(Ⅱ)将直线l 的参数方程为31132x y t ⎧=⎪⎪⎨⎪=⎪⎩代入曲线得063852=++t t21221214)(t t t t t t AB -+=-=.考查知识:把圆的极坐标方程化为普通方程,直线与圆相切,直线与曲线相交的距离.【例题二】(2017年福州市第一次检测)在平面直角坐标系xOy 中,在以O 为极点,x 轴的正半轴为极轴的极坐标系中, 曲线[]214cos 30,02:,C ρρθθπ-+=∈,曲线[]23,0,24sin()6:C ρθππθ=∈-.(Ⅰ)求1C 的一个参数方程;(Ⅱ)若曲线1C 和曲线2C 相交于A 、B 两点,求AB 值.【解析】(Ⅰ)曲线1C 的普通方程为:22(2)1x y -+=,从而1C 的一个参数方程为2cos sin x y αα=+⎧⎨=⎩(α为参数)(Ⅱ)【解法一】曲线2C 的普通方程为22330x y --= 因为直线2C :22330x y --=与曲线1C :22(2)1x y -+=相交于A 、B 两点, 所以圆心到直线的距离为14d =,222AB r d =- . 【解法二】直线2C 过点3(,0)2,倾斜角为6π,曲线2C 的参数方程为332212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ 代入1C :22(2)1x y -+=,得242330t t --=, 2121212()4t t t t t AB t -==+-.考查知识:将圆的极坐标化为普通方程,再把圆的普通方程转化为参数方程,直线与圆的位置关系,由于直线2C 没有过原点,因此使用极坐标方程方法比较困难.【例题三】(2017年三明市第二次检测)在平面直角坐标系xOy 中,以坐标原点为极点,以X 轴的正半轴为极轴,建立极坐标系,若直线2cos()204πρθ--=,曲线C 极坐标2sin cos ρθθ=,将曲线C 上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线为参数)1C .(Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求PA PB +的值.【解析】(Ⅰ)1C 的直角坐标方程为222y x =-. (Ⅱ)直线l 的普通方程20x y +-=,(2,0)P 在l 上,l 参数方程为22222x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线1C 方程得22240t t +-=,120,0t t ><,212121212()4PA PB t t t t t t t t +=+=-=+-.考查知识:把直线方程化为参数方程,极坐标方程化为直角坐标方程,利用直线参数的几何意义.212121212()4PA PB t t t t t t t t +=+=-=+-四、复习启示1. 重视基础知识的复习①写出点的极坐标,与直角坐标的互化;②写出圆、椭圆、抛物线或相关轨迹的参数方程;③极坐标方程、参数方程、普通方程的互化;不断强化,提高准确率,减少失误. 2. 重视化归与转化思想方法较多关注参数方程和极坐标方程的应用,如:①极坐标ρ的几何意义;②直线标准参数t 的几何意义;③圆、椭圆的三角参数;提高应用意识.3. 重视知识的交汇联系①解析几何中直线与圆、椭圆、抛物线的交点、距离等问题;②三角恒等变换(辅助角公式)等知识;以横向联系和纵向联系为主线,对模块内容加以整合,优化认知结构,构建良序的知识网络.教学反思:对于极坐标和参数方程的题目,关键在于画图,利用数形结合,采用三种不同的方法,某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,在教学中要十分重视极坐标方程,极坐标极角,极经的几何意义,而不是一味的转化为普通方程问题处理.。

相关文档
最新文档