第四章 高分子物理 高分子的溶液性质.

合集下载

高分子物理---第四章 分子量与分子量分布

高分子物理---第四章 分子量与分子量分布
i i i
T c0
n Kc n M
1 Kc Mn
(2) 气相渗透法(VPO)

通过间接测定溶 液的蒸气压降低 值而得到溶质分 子量的方法
溶液
T 溶剂
T Ax2 n2 x2 n1 n2
n2 n2 n1 n2 , x2 n m/ M n1 n2 n1

假设聚合物试样的总质量为m, 总物质的量为 n, 不同分子量分子的种类用 i 表示
第 i 种分子的分子量为Mi , 物质的量为ni , 质量为mi , 在整 个试样中所占的摩尔分数为xi , 质量分数为wi , 则有:
n
i
n,
m
i
m
ni xi , n
mi wi m
x
i
1,
P
P T
1 1 T , P P T
V G G 1 而 n n P n V1 T 1 T P T P 1 T 1
M Mn
2 n


2
2 M n M w 1 n Mn
多分散系数: Polydispersity coefficient Mw Mz d or d Mn Mw
单分散 Monodispersity
4.2 聚合物分子量的测定





化学方法 Chemical method 端基分析法 热力学方法 Thermodynamics method 沸点升高,冰点降低,蒸气压下降,渗透压法 光学方法 Optical method 光散射法 动力学方法 Dynamic method 粘度法,超速离心沉淀 及扩散法 其它方法 Other method 电子显微镜,凝胶渗透色谱法

高分子稀溶液

高分子稀溶液

第二讲 高份子稀溶液和极稀溶液的性质Chapter 2 The Properties of Polymer diluteand extra-dilute Solutions2.1 接触浓度和动态接触浓度按照现代高分子物理的观点,高分子液体按照浓度大小及分子链形态的不同分为以下几种状态:高分子极稀溶液、稀溶液、亚浓溶液、浓溶液、极浓溶液和熔体。

溶液浓度从极稀到极浓的变化过程就是分子链体系从单链状态转变成相互贯穿的多链状态的分子链凝聚过程。

高分子极稀溶液 → 稀溶液 → 亚浓溶液 → 浓溶液 → 极浓溶液和熔体分界浓度: s C *C e C **C名称: 动态接触浓度 接触浓度 缠结浓度 -浓度围: ~10-2% ~10-1% ~0.5-10% ~10高分子溶液分类及其分界浓度稀溶液和浓溶液的本质区别,在于稀溶液中单分子链线团〔包括其排斥体积〕是孤立存在的,相互之间没有交叠;而在浓厚体系中,大分子链之间发生聚集和缠结。

细致地区分,稀溶液和浓溶液之间还可分出一个亚浓溶液(semidilute)。

稀溶液和亚浓溶液的分界浓度,称接触浓度*c ,亦称临界交叠浓度;亚浓溶液和浓溶液的分界浓度,称缠结浓度e c 。

(a) c <*c ; (b) c =*c ; (c) c >*c图2-1 高分子稀溶液(a)、亚浓溶液(c)及其分界浓度*c (b)接触浓度*c 定义为稀溶液中,高分子链开场发生接触,继而相互交叠、覆盖的临界浓度。

当溶液浓度小于接触浓度*c 时,按照Flory-Krigbaum 稀溶液理论,分子链相距较远,彼此独立,如同分散在溶剂中被溶剂化的大分子“链段云〞。

到达接触浓度时,按定义单分子链线团〔包括排斥体积〕应一个挨一个充满溶液的整个空间,或者说单分子链线团在溶液中严密堆砌,互相“接触〞,见图2-1。

一般接触浓度数量级为10-1wt%。

实际上在这个浓度下,单分子链线团并非以孤立的静止状态分散在溶液中,由于分子热运动,有些线团已开场发生局部覆盖而形成少量多链聚集体。

高分子物理第四章

高分子物理第四章

B At t
sp r 1
t t0 t0
乌式粘度计
15
16
二、端基分析法
以 sp / C 和 ln r / C 分别为纵坐标,C为 横坐标作图,得两条直线。分别外推至 C 0 处, 其截距即
原理:线形聚合物的化学结构明确,且分子链端带有可供定
误差较大!
~ 2 10 4
19 20
三、沸点升高或冰点降低
测定的每一种效应都是由 溶液中溶质的数目所决定
溶剂的选择原则:
沸点升高法——溶剂具有较大的 K b 且沸点较低,以防聚合物降解 冰点降低法——溶剂具有较大的 K f 且高聚物在溶剂的凝固温度以上溶解性好
——利用稀溶液的依数性测定溶质分子量的方法,是 经典的物理化学方法。 原理:溶液沸点的升高及冰点的降低与溶质(如高分子) 分子量及其在溶液中的浓度有关。
实验测定值进一步修订:
2
1 cos 2 Kc 1 8 2 h (1 sin 2 ......) 2 A2 c 2sin 9 ( ) 2 2 R M
测定一系列不同浓度的溶液在不同散射角时的
n2 ( M M n ) 2 n M n (d 1)
2 w w 2 n 2 w
( M M ) M
2
(d 1)
8
2 2 多分散试样,d>1或 n >0 ( w >0)
7
2 单分散试样,d=1或 n2 w 0
第二节 聚合物分子量的测定方法
看作高分子链段与链段之间以及高分子与溶剂分子间 相互作用的一种量度,它与溶剂化作用和高分子在溶液里 的形态有密切关系。
某些情况下: A

高分子物理第四章 聚合物的分子量与分子量分布

高分子物理第四章 聚合物的分子量与分子量分布

分子量分布宽度
第四章
聚合物的分子量与分子量分布
分子量分布宽度
分布宽度指数
n M Mn
2


2
n
Mw Mn 1 M n
2
w M Mw
2

M
2 n
2 w
Mz 1 M w
Mw
Mn

Mz
Mw
通过实验分别测定若 干不同浓度溶液的渗 透压π,用π/c对c作图 将得到一条直线,直 线的截距可以求得分 子量 M ,斜率可以求 得A2
第四章
聚合物的分子量与分子量分布

某种聚合物溶解于两种溶剂 A和B中,渗透压π和浓度c的关系
如图所示: (1)当浓度c→0时,从纵轴上的截距能得到什么? (2)从曲线A的初始直线段的斜率能得到什么? (3)B是良溶剂还是劣溶剂?
w
i
i
1
mi ni M i
分子量的 离散分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
间断函数变为连续函数,则得到
分子量的 微分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
聚合物分子量积分分布函数
分子量的 积分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
微分分布函数与积分分布函数之间的关系
大粒子Zimm图
第四章
聚合物的分子量与分子量分布
聚合物分子量的测定方法
粘度法-粘均分子量
液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏 性,粘度是表征液体流动时受内摩擦的大小。 高分子的 分子量影响 其在溶液中 的形态,进 而会影响其 溶液粘度。 第四章 聚合物的分子量与分子量分布

高分子溶液 溶解讲解

高分子溶液 溶解讲解

溶液依数性
有,但偏高
无规律
有,正常
光学现象
Tyndall 效应较弱
Tyndall 效应明显
无 Tyndall 效应
溶解度



溶液黏度
很大

很小
2020/10/2
高分子物理
51/51
(1)特点 ① 热力学稳定相态,分子链排列紧密,规整,
分子间作用力大,所以溶解要比非晶相困难得多
2020/10/2
高分子物理
24/51
② 溶解有两个过程: a.吸热,分子链开始运动,使晶格破坏。 b. 被破坏的晶格的聚合物与溶剂作用,象非
晶聚合物那样先发生溶胀,再溶解。
2020/10/2
高分子物理
2020/10/2
高分子物理
44/51
(1)极性相似原则——相似相溶 (定性看)
小 极性大的溶质溶于极性大的溶剂; 分 极性小的溶质溶于极性小的溶剂; 子 溶质和溶剂的极性越相近,二者越易互溶
对于高分子:在一定程度上也适用。
2020/10/2
高分子物理
45/51
例如: 天然橡胶(非极性,非晶态)—— 溶于汽油,苯,己烷,石油醚(非极性溶 剂); PS(弱极性)—— 溶于甲苯,氯仿,苯胺等弱极性溶剂和苯 (非极性);
2020/10/2
高分子物理
29/51
例:聚酰胺——室温可溶于甲酸,浓H2SO4, 间甲酚。
PET可溶于间甲酚(强极性)。 ★ 这类溶解不仅与分子量大小有关,更重要的 是与结晶度有关,结晶度↑,溶解度↓。
2020/10/2
高分子物理
30/51
3.1.2 溶剂的选择
1. 高聚物溶解过程的热力学解释

(完整版)高分子物理名词解释

(完整版)高分子物理名词解释

1.物质的结构:在平衡态分子中原子间或平衡态分子间在空间的几何排列。

2.高分子的链结构:单个分子链中原子或基团的排列情况。

3.近程结构:单个高分子内一个或几个结构单元的化学结构或立体化学结构。

4.远程结构:单个高分子的大小和在空间的形态。

5.构型:分子中由化学键所固定的原子在空间的几何排列。

(要改变构型,必须经过化学键的断裂或重组)6.构象:由于单键的内旋转而引起的高分子链在空间的不同形态。

(要改变构象,不需经过破坏化学键,只要求键可以内旋转)7.链接异构:结构单元在高分子链中连接的序列结构。

顺序异构体:由于结构单元间键接方式不同而产生的异构体。

8.支化度:单位体积内支化点的数目或两个相邻支化点间的平均分子量。

(支化可溶解,不可熔融;短支链使物理性能降低,长支链使粘度增大)9.交联:高分子链通过化学键相互连接而成的三维空间网状分子。

(可溶胀,不可溶解,更不可熔融)10.交联度:单位体积内交联点的数目或两个相邻交联点间的平均分子量。

11.旋光异构:由于主链上存在不对称的C原子而产生的立体异构。

12.全同异构:结构单元中含不对称的C*的高聚物,C—C键成锯齿形状放在一个平面上。

当取代基全部处于主链平面一侧(一种旋光异构单元)键接而成。

间同异构:取代基相间的分布于主链平面的两侧(两种旋光异构单元交替连接)无规异构:取代基在平面两侧作不规则分布(两种旋光异构单元完全无规连接)13.等规度:全同或间同立构单元所占的质量百分数。

14.几何异构:主链上存在孤立双键而产生的立体异构。

15.内旋转:以σ键相连的两个原子可以相对旋转而不影响电子云分布。

16.柔顺性:高分子链的各种可卷曲的性能或者说高分子链能改变其构象的性质。

17.自由内旋转:碳链上不带有其他基团,C—C单键的内旋转是完全自由的,旋转过程中不发生能量变化。

18.受阻内旋转:碳原子上总带有其他原子或基团,相互接近时,会产生排斥力,即受阻旋转要消耗一定能量,克服内旋转所受到的阻力。

《高分子物理》ppt课件

《高分子物理》ppt课件
为和结晶形态。
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态

《高分子物理》课程电子教案

《高分子物理》课程电子教案

《高分子物理》课程教学大纲英文名称: Polymer Physics课程类别:学科基础课学时:64学分:4适用专业:高分子材料与工程一、本课程的性质、任务高分子物理课程包括:高聚物的结构、高高分子物理学是高分子材料与工程专业的基础课。

通过本门课程的学习,要求学生对高分子的合成、加工、应用、改性等具有全面的了解。

并使学生重点掌握结构、性能及两者之间关系的一些基本概念、必要的知识、分析测试方法、一定的计算能力,从而为专业课的学习打下理论基础,并为高分子材料的合成、加工、选材、应用、改性、性能测试等提供理论依据,进而指导生产实践。

高分子物理课程教学包括理论教学和实验教学。

结合本门课程的实验,对学生进行相关的基本训练,培养学生分析问题和解决问题的实际工作能力。

总之,通过本门课程的学习及实验为后续专业课的学习提供必备的基础知识。

二、本课程的基本要求本课程包括高分子的链结构和聚集态机构、高分子的溶液性质、高分子的运动和高分子力学性能和电性能四大部分。

通过学习,要使学生对教学内容达到“了解”、“认识和理解”、“掌握”和“熟练掌握”层次要求。

即通过学习要求学生对基本分析方法、各种测试方法、各种实验的基本原理、高分子尺寸表示方法及其推导要全面了解。

对高聚物的结晶结构模型、非晶态结构、液晶结构、织态结构有明确的认识和理解。

掌握高聚物的各种力学状态、力学行为、各种性能曲线的详细分析和典型推导。

熟练掌握高聚物结构、性能及两者之间相互关系的基本概念、必要的知识。

熟练掌握高聚物的各种特征温度、测定方法。

三、讲授内容1 高分子链的结构1.1 概论1.1.1 高分子科学的诞生与发展1.I.2 高分子结构的特点I.1.3 高分子结构的内容1.2 高分子链的近程结构1.2.1 结构单元的化学组成1.2.2 键接结构1.2.3 支化与交联1.2.4 共聚物的结构1.2.5 高分子链的构型1.3 高分子链的远程结构1.3.1 高分子的大小1.3.2 高分子涟的内旋转构象1.3.3 高分子链的柔顺性1.4 高分子链的构象统计1.4.1 均方末端距的几何计算法1.4.2 均方末端距的统计计算法.1.4.3 高分子链柔顺性的表征.1.4.4 高分子链的均方旋转半径.2 高分子的聚集态结构2.1 高聚物分子间的作用2.1.1 范德华力与氢链.2.1.2 内聚能密度2.2 高聚物结晶的形态和结构2.2.1 高聚物结晶的形态学2.2.2 高分子在结晶中的构象和晶胞., 2.3 高分子的聚集态结构模型2.3.I 高聚物的晶态结构模型2.3.2 高聚物的非晶态结构模型.2.4 高聚物的结晶过程2.4.1 高分子结构与结晶能力.2.4.2 结晶速度及其测定方法2.4.3 Avrami方程用于高聚物的结晶过程..2.4.4 结晶速度与温度的关系2.4.5 影响结晶速度的其他因素2.5 结晶对高聚物物理机械性能的影响“2.5.1 结晶度概念及其测定方法2.5.2 结晶度大小对高聚物性能的影响2.5.3 结晶高聚物的加工条件—结构—性质的互相作用 2.5.4 分子量等因素对结晶高聚物的聚集态结核2.6 结晶热力学...”2.6.1 结晶高聚物的熔融与熔点2.6.2 结晶温度对熔点的影响2.6.3 晶片厚度与熔点的关系2.6.4 拉伸对高聚物熔点的影响2.7 高聚物的取向态结构2.7.1 高聚物的取向现象2.7.2 高聚物的取向机理2.7.3 取向度及其测定方法2.7.4 取向研究的应用2.8 高聚物的液晶态结构2.8.1 液晶态的结构2.8.2 高分子液晶的结构和性质2.8.3 高分子液晶的应用2.9 高分子合金的形态结构2.9.1 高分子混合物的溉念2.9.2 高分子的相容性2.9.3 共混高聚物聚集态的主要特点2.9.4 非均相多组分聚合物的织态结构2.9.5 共混高聚物的聚集态结构对性能的影响’.3 高分子的溶液性质3.1 高聚物的溶解3.1.1 高聚物溶解过程的特点3.1.2 高聚物溶解过程的热力学解释 3.1.3 溶剂的选择3.2 高分子溶液的热力学性质.3.2.1 Flory-Huggins高分子溶液理论 3.2.2 Flory温区(θ温度)的提出3.3 高分子浓溶液3.3.1 高聚物的增塑3.3.2 纺丝液3.3.3 凝胶和冻胶3.4 共混聚合物的溶混性3.5 高分子溶液的流体力学性质3.5.1 高分子在溶液中的扩散3.5.2 高分子在溶液中的粘性流动4 高聚物的分子量4.1 高聚物分子量的统计意义4.1.1 平均分子量4.1.2 平均分子量与分布函数4.1.3 分子量分布宽度4.2 高聚物分子量的测定.4.2.1 端基分析4.2.2 沸点升高和冰点降低.‘4.2.3 膜渗透压4.2.5 光散射4.2.6 小角激光光散射(LALLS)4.2.7 超速离心沉降4.2.8 粘度4.2.9 凝胶色谱5 高聚物的分子量分布5.1 分子量分布的表示方法5.1.1 图解表示5.1.2 分布函数5.2 基于相平衡的分级方法5.2.I 高分子溶液的相分离5.2.3 分级实验方法5.2.4 数据处理5.3 凝胶色谱法5.3.1 基本原理5.3.2 仪器5.3.3 载体和色谱柱5.3.4 高效凝胶色谱5.4 凝胶色谱的特殊应用5.4.1 凝胶色谱与小角激光光散射联用5.4.2 高聚物长链支化度的测定5.4.3 共聚构组成分布与分子量分布的测定6 高聚物的分子运动6.1 高聚物的分子热运动6.1.1 高分子热运动的主要特点6.1.2 高聚物的力学状态和热转变6.1.3 高聚物的次级松弛6.2 高聚物的玻璃化转变6.2.1 玻璃化转变现象和玻璃化温度的测量 6.2.2 玻璃化转变理论6.2.3 玻璃化温度的影响因素及调节途径6.2.4 玻璃化转变的多维性6.3 高聚物的粘性流动6.3.1 高聚物粘性流动的特点6.3.2 影响粘流温度的因素6.3.3 聚合物熔体的切粘度6.3.4 剪切粘度的测量方法6.3.5 高聚物熔体的流动曲线6.3.6 加工条件对高聚物熔体剪切粘度的影响6.3.7 高聚物分子结构因素对剪切粘度的影响6.3.8 剪切流动的法向应力和高聚物熔体的弹性效应6.3.9 拉伸粘度7 高聚物的力学性质7.1 玻璃态和结晶态高聚物的力学性质7.1.2 描述力学性质的基本物理量7.1.2 几种常用的力学性能指标7.1.3 几类高聚物的拉伸行为7.1.4 高聚物的屈服7.1.5 高聚物的破坏和理论强度7.1.6 影响高聚物实际强度的因素7.2 高弹态高聚物的力学件质7.2.1 橡胶的使用温度范围..7.2.2 高弹性的特点7.2.3 橡胶弹性的热力学分析7.2.4 橡胶弹性的统计理论7.2.5 内能对橡胶弹性的贡献7.2.6 橡胶弹性与交联网结构的关系7.2.7 橡胶的极限性质7.3 高聚物的力学松弛7.3.1 高聚物的力学松弛现象7.3.2 粘弹性的力学模型7.3.3 粘弹性与时间、温度的关系——时温等效原理7.3.4 Boltzmann叠加原理7.3.5 测定高聚物粘弹性的实验方法7.3.6 高聚物的松弛转变及其分子机理8 聚合物的电学性质8.1 高聚物的极化及介电常数8.2 高聚物的介电损耗8.3 高聚物的导电性8.4 高聚物的介电击穿8.5 高聚物的静电现象四、实践性环节1.作业:讲授完两部分教学内容后,进行一次习题课,讲授完每一章的教学内容后,留一次作业题。

高分子材料加工原理(第四章)

高分子材料加工原理(第四章)
2、动态流动曲线

从动态实验不仅能表征粘弹流体的频率依赖性 粘度,而且能表征其弹性。测定值是复数粘度。
* () i ()
( )
G ( )
G ( ) ( )
——非牛顿流体粘性的表征 ——弹性的表征
第一节 聚合物流体的非牛顿剪切粘性
第一节 聚合物流体的非牛顿剪切粘性
(3)可预示某些聚合物流体的可纺性
d lg a d 1 / 2

2 10
结构黏度指数▣可用来表 征聚合物浓溶液结构化的 程度。▣越大,表明聚合 物流体的结构化程度越大。
第一节 聚合物流体的非牛顿剪切粘性



第一节 聚合物流体的非牛顿剪切粘性
②切力增稠的原因: 增加到某数值时,流体中有新的结构的形成。 大多数胀流型流体为多分散体系,固体含量较多,且浸润 性不好。静止时,流体中的固体粒子堆砌得很紧密,粒子 间空隙小并充满了液体,这种液体有一定的润滑作用。 较低时,固体粒子就在剪切力的作用下发生了相对滑 当 动,并且能够在原有堆砌密度大致保持不变的情况下,使 得整个悬浮体系沿力的方向发生移动,这时候表现为牛顿 流动; 增加到一定值时,粒子间碰撞机会增多,阻力增大; 当 同时空隙增大,悬浮体系总体积增加,液体已不能再充满 空隙,粒子间移动时的润滑作用减小,阻力增大,所以 a 增大。
点;
3、掌握聚合物流体切力变稀的原因;
本节作业
1、P118-1(1、2、3、5、9)、2、4、7
第一节 聚合物流体的非牛顿剪切粘性
【教学内容导读】 流体的粘性和牛顿粘性定律 非牛顿流体的流动行为及粘性表征
影响聚合物流体剪切粘性的因素
【课时安排】4课时

高分子物理第四章 高聚物的分子量及其分布

高分子物理第四章  高聚物的分子量及其分布

α = 1 α = 0.5 1 α = 1
M n ≤ Mη ≤ M w
粘均分子量更偏 向于数均还是重 均分子量?
1.3 测定分子量的方法
最早用物理化学法,如:端基分析、 冰点降低、沸点升 高等。随着高分子科学的发展,出现了光散射法,到了上世 纪60年代出现了GPC。测定分子量的方法都是利用高分子稀 溶液性质来测定分子量。 化学方法 热力学方法 光学方法 动力学方法 其它方法 端基分析法 冰点降低法、沸点升高法、 气相渗透法、膜渗透法 光散射法 粘度法、超速离心沉 降速度法及扩散法 凝胶渗透色谱法
第四章 高聚物的分子量及其分布
Molecular weight and molecular weight distribution
高分子与小分子性能比较
高分子 状态 特点 液体、固体 强度与木材、水 泥甚至钢材可 比,韧性和弹性 不亚于棉、麻、 毛和天然橡胶 小分子 气体、固体、液体 机械强度和韧性 很低,工程使用 价值不高
羧基——用碱滴定
W Mn = N
试样的质量 聚合物的分子链摩尔数
试样所含的端基物质的摩尔数 N= 每个分子链所含被测定的基团数
试样的分子量越大,单位质量聚合物所含 的端基数就越少,测定的准确度就越差。所 以,端基分析法只适用于测定分子量在3万以 下的聚合物。
三、膜渗透压法(Osmotic method)
Wi = N i M i
几种关系
∑N
i
i
=N
总数摩尔数
Ni ∑ xi = ∑ N = 1 i i 第i级分的数量分数 总摩尔分数具有规一性
Ni = xi N
∑Wi = W
i
总重量
Wi ∑ wi = ∑ W = 1 i i 第i级分的重量分数 总重量分数具有规一性

高分子物理(共90张PPT)

高分子物理(共90张PPT)
晶,影响制品性能。
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等

高分子物理结构与性能第四章高分子的θ溶液

高分子物理结构与性能第四章高分子的θ溶液

V1
2 2
将两式比较可以得到第二维利系数的另一个表达式:
A2
N0U 2M 2
V2 V~1
1
(1
T
)F(X )
第二维利系数A2的物理意义: ——表征高分子链段与溶剂分子之间相互作用程
度大小的一个参数。
1)A2>0χ1<1/2——溶剂与高分子链段的作用大于链 段之间的相互作用,聚合物容易溶解,溶剂为良 溶剂;
高分子溶液混合焓 Hm RT1n12
高分子溶液混合熵 Sm R(n1 ln1 n2 ln 2)
高分子溶液混合自由能
Gm RT(n1ln1 n2 ln2 1n12)
高分子溶液化学位
1
RT
2 X
(1
1 2
)
2 2
1
RT
2 X
(1
1 2
)
2 2
1i RT ln X A RTXB
二式比较:理想溶液的化学位相当于高分子溶液化 学位中的第一项。即高分子溶液的化学位比理想溶 液多出一项——超额化学位。
θ温度的提出和意义
高分子溶液的过量化学位应该由两部分组成, 一部分由热引起,另一部分由熵引起。
定义两个参数:
K1——热参数;
ψ1——熵参数
过量偏摩尔混合热:
H1E
RTK1
2 2
过量偏摩尔混合熵:
S
E 1
R122
过量化学位:1E H1E TS1E RT (K1 1)22
两个过量化学位比较:
1
2)θ溶剂中,T=θ U =0——说明高分子链段与链 段之间的相互作用能等于链段与溶剂之间的相互作 用能,链段与链段之间可以与溶剂分子一样相互接 近,互相贯穿,这样排斥体积为零;

高分子物理第四章

高分子物理第四章

0
12
3, Z均分子量 Zi M i mi
按Z量统计平均分子量,定义为:
用加和表示
zi M i
mi
M
2 i
wi
M
2 i
M z i
zi
i
i
mi M i
wi M i
i
i
i
用连续函数表示
m(M )M 2dM
Mz
0
0 m(M )MdM
超离心沉降法才能得到
13
4, 黏均分子量
用溶液黏度法测得的平均分子量为黏均分子量,定义为:
光散射法 Light scattering method, SAXS, SANS
黏度法 Viscosimetry,超速离心沉淀 Ultracentrifugal sedimentation method 及扩散法 Diffusion
质谱法,凝胶渗透色谱法 Gel permeation chromatography (GPC)
教学内容
第一节 聚合物分子量的统计意义 多分散性、 平均分子量种类 、多分散系数
第二节 聚合物分子量的测定方法 端基分析法、溶液依数性法、渗透压法、气相渗透法、黏度法
第三节 聚合物分子量分布的测定方法 分子量分布的研究方法、分子量分布的表示方法、分子量 分布的数据处理、GPC
1
教学目的:
通过本章的学习,全面理解和掌握各种统计平均分子量和分子量分布 的意义、表达式和分析测试方法及测试基本原理。
热力学方法 Thermodynamics
method
散射方法 Scattering method
动力学方法 Dynamic method
其它方法 Other method

何曼君《高分子物理》(第3版)笔记和课后习题考研真题详解

何曼君《高分子物理》(第3版)笔记和课后习题考研真题详解

何曼君《高分子物理》(第3版)笔记和课后习题(含考研真题)详解更多资料请在薇♥公重号精研学习网查找下载本书是何曼君编写的《高分子物理》(第3版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对何曼君编写的《高分子物理》(第3版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精选考研真题,培养解题思路。

本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

本书提供电子书及打印版,方便对照复习。

第1章概论1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章高分子的链结构2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章高分子的溶液性质3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章高分子的多组分体系4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章聚合物的非晶态5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章聚合物的结晶态6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章聚合物的屈服和断裂7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章聚合物的高弹性与黏弹性8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章聚合物的其他性质9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章聚合物的分析与研究方法10.1复习笔记10.2课后习题详解10.3名校考研真题详解。

高分子物理-高分子的溶液性质

高分子物理-高分子的溶液性质
第三章 高分子的溶液性质
• 一、高分子溶液:高聚物以分子状态分散在溶剂中所形成
的均相混合物称为高分子溶液。
• 稀溶液:浓度在1%以下的,粘度很小而且很稳定,
在没有化学变化的条件下其性质不随时间而变。
• 亚浓溶液:高分子线团互相穿插交叠,整个溶液中
的链段分布趋于均一。
• 浓溶液:纺丝溶液,浓度一般在15%以上,其粘度
• ② δ1 和δ2 越接近, △H 越小,则越能满
足 △FM <0的条件,能自发溶解
4. 非极性聚合物溶度参数的确定
• ①查表 • ②实验测定——稀溶液粘度法 • ③计算(F:基团的摩尔引力常数)
Fi Fi
2
i
V
i M0

V——重复单元的摩尔体积 M0——重复单元的分子量 ρ——密度
4. 高分子溶液与理想溶液的偏差
• ①高分子间、溶剂分子间、高分子与溶剂分
子间的作用力不可能相等,因此溶解时,有 热量变化 。
• ②由于高分子由聚集态→溶剂中去,混乱度
变大,每个分子有许多构象,则高分子溶液 的混合熵比理想溶液要大得多。
二、 Flory-Huggins高分子溶液理论
Flory和Huggins从液体的似晶格模型出发,用 统计热力学的方法,推导出了高分子溶液的 混合熵,混合热和混合自由能的关系式。
• 推导中的假设:
• ①溶液中分子的排列也象晶体一样,是晶格
排列,每个溶剂分子占一个格子,每个高分 子占有相连的x个格子。所有高分子具有相 同的聚合度
• ②高分子链是柔性的,所有构象具有相同的
能量。
• ③溶液中高分子链段是均匀分布的(即链段
占有任意一个格子的几率相等)
3.2.1. 高分子的混合熵 SM
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
V
聚合物各结构基团的摩尔引力常数 重复单元的摩尔体积
O 668.2 C O CH3
PMMA
CH2
269
C
303.4 303.4
65.6 n
CH3
F=269+65.6+668.2+303.4*2=1609.6
V=M/=(5C+2O+8H)/1.19=100/1.19

F V
19.154
用交联聚合物,使其在不同溶剂中达到溶胀 平衡后测其溶胀度,溶胀度最大的溶剂的溶 度参数即为该聚合物的溶度参数。
(2) 粘度法
即按照溶度参数原则,溶度参数越是接近相溶性越好,相 溶越好溶液粘度最大。所以把高分子在不同溶剂中溶解, 测其粘度,粘度最大时对应的溶剂的溶度参数即为此高分 子的溶度参数。
(3) 计算法



2、对于非极性高聚物,溶解过程一般是吸热 的,故,只有在|⊿H|﹤T |⊿S |时,才能溶 解。即,升高温度或减小混合热才能使体系自 发溶解。混合热可用小分子的溶度公式 (Hildebrand公式)来计算: ⊿H=VΦ1Φ2Δ[(ΔE1/V1)1/2–(ΔE2/V2)1/2]2 Φ是体积分数,V是体积,1代表溶剂,2代表溶质, ΔE/V是内聚能密度,混合热是由于两种物质内 聚能密度不等引起的。内聚能密度的平方根称 为溶度参数δ= (ΔE/V)1/2。则: ⊿H/VΦ1Φ2=(δ1- δ2)2
对于极性高聚物,不但要求它与溶剂溶度
参数中的非极性部分接近,还要求极性部分 接近,才能溶解。 例如,PS是弱极性的, δ=9.1,溶度参数在 8.9-10.8的甲苯、苯、氯仿、苯胺等极性不大 的溶剂都可以溶解它,而溶度参数为10的丙 酮由于极性太强,不能溶解它。
如何测定溶度参数
(1) 溶胀法:

第二节 高分子溶液的热力学性质

理想液体: 溶液中溶质分子间、溶剂分子间和溶剂溶 质分子间的相互作用能均相等,溶解过程没有体积的变 化,也没有焓的变化。 理想溶液实际上是不存在的,高分子溶液与理想溶液 的偏差在于两个方面:一是溶剂分子之间、高分子重复 单元之间以及溶剂与重复单元之间的相互作用能都不相 等,因此混合热不为零;二是高分子具有一定的柔顺性, 每个分子本身可以采取许多构象,因此高分子溶液中分 子的排列方式比同样分子数目的小分子溶液的排列方式 多,即其混合熵高于理想溶液的混合熵。
4.1.3 溶剂的选择


1、对于非晶高聚物,相似相溶和极性相近 两个原则 2、对于非极性结晶高聚物,溶剂的选择比 较困难,其溶解包括两个过程,其一是结 晶部分的熔融,其二是高分子与溶剂的混 合,都是吸热过程,⊿H比较大,即使溶度 参数接近,也很难满足⊿F<0的条件,必 须提高温度,使T⊿S增大,例如PE须在 120 º C以上才能溶于四氢萘、对二甲苯等 非极性溶剂;PP要在135 º C才能溶于四氢 萘。
4.2.2 Flory温度(θ温度)




对于稀溶液, φ 2 1,则 ln φ 1=ln(1- φ 2)=-φ 2-1/2 φ 22… Δμ 1 =RT[(-1/x)φ 2+(χ1-1/2)φ 22] 上式中前一项为理想溶液中溶剂的化学位变化,后一项为非 理想部分。 Δμ 1E= RT(χ1-1/2)φ 22 , Δμ 1= Δμ 1i +Δμ 1E 由此可以看出,高分子溶液即使浓度很稀也不能看作理想溶 液,必须是χ1=1/2的溶液才能使Δμ 1E=0,从而使高分子溶 液符合理想溶液的条件。当χ1<1/2时,Δμ 1E <0,使溶解 过程的自发趋势加大。此时的溶剂称为高分子的良溶剂。 Flory认为高分子在良溶剂中,高分子链段与溶剂的作用能远 远大于高分子链段之间的作用能,使高分子链在溶液中扩展, 这样高分子链的许多构象不能实现。因此除了由于相互作用 能不等引起的非理想部分以外,还有构象数减少引起的非理 想部分。

3、极性结晶高聚物,如果能与溶剂生成氢键, 即使温度很低也能溶解,因为氢键的生成是放 热过程。例如尼龙在室温可溶于甲酸、乙酸、 浓硫酸和酚类溶剂;涤纶树脂能溶于酚类;聚 甲醛能溶于六氟丙酮水合物。 4、混合溶剂, δ 混= Φ 1 δ 1 + Φ 2 δ 2,有时 混合溶剂的溶解能力强于纯溶剂。
超链接:高聚物的溶解溶胀过程
4.1.2 高聚物溶解过程的热力学解释


在恒温恒压下,溶质能自发溶解于溶剂的条件 是混合自由能为负.⊿F= ⊿H-T⊿S≤0;而 溶解过程是分子的排列趋于混乱,熵变为正值, 因此混合自由能的正负取决于混合热的正负和 大小。 1、对于极性高聚物与极性溶剂,溶解时放热 ⊿H﹤0,体系的⊿F ﹤0,溶解过程能够自发 进行。
4.2.1 Flory-Huggins高分子溶液理论



1、高分子溶液混合熵 对于理想溶液,其混合熵为: Δ SMi=-k(N1lnX1+N2lnX2),N是分子数目,X是摩尔分 数,k是玻兹曼常数,1指溶剂,2指溶质。 对于高分子溶液,其混合熵为: Δ SM=-R(n1lnφ 1+n2ln φ 2 ) 二者比较体积分数代替了摩尔分数。如果溶质分子和溶剂分子 体积相等,则二式一样,由于一个高分子在溶液中起不止一个 小分子的作用,因此由下式计算得到的混合熵比前式大得多。 2、高分子溶液混合热 Δ HM=RTχ1n1 φ 2 , χ1 称为Huggins参数,它反映高分子与 溶剂混合时相互作用能的变化。 χ1k T的物理意义表示当一个 溶剂分子放到高聚物中去时所引起的能量的变化。
第四章 高分子的溶液性质
高 聚 物 溶 液 分 类
高聚物溶液从广义上包括稀溶 液(1%以下)、浓溶液(纺丝 液、油漆等)、冻胶、凝胶、增 塑高分子、共混高分子等
研究
高分子溶液是研究单个高分子链结构的最佳方法
应用
粘合剂
涂料
Hale Waihona Puke 溶液纺丝增塑共混


第一节 高聚物的溶解 4.1.1高聚物溶解过程的特点 1、高分子的溶解过程 溶剂分子渗入高 分子内部,使之溶胀,然后是高分子均 匀分散在溶剂中。形成均相体系。对于 交联的高分子则只能发生溶胀,不会溶 解。 分子量大的溶解度小,交联度大的溶 胀度小。非晶高分子易于溶解。
3、高分子溶液的混合自由能






Δ FM= Δ HM-TΔ SM=RT(n1ln φ 1+n2ln φ 2+ χ1n1φ 2) 溶液中溶剂的化学位变化和溶质的化学位变化Δμ 1、 Δμ 2分别为: Δμ 1 =RT[lnφ 1+(1-1/x)φ 2+χ1φ 22] Δμ 2 = RT[lnφ 2+(x-1)φ 1+xχ1φ 12] lnp1/p10= Δμ 1/RT= ln(1-φ 2)+(1-1/x)φ 2+ χ1φ 22 注意:由高分子溶液蒸汽压p1和纯溶剂蒸汽压p10的测 量可以估算出高分子-溶剂的相互作用参数χ1 ,按上式, 应与高分子溶液浓度无关,但试验事实却并不如此。
相关文档
最新文档