生物化学光合作用优秀课件

合集下载

高中生物“光合作用”高清PPT课件

高中生物“光合作用”高清PPT课件
质。
十二烷基硫酸钠法测量暗反应
的速率
利用十二烷基硫酸钠法可以测量暗反应过程中产生的产物氧气,从而了解暗
反应的速率。
暗反应中的碳同化作用
暗反应中,通过碳同化作用,吸收的二氧化碳转化为3-磷酸甘油醛,进一步合成葡萄糖和其他有机物
质。
全过程的化学反应方程式
光合作用的全过程涉及多个反应,如光反应和暗反应,可以用化学反应方程
式总结。
氧气释放️
固定二氧化碳
光合作用提供了大部分地
光合作用是地球上氧气的
光合作用将大量的二氧化
球上生物所需的能量,是
主要来源,维持了全球生
碳转化为有机物质,帮助
生态系统的基础。
物的生存。
抵消温室气体效应。
叶绿体结构与光合作用
叶绿体结构
类囊体膜
基质
叶绿体是光合作用发生的主要
类囊体膜是叶绿体内部光反应
基质是叶绿体内部暗反应发生
位置,其中的叶绿体色素吸收
发生的地方,其中包含光合色
的区域,其中进行碳同化作
光能。
素。
用。
光合作用的基本过程
1
光反应
在光反应中,光能被吸收并转化为化
暗反应
在暗反应中,通过碳同化作用,使用
光反应产生的能量和载体,将二氧化
碳转化为有机物质。
2
学能,产生氧气和能量富集的载体。
光合色素的种类和作用
1
叶绿素
叶绿素是最重要的光合色素,能够吸收红、橙、黄、蓝、紫色光线。
2
类胡萝卜素
类胡萝卜素是橙色和黄色的色素,能够吸收蓝、绿色光线。
3
叶绿素b
叶绿素b是叶绿素家族的成员,能够吸收蓝、橙红色光线。
4

高中生物《光合作用》公开课PPT课件

高中生物《光合作用》公开课PPT课件

叶绿体
光合作用的主要场所,是一种含 有绿色色素(叶绿素)的细胞器 ,能够捕获光能并将其转化为化 学能。
其他细胞器
在某些低光条件下,一些植物细 胞可以在细胞质中进行光合作用 ,但效率较低。
光合作用的条件
01
02
03
光照
光合作用需要光照作为能 量来源,不同植物对光照 强度的需求不同。

光合作用需要水作为反应 物之一,参与光解和碳固 定过程。
光合作用的能量转化过程
总结词
阐述光合作用中能量转化的过程,即光能转化为化学能的过 程。
详细描述
光合作用中,植物吸收光能,将光能转化为化学能,储存在 ATP和NADPH中。这个过程是通过叶绿体中的色素分子吸收 光能后,激发电子从基态跃迁到激发态,再传递给受体分子 ,最终将光能转化为化学能。
光合作用的产物和产物转化
光合作用的发现历程
要点一
总结词
光合作用的发现历程漫长而曲折,经过多位科学家的努力 才揭示了其本质。
要点二
详细描述
光合作用的发现历程可以追溯到17世纪,当时荷兰科学家 范·海尔蒙特通过实验发现植物生长需要水分和阳光。随后 的科学家如普利斯特利、英格豪斯和萨克斯等进一步揭示 了光合作用的机制和重要性。直到20世纪,美国科学家卡 尔文采用放射性同位素标记法,最终确定了光合作用中二 氧化碳的固定途径和产物。这些科学家的贡献使我们对光 合作用有了深入的理解,为现代农业和生物技术的发展奠 定了基础。
二氧化碳
光合作用需要二氧化碳作 为另一个反应物,参与碳 的固定过程。
光合作用的调节机制
光敏色素
植物体内的一种蛋白质,能够感应光 照强度并调节光合作用的速率。在光 照较强时,光敏色素会抑制光合作用 的速率;在光照较弱时,光敏色素则 会促进光合作用的速率。

光合作用优秀课件

光合作用优秀课件
3
光合作用可以促进植物生长,增加植被覆盖率,改善生态环境
4
生物技术
4
3
生物固碳:利用光合作用原理,固定大气中的二氧化碳,减缓温室效应
生物制药:利用光合作用原理,生产生物制药,如抗生素、疫苗等
2
1
基因工程:利用光合作用原理,改造植物基因,提高作物产量和质量
生物燃料:利用光合作用原理,生产生物燃料,如乙醇、生物柴油等
5
光合作用的未来发展
光合作用研究的新进展
A
光合作用效率的提高:通过基因编辑、生物工程等方法,提高光合作用效率,降低能源消耗
B
光合作用机制的研究:深入研究光合作用的分子机制,揭示光合作用的奥秘
C
人工光合作用:通过模拟光合作用,实现人工合成有机物,为未来能源提供新的途径
D
光合作用与环境:研究光合作用对全球气候变化、生态系统平衡的影响,为环境保护提供科学依据
温度对光合作用酶活性的影响:温度会影响光合作用酶的活性,从而影响光合作用的效率
二氧化碳浓度
二氧化碳是光合作用的主要原料之一
01
二氧化碳浓度过低,光合作用速率降低
03
二氧化碳浓度越高,光合作用速率越快
02
二氧化碳浓度过高,光合作用速率也会降低
04
4
光合作用的应用
农业生产
光合作用是农业生产的基础,为植物生长提供能量
挑战:光合作用机理的复杂性,需要深入研究
挑战:气候变化对光合作用的影响,需要研究如何应对
机遇:光合作用研究的突破,可能带来农业、能源等领域的革命性变革
机遇:新技术的发展,如基因编辑、合成生物学等,为光合作用研究提供新的手段
谢谢
02
光合作用是地球上所有生命存在的基础,因为它为所有消费者提供了食物和氧气。

《光合作用》PPT课件

《光合作用》PPT课件
A.营养组织
B.机械组织
C.保护组织
D.分生组织
5.“枯木逢春”的意思是枯干的树到了春天,又恢复了活力,“枯树”仍能生长的原因是
它具有( A )
A.分生组织
B.输导组织
C.营养组织
D.保护组织
C 6 . 下 列 各 项 中 不 属 于 人 体 组 织 的 是 (

A.上皮组织
B.肌肉组织
C.分生组织
上皮组织
分布:覆盖在身体内外和管腔表面 功能:保护、 排泄、分泌、 吸收
皮肤
小肠上皮
血液 功能:营养、 支持、保护、连接
骨骼上的肌肉
心脏壁上的肌肉
胃壁上的肌肉
肌肉组织
组成:由肌细胞构成 功能:能收缩和舒张
神经组织 组成:主要由神经细胞构成 功能:能够接受刺激,产生并传导兴奋
动物的几种主要组织及其分布与功能
动物组织 上皮组织
特点、分布
细胞排列紧密,细胞间质少 皮肤,口腔,胃,肠等处
保护作用 分泌作用
功能
结缔组织 肌肉组织 神经组织
分布广,细胞间隙大,细胞 间质多 骨组织,血液,脂肪组织, 肌腱
平滑肌——胃,肠等管壁 骨骼肌——附着在骨骼上 心肌——心脏特有
由神经细胞构成 大脑,脊髓等
细胞分化形成组织
-.
?
细胞分裂: 细胞一分为二,成为两个相似的 新细胞。
在生物体生长发育过程中,其中 大多数细胞发生了变化,形成了 多种多样的细胞。
细胞的分化: 在细胞分裂和生长的基础上, 进一步形成不同形态和结构的细 胞群的过程。
分裂——细胞数目增多 生长——细胞体积增大 分化——细胞种类增多
D.神经组织
THANKS

七年级生物光合作用优秀课件

七年级生物光合作用优秀课件
光合作用反应式
二氧化碳 + 水 → 有机物(储存能 量) + 氧气
光能转化与储存过程
01
02
03
光能吸收
叶绿体中的色素吸收光能。
光能转化
吸收的光能转化为ATP中 活跃的化学能。
光能储存
ATP中活跃的化学能转化 为有机物中稳定的化学能。
植物在自然界中地位
生产者
植物通过光合作用制造有 机物,为自身提供营养物 质和能量,同时为其他生 物提供食物来源。
02
详细解释光合色素如何吸收光能,并将能量传递给反应中心的
过程,包括光的捕获、传递和转化。
光系统I和光系统II的功能与差异
03
阐述光系统I和光系统II在光能吸收和传递中的不同作用,以及
它们之间的协同作用。
水光解产生氧气和还原剂过程
水的光解过程
还原剂的生成与作用
详细解释水在光反应中的光解过程, 包括水的氧化和还原反应。
结论
见光部分可以进行光合作用,产生淀粉遇碘变蓝色。
数据处理及误差来源分析
数据处理
记录实验过程中的各项数据,如光照时间、温度、湿度等,并对数据进行统计分析。
误差来源
可能由于光照不均匀、温度波动、操作不当等因素导致实验误差。
实验注意事项及改进方向
注意事项 1. 实验前需对植物进行充分暗处理。
2. 酒精脱色时要隔水加热,避免酒精燃烧。
七年级生物光合作 用优秀课件
目 录
• 光合作用基本概念与意义 • 叶绿素与光合色素 • 光反应过程详解 • 暗反应过程详解 • 光合作用与农业生产关系探讨 • 实验:验证绿叶在光下制造淀粉实验设计
01
光合作用基本概念与 意义
光合作用定义及反应式

光合作用ppt免费课件

光合作用ppt免费课件
详细描述
光合作用的能量转换是植物吸收光能后,将这个能量转化为化学能,存储在葡萄糖中。这个过程是地球上最重要 的能量转换过程之一,它为整个生物圈提供了基础能量来源。
光合作用中的物质转换
总结词
光合作用中的物质转换是指植物在光合作用过程中,将二氧化碳和水等无机物质转化为葡萄糖和氧气 的有机物质的过程。
详细描述
温度对光合作用的影响主要体 现在酶的活性上。在一定的温 度范围内,光合作用速率随温 度的升高而加快;但当温度过 高时,光合作用速率会降低。
水是光合作用的原料之一,水 分不足会导致光合作用速率下 降。同时,植物通过蒸腾作用 散失水分,这也会对光合作用 产生影响。
提高光合作用效率的方法
优化光照条件
保持适宜的水分供应
详细描述
光合作用是地球上最重要的化学反应 之一,它利用光能将无机的二氧化碳 和水转换成有机物质,并释放氧气, 为生物圈提供食物和氧气。
光合作用的重要性
总结词
光合作用为生物圈提供食物、氧气和能量,维持生态平衡和生物多样性。
详细描述
光合作用是地球上所有生物的食物来源,它产生的有机物质是生物体生存和繁 衍的基础。同时,光合作用释放的氧气也是生物呼吸所需的重要气体,对维持 生态平衡和生物多样性具有重要意义。
在光合作用中,植物通过一系列的生化反应,将吸收的二氧化碳和水等无机物质转化为葡萄糖和氧气 等有机物质。这个过程需要叶绿体中的叶绿素作为催化剂,并需要光能提供能量。
04
光合作用的效率与影响因素
光合作用的效率
光合作用是植物、藻类和 某些细菌利用光能将二氧 化碳和水转化为葡萄糖, 并释放氧气的过程。
光合作用的效率取决于多 种因素,包括光照强度、 光质、温度、水分、二氧 化碳浓度等。

光合作用ppt课件

光合作用ppt课件

生物质能转化
利用光合作用将植物生物质转化为可再生能源,如生物柴油、生 物燃气等。
光合细菌的应用
利用光合细菌在厌氧或微好氧条件下产生氢气等能源物质,为可再 生能源开发提供新的途径。
光合作用产物的利用
利用光合作用产物如乙醇、丁醇等作为燃料或化工原料,实现能源 的可持续利用。
环境保护与生态修复
1 2 3
详细描述
光合作用是地球上最重要的化学反应之一,它利用光能将无机物转化为有机物 ,为生物界提供食物和氧气。这个过程需要光、水、二氧化碳和光合色素等基 本条件。
光合作用的重要性
总结词
光合作用对维持地球生态平衡和生物生存具有重要意义。
详细描述
光合作用产生氧气,为地球上的生物提供呼吸所需的氧气, 同时通过固定太阳能,为生物提供能量来源,促进生物的生 长发育。此外,光合作用还对维持地球气候稳定、减少温室 气体等具有重要作用。
光合产物的运输与分配
光合作用过程中产生的糖类、蛋白质 、脂肪等有机物。
光合产物通过韧皮部运输到植物体的 各个部位,用于维持植物体的正常生 长和发育。
光合产物的利用
光合产物被植物体利用,用于合成细 胞壁、细胞膜等结构,以及作为能量 来源。
03
CHAPTER
光合作用的场所和分子机制
光合作用的场所
01
提高作物产量
增加光合作用效率
通过改良作物品种,提高其光合 作用效率,从而增加干物质积累
,实现产量的提高。
合理密植
通过合理安排作物种植密度,确保 群体结构有利于光合作用的进行, 实现产量最大化。
优化施肥管理
合理施肥,特别是增施氮肥,有助 于提高光合作用效率,进而提高作 物产量。
生物能源的开发与利用

光合作用ppt课件

光合作用ppt课件
A、③①②⑥⑤④ B、④③②⑤①⑥ C 、②③④⑤①⑥ D、②④③⑤⑥①
C 2、如果把韭黄移到阳光下生长,过几天以后,
韭黄将( ) A、不变 B、死亡 C、变绿 D、变白
A 3、氧气的性质是( )
A、能使快要熄灭的卫生香剧烈燃烧起来 B、能使火熄灭 C、能使剧烈燃烧的竹签火苗变小 D、能使熄灭的火复燃
• 海尔蒙特结论:水是植物增重的物质 • 普利斯特利结论:植物能够“净化”空气 • 英格豪斯结论:绿色植物只能在光下才能
净化空气,能够释放气体。 • 萨克斯实验证明:绿色植物不仅能释放氧
气,还能合成淀粉等物质
• 方法步骤: 1、暗处理
• 目的:耗尽叶片中 原有的淀粉
• 方法步骤: 2、遮光处理
• 目的:设置对照
• 方法步骤: 3、照光
• 方法步骤:4、酒精水浴加热脱色 • 目的:对叶片进行脱色, 脱去叶片中的叶绿素 • 现象:叶片由绿色变为
黄白色,酒精变为绿色
• 方法步骤: • 5、清水漂洗 • 6、碘液显色
• 滴加碘液
• 结论:光合作用的必须条件:

产物:
光 淀粉
• 请观看视频
绿色部分
白色部分
蓝色
黄白色
蓝色
黄白色
蓝色
黄白色
• 讨论: • 1、为什么银边翠、银边天竺葵的叶片边缘
不呈绿色? 不含叶绿素
• 2、分析实验结果,植物进行光合作用需要 什么物质? 叶绿素
• 3、光合作用的场所可能是绿叶细胞的哪里? 叶绿体
• 实验小结: • 探究实验的结果证实,银边翠等植物的叶
片,只有绿色部分在光下合成淀粉,显然 光合作用需要 叶绿素。
• 在绿色植物的细胞中,叶绿素存在于叶绿 体内,因此, 叶绿体 可能是光合作用的场 所。

光合作用优秀课件

光合作用优秀课件

光合作用优秀课件xx年xx月xx日contents •光合作用的基本概念•光合作用的作用和意义•光合作用的实验与案例分析•光合作用的实际应用•光合作用的未来研究方向目录01光合作用的基本概念光合作用的定义光合作用是地球上维持生态平衡的重要生物过程,也是地球上氧气的主要来源之一。

光合作用是植物生长和发育的基础,也是农业生产中提高产量和效益的关键环节。

光合作用是指绿色植物和一些藻类通过光合色素吸收太阳光能,将二氧化碳和水转化成有机物质,并释放氧气的过程。

光合作用主要在植物的叶绿体中进行,叶绿体是一种能够吸收和利用光能的有机小器官,可以将二氧化碳和水转化成氧气和葡萄糖等营养物质。

叶绿体主要分布在植物的叶子和茎秆中,是植物进行光合作用的重要器官,也是植物进行物质循环和能量转化的重要场所。

光合作用的主要场所光合作用主要包括三个阶段:原初反应、电子传递和光合磷酸化。

原初反应是光合作用的第一步,是指植物利用光能将二氧化碳和水转化成有机物质的过程,其中包括光能的吸收、传递和转化。

电子传递是光合作用的第二步,是指植物利用光能将二氧化碳还原成有机物质的过程,其中包括电子的传递和氧化还原反应的进行。

光合磷酸化是光合作用的第三步,是指植物将光能转化为化学能的过程,其中包括ATP的合成和磷酸基团的转移。

光合作用是植物生长和发育的基础,也是农业生产中提高产量和效益的关键环节。

光合作用的基本过程02光合作用的作用和意义光合作用通过吸收二氧化碳并释放氧气,维持了大气中二氧化碳和氧气的平衡,对生物圈的气候和生态环境的稳定具有重要意义。

维持大气成分的稳定光合作用是植物、蓝细菌和某些原生生物使用光能将二氧化碳和水转化为糖和氧的重要生物过程,对于地球上的物质循环和能量流动具有重要意义。

促进地球上的物质循环光合作用与生物圈提供能量光合作用是植物能量代谢的基础,通过光合作用植物可以制造出有机物质,为植物的生长提供能量。

合成有机物光合作用过程中,植物利用光能将二氧化碳和水转化为葡萄糖、淀粉等有机物质,为植物的生长提供所需的营养物质。

2024版《光合作用》ppt优秀课件

2024版《光合作用》ppt优秀课件
目的
通过本课件的学习,使学生了解光合作用的基本概念、原理、过程和意义,培养学生的科学素养和环保意识,提 高学生的综合素质和实践能力。
光合作用的重要性
维持地球生态平衡
光合作用是地球上生物圈的重要组成 部分,它能够将太阳能转化为化学能, 并释放出氧气,为地球上的生物提供 生存条件。
促进农业生产
推动新能源发展
光能使水分子裂解为氧气、质子和电子,氧气释放到大气中。
ATP和NADPH的生成
03
通过光合磷酸化和电子传递链,生成ATP和NADPH,为后续暗
反应提供能量和还原力。
暗反应机制
01
02
03
二氧化碳的固定
二氧化碳与五碳糖结合, 生成不稳定的六碳中间产 物。
还原反应
利用光反应产生的ATP和 NADPH,将六碳中间产 物还原为三碳糖。
光合作用与生态系统的关系
深入研究光合作用与生态系统的相互作用关系,揭示光合作用在生态系统中的功能和调 控机制,为生态系统的保护和恢复提供科学依据。
THANKS
感谢观看
其他环境因素对光合作用的影响
水分对光合作用的影响
矿质元素对光合作用的影响
水分是光合作用的原料之一,缺水会导致光 合作用速率下降。
一些矿质元素如氮、磷、钾等对光合作用有 重要作用,缺乏这些元素会导致光合作用减 弱。
空气污染对光合作用的影响
农业生产措施对光合作用的影响
空气污染中的有害物质如二氧化硫、氟化物 等会对叶绿体造成损害,影响光合作用进行。
随着人类对可再生能源的需求不断增 加,光合作用在新能源领域的应用前 景广阔,如利用光合作用原理开发太 阳能电池等。
光合作用在农业生产中具有重要作用, 通过提高作物的光合效率,可以增加 作物产量和品质,提高农业生产效益。

高中生物《光合作用》公开课PPT课件

高中生物《光合作用》公开课PPT课件
光合作用是地球上最重要的化学反应之一,为生物提供食物和氧气,并影响全球气 候变化。
光合作用分为光反应和暗反应两个阶段,其中光反应需要光能,而暗反应则不需要 。
光反应过程
光反应在叶绿体囊状结构薄膜上进行 ,利用光能将水分解为氧气、电子和 能量。
这些电子随后被传递给NADP+,形 成NADPH,同时释放出能量,供暗 反应使用。
叶绿体中的色素吸收光能后,将能量 传递给水分子,使其分解为氧气和电 子。
暗反应过程
暗反应在叶绿体基质中进行, 利用光反应产生的能量和 NADPH将二氧化碳转化为有 机物。
二氧化碳通过气孔进入叶组织 细胞,并被固定为三碳化合物 。
三碳化合物在NADPH和ATP的 作用下,经过一系列反应,最 终转化为糖类和氨基酸等有机 物。
详细描述
光合作用是地球上最重要的化学 反应之一,它为生物提供食物和 氧气,并维持着地球上所有生物 的生存。
光合作用的重要性
总结词
光合作用是地球上生命存在的基础, 它为人类和其他动物提供食物和氧气 ,同时还有助于维持地球的生态平衡 。
详细描述
没有光合作用,地球上的生命将无法 生存。光合作用将太阳能转化为化学 能,为生物提供能量来源,并释放氧 气供呼吸。
提高作物产量
通过合理利用光能,优化作物的 光合作用过程,可以提高作物的
产量。
品质改良
通过调节作物的光合作用,可以改 善作物的品质,提高农产品的营养 价值。
适应性种植
根据不同地区的光照条件,选择适 宜的作物种植,可以提高农业生产 效益。
光合作用在环境保护中的应用
空气净化
通过植树造林、绿化城市等措施 ,利用植物的光合作用吸收二氧 化碳、释放氧气,有助于改善空

《第五节-光合作用》42张PPT课件

《第五节-光合作用》42张PPT课件

-
10

绿叶
体绿
色 素
素 a




400
叶 绿 素 b
类 胡 萝 卜 素
-
500
600
波长/nm
11
700
小叶
胡萝卜素 (橙黄色)
结绿
体 中
色素
类胡萝卜素 1/4 叶绿素
叶黄素 (黄色) 叶绿素a (蓝绿色)

3/4
叶绿素b (黄绿色)
色 吸收可见的
类胡萝卜素主要
素 太阳光
吸收蓝紫光
叶绿素主要吸收红 光和蓝紫光
-
20
光系统Ⅰ
光能
叶绿素、类胡萝卜素蛋白质复合体 光系统Ⅱ 提供电子
叶绿素中低能电子被激发并呈高 能状态,色素缺失电子
NADP+与H+接受2个高能电 子生成NADPH
-
21
类囊体膜
H2O

[H]
1.光反应阶段
Pi +ADP ATP
场所:叶绿体内的类囊体薄膜上
条件 :光、色素、酶、 H2O 光能
水的光解:H2O
(1)提取光合色素过程中,关键是迅速 (2)滤液细线要细,直,齐,颜色深是使本实验的结 果明显,清晰的关键 (3)用纸层析法分离色素时,特别要注意滤液细线 一定要高于层析液
2 从上到下滤纸条上有几条色素带?分 别呈什么颜色?分别是哪种光合色素?
-
8
-
9
叶片为什么往往是绿色的呢?
叶绿体中的色素主要吸收红光和蓝紫光
充分迅速研磨 过滤 色素滤液
棉塞封口
得到色素浓度最大的溶液和防止乙醇挥发 防止溶液挥发以及色素被空气氧化

(完整版)光合作用优秀课件

(完整版)光合作用优秀课件
过程简述
光合作用可以简单分为光反应和暗反应两个阶段。在光反应阶段,植物吸收光 能,将水分解为氧气和还原氢;在暗反应阶段,植物利用还原氢和大气中的二 氧化碳,在酶的催化下合成有机物。
光反应与暗反应区别联系
区别
光反应发生在叶绿体类囊体薄膜上, 需要光,产物为氧气、还原氢和ATP; 暗反应发生在叶绿体基质中,不需要 光,产物为有机物。
联系
光反应为暗反应提供还原氢和ATP,暗 反应为光反应提供ADP和Pi。二者紧密 联系,共同完成光合作用。
能量转化与物质循环过程
能量转化
光合作用实现了光能向化学能的转化。在光反应阶段,植物吸收光能并将其转化为 ATP中的化学能;在暗反应阶段,这些化学能被用来合成有机物。
物质循环
光合作用参与了自然界的碳循环。植物通过光合作用将大气中的二氧化碳转化为有 机物,同时释放出氧气。这些有机物在植物体内被利用或转化为其他生物可利用的 物质,从而实现了碳在生物圈中的循环。
(680nm)的吸收和传递;PSI产生的还原力用于NADPH的形成,而
PSII产生的氧化力用于水的光解和质子的释放。
电子传递链载体和路径选择
电子传递链载体
包括质体醌、细胞色素b6f复合体、质蓝素(PC)等。
路径选择
在光合作用中,电子从PSII传递到PSI主要有两条路径,一是通过细胞色素b6f复合体的循环电子传递路径,二是 通过PSI的直接电子传递路径。不同植物和环境下,两条路径的选择有所差异。
除叶绿素外的其他色素,如类胡萝卜素、藻胆素等。
对光合作用影响
辅助色素能够吸收不同波长的光,扩大光合作用的光谱范围;同时,它们还能保护叶绿素免受强光破坏。
叶绿素含量测定方法
分光光度法
利用分光光度计测定叶绿素提取液在特定波长下的吸光度,根据标准曲线计算叶绿素含 量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)环式光合磷酸化:环式电子循环流动过程中, 产生质子梯度,驱动ATP的合成。这种形式的光合 磷酸化称为环式光合磷酸化。
环式光合磷酸化只涉及PSI,并且只生成ATP而无 NADPH和O2生成。这是当植物体内需要ATP时选择的 电子传递形式。
非循环光合磷酸化
环 式 光 合 磷 酸 化
3.ATP合成的部位——ATP酶
(2)环式电子传递: PSⅠ→ Fd →PQ→ Cyt b6f → PC → PSⅠ • 环式电子传递不发生H2O的氧化,也不形成NADPH,但
有H+的跨膜运输,每传递一个电子需要吸收一个光量 子。
PS



类囊体





类囊体腔
P S Ⅰ 中 的 电 子 传 递
非环式电子传递:
环式电子传递:
光系统Ⅱ的结构
PSI 和 PS Ⅱ 在 类 囊 体 膜 上 的 定 位
四、光合电子传递链
1. 光合链:光合作用的光反应是由光系统Ⅰ和光系 统Ⅱ这两个光系统启动的,两个光系统由电子传 递链连接起来。连接两个光反应的排列紧密而互 相衔接的传递电子的物质称为光合链
2. 组成:三个跨膜复合体(PSⅠ、PSⅡ、Cytb6f 复合体),以及质体蓝素(简写为PC)、铁氧还 蛋白(简写为Fd)和质体醌(简写为PQ)三个可 移动电子载体
光 + H2A (CH2O) +H2O+2A
二、光合作用的场所—叶绿体
被膜 外膜 内膜
间质 :(含可溶性蛋白质,酶类,DNA, RNA、核糖体等)---暗反应
类囊体 (基粒) 基粒片层 ---光反应 基质片层
叶绿体的结构
类囊体膜上蛋白质复合物
四、光合作用的两个阶段:
原 初 反 应 光能的吸收、传递与转换
作用中心 (反应中心):一对特殊 的叶绿素a分子和蛋白质组成的 复合体,发生光化学反应,将光 能转变为化学能。
光反应中心
天线色素分子
作用中心叶 绿素分子
电子传 递
电子受 体
共振能传递
天线色素分子
作用中心叶 叶绿素通过激子传递把吸收的能量汇集到作用中心 绿素分子
三、植物的光反应系统
1.光系统I (PSI)
3、光合链电子传递顺序
(1)非环式电子传递: H2O→PSⅡ→PQ→Cytb6f→PC→PSⅠ→Fd→FNR→NADP+ • 按非环式电子传递,每传递4个e-,分解2个H2O,释放1
个O2,还原2个NADP+,需吸收8个光量子,同时Cytb6f 复合体转运8个H+进类囊体腔,放氧复合体转运4个H+。
➢ 也称偶联因子或CF1-CFo 复合体
➢ 叶绿体的ATP酶与线粒体 的ATP酶结构十分相似, 都由两个蛋白复合体组 成:一个是突出于膜表 面 的 亲 水 性 的 “ CF1” ; 另一个是埋置于膜中的 疏水性的“CFo”。
4.光合磷酸化机理
化学渗透学说的现代模型(P.Mitchell)
• 光合磷酸化的机理:类似于氧化磷酸化 –PQ具有亲脂性,含量多,被称为PQ库,它可传递 电子和质子,而其它传递体只能传递电子。 –在光下,PQ在将电子向下传递的同时,又把膜外 基质中的质子转运至类囊体膜腔内。 –水在膜内侧分解也释放出H+,膜内H+浓度增高,则 膜内电位较“正”,膜子 浓度差(ΔpH),两者合称质子动力势,是光合 磷酸化的动力。 –H+沿着浓度梯度返回膜外时,释放的自由能催化 合成ATP。
生物化学光合作用优秀课件
第一节 概 述
一、概念:
光合作用是糖合成代谢的主要途径。是绿色植物、光合细 菌或藻类等将光能转变成化学能的过程,即利用光能, 由CO2、H2O、H2S等合成糖类化合物并释放出氧气(或其 他物质)的过程,称为光合作用。
CO2 CO2

+ H2O (CH2O) + O2
叶绿体
主要色素:叶绿素a,作用:接受收集的光能并参与 光化学反应
辅助色素:其它的叶绿素和类胡萝卜素、藻胆色素等。 作用:收集光能
二、光合单位
能发生光合作用的功能上独立 的单位。由大约几百个色素分子 和一些肽链构成。
天线色素(集光色素) :大部分 色素分子(全部叶绿素b和大部 分叶绿素a,类胡萝卜素和叶黄 素分子),起捕获光能的作用。
④PQ是双电子双H+传递体,它伴随电子传递,也把H+传递类囊 体膜内,造成类囊体内外的H+电化学势差,推动ATP形成。
两 个 光 系 统 的 协 同 作 用
五、 光合磷酸化
1.概念: 通过光激发导
致电子传递与 磷酸化作用相 偶联合成ATP 的过程,称为 光合磷酸化。
2.类型:
(1)非循环光合磷酸化:非环式电子传递过程中产 生的质子梯度,驱动ATP合成,并生成NADPH。这 种形式的光合磷酸化叫光合磷酸化。


(光能转换成电能)
(类囊体

膜上)
电子传递和 光合磷酸化
(电能 活跃的化学能)

反 应
碳素同化 (活跃的化学能
稳定的化学能) 基质中
第二节 光反应
一、光合色素
叶绿素类
类胡萝卜素 藻胆素
叶绿素类a (蓝绿色) 叶绿素类b (黄绿色) 其他
胡萝卜素(橙黄色)
叶黄素(黄色)
据作用分类
聚光色素(天线色素) 作用中心色素
• PSⅠ是一个跨膜复合物。 • P700是PSⅠ反应中心色素。 • PSⅠ的生理功能是吸收光
能,进行光化学反应,产生 强的还原剂,用于还原 NADP+,实现从PC到NADP+的 电子传递。
P
S Ⅰ 复 合 体
2.光系统II (PSII)
•PSⅡ是含有多亚 基的蛋白复合体。 •P680是PSⅡ反应 中心色素。 •功能:吸收光能, 进行光化学反应, 产生O2。
光合链的特点
①电子传递链主要由光合膜上的PSⅡ、Cytb6/f、PSI三个复合 体串联组成。
②电子传递有二处是逆电势梯度,这种逆电势梯度的“上坡” 电子传递均由聚光色素复合体吸收光能后推动,而其余电子 传递都是顺电势梯度进行的。
③水的氧化与PSⅡ电子传递有关,NADP+的还原与PSI电子传递 有关。
Cytb6f复合体(PQH2·PC氧还酶)
➢含有Cytf 、Cytb6 (2 个,为 电子传递循环剂)和Rieske铁硫蛋白(又称〔Fe-S〕R,是由 Rieske发现的非血红素的Fe蛋 白质)
➢主要催化PQH2的氧化和PC的 还原,并把质子从类囊体膜外 间质中跨膜转移到膜内腔中。 每传递一对电子,可转移4个 质子到类囊体腔。
相关文档
最新文档