沪科版九年级数学上册教案《反比例函数》

合集下载

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,这部分内容是在学生已经掌握了函数概念、正比例函数的基础上进行的。

本节内容主要介绍反比例函数的定义、性质和图像,以及如何利用反比例函数解决实际问题。

教材通过具体的例子引导学生理解反比例函数的概念,并通过大量的练习让学生熟练掌握反比例函数的性质和图像。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。

但是,反比例函数的概念和性质与正比例函数有很大的不同,学生可能难以理解和接受。

此外,学生的数学思维能力和解决问题的能力参差不齐,对于一些抽象的数学概念,部分学生可能难以理解。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够绘制反比例函数的图像,并运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图像的绘制和运用。

五. 教学方法1.讲授法:讲解反比例函数的概念和性质,引导学生理解反比例函数的本质。

2.示例法:通过具体的例子,让学生学会如何绘制反比例函数的图像,并运用反比例函数解决实际问题。

3.讨论法:学生进行小组讨论,让学生在讨论中掌握反比例函数的知识,提高学生的合作能力。

六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的概念、性质、图像等方面的内容。

2.练习题:准备一些关于反比例函数的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)讲解反比例函数的概念,引导学生理解反比例函数的本质。

通过具体的例子,让学生学会如何绘制反比例函数的图像。

3.操练(10分钟)让学生独立完成一些关于反比例函数的练习题,巩固所学知识。

沪科版九年级数学上册 反比例函数全章教案

沪科版九年级数学上册 反比例函数全章教案

相关资料反比例函数第一课时 反比例函数的意义一、教学目标1. 使学生理解并掌握反比例函数的概念2. 能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3. 能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1. 重点:理解反比例函数的概念,能根据已知条件写出函数解析式2. 难点:理解反比例函数的概念3. 难点的突破方法:(1) 在引入反比例函数的概念时,可适当复习一下第 11 章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解k(2) 注意引导学生对反比例函数概念的理解,看形式 y =,等号左边是函数 y ,等x号右边是一个分式,自变量 x 在分母上,且 x 的指数是 1,分子是不为 0 的常数 k ;看自变量 x 的取值范围,由于 x 在分母上,故取 x ≠0 的一切实数;看函数 y 的取值范围,因为 k ≠ 0,且 x ≠0,所以函数值 y 也不可能为 0。

讲解时可对照正比例函数 y =kx (k ≠0),比较二者解析式的相同点和不同点。

(3)y = k(k ≠0)还可以写成 y = kx -1 (k ≠0)或 xy =k (k ≠0)的形式x三、例题的意图分析教材第 46 页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第 47 页的例 1 是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例 1、例 2 都是常见的题型,能帮助学生更好地理解反比例函数的概念。

补充例 3 是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。

本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。

通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。

但是,对于反比例函数这一抽象的概念,学生可能难以理解。

因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。

4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。

六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。

2.教学素材:准备一些实际问题,让学生运用反比例函数解决。

3.教学设备:投影仪、计算机、黑板等。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。

沪科版九年级数学上册教学设计:21.5反比例函数反比例函数的概念

沪科版九年级数学上册教学设计:21.5反比例函数反比例函数的概念
2.掌握反比例函数图像的特征,如对称性、渐进线等,是学习的难点。
-对于图像的对称性和渐进线等抽象概念,学生可能难以直观理解,需要借助图形和动态演示来辅助教学。
-教师应设计具有层次性的练习题,帮助学生逐步攻克这一难点。
3.建立反比例函数模型解决实际问题,是应用上的难点。
-学生在从实际问题中抽象出反比例关系时,可能会感到困难,需要教师的引导和案例学习。
(三)学生小组讨论
在小组讨论环节,我会将学生分成小组,并分配不同的任务。每个小组需要完成以下任务:
-分析给定的实际情境,识别反比例关系。
-构建相应的反比例函数模型,并解释模型中各参数的意义。
-讨论反比例函数图像的特征,并尝试解释这些特征在实际情境中的含义。
我会巡回指导,观察学生的讨论情况,并提供必要的帮助。讨论结束后,每个小组将分享他们的发现和结论,我会对每个小组的表现进行点评和总结。
五、作业布置
为了巩固学生对反比例函数的理解,以及提高他们运用知识解决实际问题的能力,我将布置以下作业:
1.基础巩固题:
-完成课本第21.5节后的练习题1、2、3,重点在于反比例函数的定义和图像绘制。
-选择两个现实生活中的例子,分别建立反比例函数模型,并解释模型中各参数的物理意义。
2.实践应用题:
-根据课堂上分析的案例,自行设计一个反比例函数相关的实际问题,要求包含至少两个变量,并运用反比例函数知识解决。
在这个环节中,我会强调以下几点:
-引导学生发现并描述数量之间的变化规律。
-促使学生思考如何用数学语言来表述这种规律。
-为学生提供直观的体验,帮助他们理解反比例函数的直观意义。
(二)讲Байду номын сангаас新知
在讲授新知的环节,我会正式介绍反比例函数的定义和表达式。我会从之前的实例出发,解释反比例函数的一般形式y = k/x,并强调k ≠ 0的条件。我会用图示和动态演示来解释k的物理意义,以及它如何影响反比例函数的图像。

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要介绍了反比例函数的定义、性质及图象。

通过本节课的学习,使学生能够理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了函数的概念、一次函数和二次函数的知识,具备了一定的函数基础。

但反比例函数的概念和性质相对较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生通过实例感受反比例函数的特点,培养学生的抽象思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察实例,引导学生发现反比例函数的规律,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生学习反比例函数的兴趣,培养学生积极探究的精神。

四. 教学重难点1.反比例函数的概念及其性质。

2.反比例函数图象的特点。

五. 教学方法1.情境教学法:通过观察实例,引导学生发现反比例函数的规律。

2.启发式教学法:在教学过程中,引导学生积极思考,培养学生的抽象思维能力。

3.小组合作学习:鼓励学生之间相互讨论、交流,共同探究反比例函数的知识。

六. 教学准备1.教学课件:制作反比例函数的教学课件,包括实例、图象等。

2.教学素材:准备一些与反比例函数相关的实例,如广告单、报纸等。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)利用实例引入反比例函数的概念,如广告单上的优惠券、报纸上的广告等。

引导学生观察实例中的数量关系,提出问题:“这些实例中是否存在某种数量关系?它们之间有什么联系?”2.呈现(15分钟)呈现反比例函数的定义和性质,通过讲解和示范,使学生理解反比例函数的概念。

同时,展示反比例函数的图象,让学生观察图象的特点。

3.操练(15分钟)让学生分组讨论,分析实例中的数量关系,找出反比例函数的规律。

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

教材通过生活中的实例引入反比例函数的概念,接着引导学生探究反比例函数的性质,最后通过例题和练习题巩固所学知识。

二. 学情分析九年级的学生已经学习了函数的基本概念和性质,具备了一定的函数知识基础。

但反比例函数的概念和性质与正比例函数有所不同,学生可能难以理解和接受。

因此,在教学过程中,教师需要注重引导学生通过观察、分析和归纳来发现反比例函数的性质,并能够运用这些性质解决实际问题。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的概念。

2.掌握反比例函数的性质,能够运用反比例函数解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义和性质的理解。

2.运用反比例函数解决实际问题的方法的掌握。

五. 教学方法1.情境教学法:通过生活中的实例引入反比例函数的概念,让学生感受到反比例函数的实际意义。

2.引导发现法:引导学生观察、分析和归纳反比例函数的性质,培养学生的发现能力和思维能力。

3.例题教学法:通过典型例题的讲解,让学生掌握反比例函数的应用方法。

4.练习法:通过练习题的训练,巩固所学知识,提高学生的解题能力。

六. 教学准备1.教学课件:制作反比例函数的课件,展示反比例函数的性质和应用。

2.练习题:准备一些有关反比例函数的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实例,如广告牌的高度与距离地面的高度之间的关系,引入反比例函数的概念。

引导学生观察和思考,引出反比例函数的定义。

2.呈现(10分钟)展示反比例函数的性质,引导学生通过观察、分析和归纳来发现反比例函数的性质。

沪科版九年级数学上册优秀教学案例:21.5反比例函数反比例函数的概念

沪科版九年级数学上册优秀教学案例:21.5反比例函数反比例函数的概念
2.教师对学生的总结进行点评和指导,帮助学生巩固知识点,提高学生的数学思维能力。
3.教师通过归纳总结,提炼本节课的重点和难点,为学生提供清晰的学习思路。
(五)作业小结
1.设计具有针对性和拓展性的作业,让学生巩固反比例函数的知识,提高学生的数学应用能力。
2.教师对学生的作业进行及时的批改和反馈,关注学生的知识掌握程度和问题解决能力。
沪科版九年级数学上册优秀教学案例:21.5反比例函数反比例函数的概念
一、案例背景
沪科版九年级数学上册的反比例函数单元,是学生在学习了初中数学基础知识后的进一步拓展。本节课的主要内容是引导学生理解反比例函数的概念,并掌握其基本性质和图象。学生在学习本节课之前,已经掌握了函数的基本概念和一次函数、二次函数的知识,为本节课的学习打下了基础。
2.学生通过解决实际问题,体验到数学在生活中的重要性,增强学习数学的自信心和自尊心。
3.学生能够在学习过程中,培养坚持不懈、勇于探索的精神,养成良好的学习习惯和态度。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学设计的指导,也是评价学生学习成果的标准。因此,在教学过程中,我将始终关注学生的知识掌握程度、能力培养和情感态度的培养,努力实现本节课的源自学目标,为学生的全面发展奠定基础。
然而,反比例函数的概念相对抽象,学生难以理解和掌握。因此,在教学过程中,我以“生活中的反比例关系”为切入点,让学生通过观察和分析实际生活中的反比例关系,引导学生自主探索反比例函数的定义和性质。同时,结合多媒体教学手段,以生动形象的图象和实例,帮助学生直观地理解反比例函数的概念,提高学生的学习兴趣和积极性。
三、教学策略
(一)情景创设
1.生活情境:以学生熟悉的生活场景为例,如购物、交通等,创设实际情境,引导学生发现反比例关系,激发学生的学习兴趣。

沪科版数学九年级上册21.5《反比例函数》教学设计2

沪科版数学九年级上册21.5《反比例函数》教学设计2

沪科版数学九年级上册21.5《反比例函数》教学设计2一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生掌握反比例函数的定义、性质及图象。

通过学习反比例函数,学生能更好地理解函数的概念,培养其数学思维能力。

二. 学情分析九年级的学生已经学习了函数、比例等基础知识,具备一定的逻辑思维能力。

但部分学生对抽象的函数概念理解较困难,对反比例函数的图象和性质认识不足。

因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、实践、思考、探讨来理解反比例函数的本质。

三. 教学目标1.知识与技能:让学生掌握反比例函数的定义、性质及图象,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察、实践、思考、探讨,培养学生的数学思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作、探究的精神。

四. 教学重难点1.重点:反比例函数的定义、性质及图象。

2.难点:反比例函数在实际问题中的应用。

五. 教学方法采用问题驱动、案例引导、合作探讨的教学方法,充分发挥学生的主体作用,教师引导学生观察、实践、思考、探讨,从而掌握反比例函数的知识。

六. 教学准备1.准备相关案例和图片,用于导入和巩固环节。

2.准备反比例函数的PPT,用于呈现和操练环节。

3.准备练习题,用于家庭作业环节。

七. 教学过程1.导入(5分钟)利用生活中的实例,如商场打折、比例尺等,引导学生回顾已学的函数和比例知识。

然后提出问题:“如果函数解析式为y=k/x,那么k的取值范围是什么?”让学生思考并回答。

2.呈现(10分钟)利用PPT呈现反比例函数的定义、性质及图象,引导学生观察并总结反比例函数的特点。

同时,通过案例引导,让学生了解反比例函数在实际生活中的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用反比例函数解决问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(5分钟)呈现一些有关反比例函数的练习题,让学生独立完成。

最新沪科版九年级数学上册《反比例函数》·教学设计(精品教案)

最新沪科版九年级数学上册《反比例函数》·教学设计(精品教案)

反比例函数一. 教学要求1、理解反比例函数的意义,能根据已知条件确定反比例函数的表达式。

2、会画反比例函数的图像,掌握反比例函数的性质3、会用反比例函数的图像、性质解决实际问题二. 重点及难点重点:1、示范反比例函数的概念,2、反比例函数的性质3、反比例函数的定义、图像的应用 难点:1、试用待定系数法求反比例函数的表达式。

2、反比例函数的性质应用。

三. 课堂教学 [知识要点]知识点1、反比例函数的概念定义:一般地,如果两个变量x ,y 之间的关系可以表示成xky(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。

说明:(1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且x 的指数是1,若写成1-=kx y ,则x 的指数是-1。

(2)比例系数k ≠0时反比例函数定义的一个重要组成部分。

(3)自变量x的取值范围是x≠0的一切实数。

(4)函数y的取值范围也是一切非零实数。

知识点2、用待定系数法求反比例函数的表达式 由于在反比例函数xky =中,只有一个待定系数,因此只需要一组对应值,即可求出k的值,从而确定其表达式。

知识点3、反比例函数的图像和画法1、反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点对称,由于反比例函数中自变量x≠0,函数y≠0,所以它们的图像与x轴,y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不能到达坐标轴。

2、反比例函数的图像的画法:(描点法) (1)列表: (2)描点: (3)连线:知识点4、反比例函数的性质1、关于反比例函数的性质主要研究它的图像的位置和函数值随x的变化而变化的情况: 反比例函数0,≠=k x kyk的符号 k>0 k<0图像性质(1)x的取值范围是x≠0,y的取值范围是y≠0 (2)当k>0时,函数图像的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小 (1)x的取值范围是x≠0,y的取值范围是y≠0(2)当k<0时,函数图像的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大探究交流:已知一次函数42+=x y 和反比例函数)0(≠=k x ky ,若这两个函数的图像在同一坐标系中有两个交点A ,B ,试求k 的取值范围,并判断∠AOB 与90°的大小关系。

最新沪科版九年级数学上册《反比例函数》教学设计(精品教案)

最新沪科版九年级数学上册《反比例函数》教学设计(精品教案)

21.5 反比例函数第1课时 反比例函数学习目标:1.理解反比例函数的概念,会求比例系数。

2.感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.学习重点:理解反比例函数的概念,会求比例系数。

难点:正确列出实际问题中的反比例函数关系。

学习过程中可能会用到的某些量之间的关系:,R U I = ,v s t = 长方形的面积=长⨯宽,总人口数总耕地面积人均耕地面积=学习过程:一、自主学习1、自学课本新课内容并完成课本的题目。

(做在课本上。

)2、明确概念:反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为 。

*说明:(1)反比例函数)0(≠=k x k y 有时也写成)0(≠=k y 或)0(≠=k 的形式。

(2)反比例函数中,三个量x 、y 、k 均不能为0.二、合作学习,共同探索1、订正自主学习内容。

2、完成课本做一做。

先独立完成,再小组交流。

三、全班交流,知识应用1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? ①4y x =;②12y x=-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x=- 解:上述关系式中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。

2、已知y 是x 的反比例函数,且当x =2时,y =9.(1)求y 关于x 的函数表达式;(2)当27=x 时,求y 的值;(3)当y =3时,求x 的值。

3、已知函数22(1)m y m x-=+当m 为何值时,y 是x 的反比例函数?并求出函数的表达式。

四、课堂小结。

这节课我们主要学习了 ,你的收获是: 。

五、当堂检测必做题:1.下列函数中,y 与x 成反比例函数关系的是( )A.5xy =B.21y x =- C.3y x = D. 11y x =-+ 2.在下列关系式中:①x y 5= ②x y 4.0= ③2x y = ④1-=xy ⑤x y -=5 ⑥x y 65=⑦2=xy ⑧12-=x y 其中y 是x 的反比例函数的有: ;它们的比例系数k 分别是 。

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册第21.5节《反比例函数》是本册教材的重要内容之一,本节内容是在学生已经掌握了函数的概念、正比例函数的基础上进行学习的。

本节课的主要内容是让学生了解反比例函数的概念、性质及其图象,学会用反比例函数解决实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数的概念、性质及其图象有一定的了解,但学生的数学基础参差不齐,部分学生对函数的概念理解不深刻,对函数的图象分析能力较弱。

此外,学生对于实际问题与函数关系的理解也有待提高。

三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的概念,了解反比例函数的性质,学会绘制反比例函数的图象,并能够运用反比例函数解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索反比例函数的性质,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受数学在生活中的应用。

四. 说教学重难点1.教学重点:反比例函数的概念、性质及其图象。

2.教学难点:反比例函数的性质的推导和理解,反比例函数图象的分析。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、归纳总结。

2.教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示实际问题,引导学生思考问题与函数的关系,引出反比例函数的概念。

2.自主探究:让学生通过观察、分析、归纳等方法,自主探索反比例函数的性质,教师给予引导和指导。

3.合作交流:学生分组讨论,分享各自的探究成果,互相学习和借鉴。

4.性质总结:教师引导学生总结反比例函数的性质,加深学生对知识的理解。

5.绘制图象:让学生利用反比例函数软件或手绘图象,绘制反比例函数的图象,观察图象的性质。

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,主要介绍了反比例函数的定义、性质及其在实际问题中的应用。

本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,是初中数学中的重要内容,也是中考的热点。

反比例函数是实际生活中广泛应用的一种函数,对于培养学生解决实际问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解,但反比例函数的概念和性质较为抽象,对于部分学生来说,理解起来有一定的困难。

因此,在教学过程中,要注重引导学生通过观察、思考、探究,从而理解和掌握反比例函数的知识。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析、推理等方法,培养学生的数学思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决实际问题的能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解和掌握反比例函数的知识。

2.问题驱动法:通过设置问题,激发学生的思考,引导学生探究反比例函数的性质。

3.合作学习法:鼓励学生之间相互讨论、交流,共同解决问题。

六. 教学准备1.准备相关的实例,用于引导学生理解和掌握反比例函数的知识。

2.准备一些练习题,用于巩固学生的知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如商店促销活动中,商品的价格与数量之间的关系,引导学生思考反比例函数的概念。

2.呈现(10分钟)讲解反比例函数的定义,通过示例,让学生观察和分析反比例函数的图像,引导学生理解反比例函数的性质。

3.操练(10分钟)让学生通过解决实际问题,运用反比例函数的知识。

教师可以提供一些练习题,让学生独立完成,然后进行讲解和分析。

沪科版数学九年级上册《反比例函数及其图象画法》教学设计1

沪科版数学九年级上册《反比例函数及其图象画法》教学设计1

沪科版数学九年级上册《反比例函数及其图象画法》教学设计1一. 教材分析《反比例函数及其图象画法》是沪科版数学九年级上册的一章内容。

本章主要介绍了反比例函数的定义、性质及其图象的画法。

通过本章的学习,学生能够理解反比例函数的概念,掌握反比例函数的性质,学会如何绘制反比例函数的图象,从而提高他们的数学素养和解决问题的能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和性质,对函数有一定的认识和理解。

但是,对于反比例函数这一概念,学生可能较为陌生,需要通过具体实例和引导,帮助他们理解和掌握。

此外,学生对于函数图象的绘制还不是很熟悉,需要通过实践操作和指导,提高他们的绘图能力。

三. 教学目标1.知识与技能:学生能够理解反比例函数的定义,掌握反比例函数的性质,学会绘制反比例函数的图象。

2.过程与方法:通过实例分析,引导学生理解反比例函数的概念,培养学生的抽象思维能力;通过实践操作,教会学生绘制反比例函数的图象,提高学生的动手能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的绘制方法。

五. 教学方法采用问题驱动法、实例分析法、合作学习法、实践操作法等教学方法。

通过设置问题情境,引导学生主动探究;通过分析实例,让学生理解反比例函数的概念;通过小组合作,培养学生团队合作意识;通过实践操作,教会学生绘制反比例函数的图象。

六. 教学准备1.教学课件:制作反比例函数及其图象画法的课件,包括文字、图片、动画等。

2.实例材料:准备一些实例,用于引导学生理解和掌握反比例函数的概念。

3.绘图工具:准备足够的绘图工具,如直尺、圆规、彩笔等。

七. 教学过程1.导入(5分钟)利用实例引入反比例函数的概念,激发学生的兴趣,引导学生思考。

2.呈现(10分钟)通过课件展示反比例函数的定义和性质,让学生初步了解反比例函数的基本特点。

3.操练(10分钟)学生分组讨论,分析实例,理解反比例函数的概念。

沪科版数学九年级上册21.5《反比例函数》教学设计2

沪科版数学九年级上册21.5《反比例函数》教学设计2

沪科版数学九年级上册21.5《反比例函数》教学设计2一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容。

本节内容是在学生已经掌握了函数概念、正比例函数的基础上,进一步引导学生学习反比例函数。

通过本节内容的学习,使学生了解反比例函数的定义、性质和图象,能解决一些与反比例函数有关的应用问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、正比例函数有了初步的了解。

但是,对于反比例函数的理解和应用还需要进一步的引导和培养。

因此,在教学过程中,要注重学生对函数知识的理解和运用,提高学生的数学思维能力。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的性质和图象。

2.能够运用反比例函数解决一些实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

3.运用反比例函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究反比例函数的定义和性质。

2.利用数形结合法,让学生直观地理解反比例函数的图象特点。

3.运用实例分析法,让学生学会运用反比例函数解决实际问题。

4.采用小组合作学习法,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备反比例函数的相关教学素材,如PPT、例题、练习题等。

2.准备计算机和投影仪,以便进行多媒体教学。

3.准备一些实际问题,用于课堂练习和巩固。

七. 教学过程1.导入(5分钟)利用PPT展示一些与反比例函数相关的实际问题,引导学生思考反比例函数的概念。

2.呈现(10分钟)利用PPT呈现反比例函数的定义和性质,让学生初步了解反比例函数的基本概念。

3.操练(10分钟)让学生通过自主探究、小组讨论的方式,深入理解反比例函数的性质和图象特点。

4.巩固(10分钟)利用一些具体的例题,让学生运用反比例函数解决问题,巩固所学知识。

5.拓展(10分钟)让学生结合生活实际,自主寻找一些与反比例函数有关的问题,并进行解决。

沪科版数学九年级上册《反比例函数图形和性质》教学设计2

沪科版数学九年级上册《反比例函数图形和性质》教学设计2

沪科版数学九年级上册《反比例函数图形和性质》教学设计2一. 教材分析沪科版数学九年级上册《反比例函数图形和性质》是学生在学习了函数的基本概念、一次函数和二次函数的基础上,进一步对反比例函数进行研究。

本节课的内容包括反比例函数的定义、反比例函数图形的特征以及反比例函数的性质。

通过本节课的学习,使学生掌握反比例函数的基本概念,能够绘制反比例函数的图形,理解并掌握反比例函数的性质,提高学生对函数知识的运用能力。

二. 学情分析学生在学习本节课之前,已经掌握了一次函数和二次函数的基本概念和性质,对函数图形有一定的认识。

但反比例函数的概念和性质与一次函数和二次函数有很大的不同,需要学生在新知识的引导下,通过观察、分析、归纳等方法,自主探究反比例函数的性质。

同时,学生需要利用已有的函数知识,如函数图形的绘制方法,来帮助理解反比例函数的性质。

三. 教学目标1.知识与技能目标:使学生掌握反比例函数的定义,能够绘制反比例函数的图形,理解并掌握反比例函数的性质。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主探究的能力,提高学生运用函数知识解决问题的能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生积极思考、勇于探索的精神。

四. 教学重难点1.反比例函数的定义。

2.反比例函数图形的特征。

3.反比例函数的性质。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生自主探究反比例函数的性质。

2.演示法:利用多媒体课件,展示反比例函数的图形,帮助学生直观理解反比例函数的性质。

3.实践法:让学生动手绘制反比例函数的图形,加深对反比例函数性质的理解。

六. 教学准备1.多媒体课件。

2.反比例函数的图形资料。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习一次函数和二次函数的性质,引导学生思考:如果函数的自变量和因变量的乘积是一个常数,这样的函数叫做什么函数?从而引出反比例函数的概念。

2.呈现(10分钟)利用多媒体课件,展示反比例函数的图形,让学生观察反比例函数图形的特点,引导学生思考反比例函数图形的特征。

沪科版数学九年级上册21.5《反比例函数》教学设计3

沪科版数学九年级上册21.5《反比例函数》教学设计3

沪科版数学九年级上册21.5《反比例函数》教学设计3一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生了解反比例函数的定义,理解反比例函数的图像和性质,并能够运用反比例函数解决实际问题。

本节课的内容是学生在学习了正比例函数和一次函数的基础上进行的,为后续学习指数函数、对数函数等高级函数奠定基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数和一次函数有了初步的理解。

但是,反比例函数的概念和性质相对于正比例函数和一次函数来说更加抽象,学生可能难以理解和接受。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,逐步理解反比例函数的概念和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图像和性质。

2.能够运用反比例函数解决实际问题。

3.提高学生的抽象思维能力和问题解决能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图像的特点。

3.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生认识反比例函数。

2.数形结合法:利用图形直观地展示反比例函数的性质。

3.小组合作学习:引导学生通过合作交流,共同探讨反比例函数的问题。

六. 教学准备1.准备反比例函数的PPT课件。

2.准备一些实际问题,用于引导学生运用反比例函数解决。

3.准备一些反比例函数的图形,用于直观展示反比例函数的性质。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如“一辆汽车以60公里/小时的速度行驶,行驶1小时后,离出发点的距离是多少?”引导学生思考,引出反比例函数的概念。

2.呈现(10分钟)通过PPT课件,呈现反比例函数的定义和性质,让学生初步了解反比例函数。

3.操练(10分钟)让学生通过计算和作图,验证反比例函数的性质,加深对反比例函数的理解。

4.巩固(10分钟)通过解决一些实际问题,让学生运用反比例函数,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数》
教材分析
本节是上海科技版义务教育教科书《数学》九年级上册第二十三章《二次函数》的第5节《反比例函数》的教学内容,主要研究反比例的定义和基本概念,图像和性质.本节内容是在学生学习了二次函数之后探究反比例函数的图像与性质.首先由正比例函数的表达式引出反比例函数的表达式,然后研究反比例函数的图像和性质;接着归纳性质的几种应用;最后归纳总结,并尝试综合运用.
本节内容研究反比例函数,体现了类比转化的思想.
教学目标
【知识与能力目标】
1.理解反比例函数的概念,能判断一个给定的函数是否为反比例函数
2.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
3.会根据反比函数的图像特点,综合运用性质解决一些基本问题,培养学生的数学应用能力。

【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力;
探求反比例函数的求法,发展学生的数学应用能力
【情感态度与价值观】
培养学生观察.推理分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值
教学重难点
【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式
【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
课前准备
多媒体课件、教具等.
教学过程
问题1
(1)还记得正比例函数的定义和表达式吗?
(2)指出下列函数中哪些是正比例函数,并回答相应k 的值?
【设计意图】:回忆正比例函数的定义和表达式,让学生通过类比学过的知识的研究方法来探究新知识,并激发学生的兴趣。

问题2 求下列问题的函数关系式?
1、京沪铁路全程为1400km ,某次列车的平均速度为v (km/h )随此次列车的全程运行时间t (h )的变化而变化。

2、某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。

3、已知北京市的总面积为1.68×104平方千米,人均占有的土地面积s(单位:平方千米/人)随全市总人口x(单位:人)的变化而变化。

【设计意图】:创设情景,引入主题,激发学生探索的求知欲。

追问(1)观察这几个函数,他们有什么特点?
(2)参考正比例函数形式,这些函数可以写成哪种形式?
反比例函数的定义:
一般地,形如
)0(y ≠= k x k (k 是常数)的函数,称为反比例函数。

注意:
1、在 )0(y ≠= k x k
中,自变量x 是分式 x k
的分母,当x=0时,分
式 无意义,所以x 的取值范围为
0≠x 2、等价形式( 0≠x )
x k
=y 1-=x y 1=xy
【设计意图】:增强学生观察分析、归纳概括能力和表达能力,经历由感性认识到理性认识的思维过程。

问题3,画出反比例函数 x y 4
= 与 x y 4
-= 的图像
(1)一次函数的图像和性质还记得吗?
(2)反比例函数图像有什么共同点?
(3)位于哪几个象限?
(4)y 随x 的变化怎么样变化?
【设计意图】:通过观察反比例函数的图像,总结归纳反比例函数的性质。

例1
:已知y 是x 的反比例函数,当x=2时,y=6.
(1)写出y 与x 的函数关系式:
(2)求当x=4时y 的值.
例2: 已知 3+y 与 x 是反比例关系,且当 2=x 时 1-=y , 求 y 与x 之间的关系式
例3:观察函数 x 2
y =的图象,当2-
=x 时,y 等于多少?当 2<x 时,y 的取值范围是?当 1->y 时,x 的取值范围?
例4:已知点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线x y 3
=
于点A ,过点A 作AB ⊥y 轴于B 点。

在点P 运动过程中,矩形OPAB 的面积是否发生变化? 若不变,请求出其面积;若改变,试说明理由。

y
B
【设计意图】:通过4个例题的学习,分别让学生体会反比例函数表达式,图像,性质的应用,体会从抽象到具体的学习过程
学生练习:练习1、关系式
4
xy=
+
中y是x的反比例函数吗?若是,比例系数k
等于多少?若不是,请说明理由。

练习2.若
2
m
1)x
-
(m
y-
=
为反比例函数,则m的值?
练习3.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为12,则这个反比例函数的表达式是?
【设计意图】:及时巩固本节所学知识,了解学生学习效果,培养学生独立解题能力。

小结
本节课你有哪些收获?还有什么疑惑?
【设计意图】:总结学习的重点知识,帮助学生归纳,巩固新知识。

布置作业:
1、教科书习题21,5第2,3,4题.(必做题)
2、教科书习题21.5第1,5.6题.(选做题)
【设计意图】:根据学生学习的不同层次安排相应作业,从而使学生有不同层次的认识和提高。

教学反思
1.本节是研究反比例函数的表达式,图像和性质,要让学生体会类比思想。

2.在探究中要积累研究问题的方法并积累经验学生在前面已经历过探索、分析和建立通过一次函数和二次函数的研究,有一定的类比模仿,反比例函数的学习要让学生学会综合运用并据此形成研究问题的基本方法。

3.。

相关文档
最新文档