《有理数的乘法2》教案

合集下载

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。

2.3有理数的乘法(2) ( 教案)

2.3有理数的乘法(2) ( 教案)

2.3.2有理数的乘法(教案)上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘.计算下列各题,并比较计算的结果. (3) ()()1732333⎛⎫-⨯+=-⨯⎪⎝⎭=______; ()()()11323236133⎛⎫-⨯+=-⨯+-⨯=-- ⎪⎝⎭=______.你发现了什么?再换一些数试试,你得到了什么结论?归纳:分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加.数学表达式: a × (b +c )= a ×b +a ×c .根据分配律可推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.1、乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.2、分配律还可写成: ab +ac =a (b +c ), 利用它有时也可以简化计算.3、字母a 、b 、c 可以表示正数、负数,也可以表示零,即a 、b 、c 可以表示任意有理数.针对练习下列各式中用了哪条运算律?如何用字母表示?(2)[3×(-4)]×(-5)= 3×[(-4)×(-5)];(3) 5×[3+(-7)]=5×3+5×(-7); (4)[(-10)×2]×0.3=(-10)×[2×0.3] . 典例解析:例2 计算:(1)()()512376-⨯-⨯;(2)12430235⎛⎫-⨯-+⎪⎝⎭;(3)4.99×(-12).针对练习:计算:(1)(125)2(8)-⨯⨯-;(2)2763 ()()()35142 -⨯-⨯-⨯;例3、某校体育器材室总共有60个篮球,一天课外活动,有3个班级分别计划借篮球总数的1 2,14和15.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?针对练习有1155页稿件需要打字,第一天完成其中的1 3,第二天完成其中的27.问还剩多少页稿件需打字?完成例2和针对练习.完成例3和针对练习.掌握有理数乘法运算律,能运用乘法运算律简化运算.掌握有理数乘法运算,体会有理数乘法在生活中的应用.巩固提升1、3.14×2.5×4=3.14×(2.5×4)利用了乘法的()A.交换律B.结合律C.交换律和结合律D.分配律2、完成练习.通过练习,掌握有理数乘运算律,运用运算律简化运算,进一步提高学生的运算能力.1(1)⨯-3201320152014⨯⨯⨯()(201420142015有理数乘法的运算律:两个数相乘,交换因数的位置,积不变.ab=ba.。

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

数学:1.4.1《有理数的乘法(2)》学案(人教版七年级上)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2、新知应用1、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×O× (-19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、—5×8×(—7)×(—0.25);(2)、5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2.几个数相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则BAC ∠的度数是( )A.105°B.115°C.125°D.135°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003x x +-= B.()31001003x x --= C.10031003x x -+= D.10031003x x --= 5.方程1﹣22x -=13x +去分母得( ) A.1﹣3(x ﹣2)=2(x+1)B.6﹣2(x ﹣2)=3(x+1)C.6﹣3(x ﹣2)=2(x+1)D.6﹣3x ﹣6=2x+26.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .57.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n8.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( )A .3×107B .30×106C .0.3×107D .0.3×1089.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 210.若8a =, 5b =,且 0a b +>,那么-a b 的值为( ) A .3或13 B .13或-13 C .3或-3 D .-3或-1311.如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A .+10℃B .﹣10℃C .+5℃D .﹣5℃12.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A.73610⨯B.83.610⨯C.90.3610⨯D.93.610⨯二、填空题13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.14.22.5°=________°________′;12°24′=________°.15.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为______.16.小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是________元 .17.﹣3xy ﹣x 3+xy 3是_____次多项式.18.填在如图各正方形中的四个数之间都有相同的规律,则a+b ﹣c 的值是_____.193-的相反数是_____.20.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)三、解答题21.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.22.解下列方程(1)2x+5=3(x ﹣1)(2).23.如图,点O 为原点,A ,B 为数轴上两点,AB=15,且OA :OB=2(1)A ,B 对应的数分别为 , .(2)点A ,B 分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A ,B 相距1个单位长度?(3)点AB 以(2)中的速度同时向右运动,点P 从原点O 以4个单位秒的速度向右运动,是否存在常数m ,使得3AP+2PB ﹣mOP 为定值?若存在,请求出m 值以及这个定值;若不存在,请说明理由.24.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >6且x <14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x 表示);(3)这辆出租车一共行驶了多少路程(结果用x 表示)?25.先化简,再求值:5(3a 2b-ab 2)-4(-ab 2+3a 2b ),其中a=12,b=-13. 26.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B(+1,+4),从D 到C 记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.27.已知a 、b 互为倒数,c 、d 互为相反数,2x =,且x 在数轴上表示的数在原点的左边. 求式子32339()4c d x ab+-⨯-+的值 28.如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB ,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【参考答案】***一、选择题1.A2.A3.D4.C5.C6.C7.C8.A9.B10.A11.D12.B二、填空题13.祠14.30 12.415.6016.417.四18.-12819.3﹣ SKIPIF 1 < 0 .解析:320. SKIPIF 1 < 0解析:①②④三、解答题21.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.22.(1)x=8;(2)x=423.﹣10 524.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车所在的位置是向东(7﹣12x)km;(3)这辆出租车一共行驶了(7172x-)km的路程.25.-11 3626.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.27.6428.(1)50°,40°;(2)2α-β=40°;(3)不成立,2α+2β=40°.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( )A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是( )A .直角B .锐角C .钝角D .以上三种都有可能4.方程x ﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A.3229x x -=+B.3(2)29x x -=+C.2932x x +=- D.3(2)2(9)x x -=+ 6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.现有一个长方形的周长为30cm ,这个长方形的长减少1cm ,宽增加2cm ,就可以变成一个正方形,设长方形的宽为x cm ,可列方程为( )A.2(30)1x x -=-+B.2(15)1x x -=-+C.2(30)1x x +=--D.2(15)1x x +=-- 7.若A 和B 都是五次多项式,则( )A.A+B 一定是多项式B.A ﹣B 一定是单项式C.A ﹣B 是次数不高于5的整式D.A+B 是次数不低于5的整式8.下列说法中正确的是( )A .4xy x y -+-的项是xy ,x ,y ,4B .单项式m 的系数为0,次数为0C .单项式22a b 的系数是2,次数是2D .1是单项式 9.下列结论正确的是( )A .x =2是方程2x+1=4的解B .5不是单项式C .﹣3ab 2和b 2a 是同类项D .单项式3ab 的系数是3 10.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.a b -<B.0ab <C.0a b +>D.b-a >011.如果a 与-3的和是0,那么a 是( ) A.13- B.13 C.-3 D.312.下列各组数中互为相反数的一组是( )A.3与13B.2与|-2|C.(-1) 2与1D.-4与(-2) 2二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.16.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd•x-p 2=0的解为________.17.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.18.若23a b =,则a b b +=_____. 19.用“>”“<”或“=”填空.(1)-56________-67;(2)-45________-35; (3)|-7|________0;(4)|-2.75|________|+234| 20.计算(﹣0.25)2007×(﹣4)2008=______.三、解答题21.如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 和ON 分别是∠AOC 和∠AOB 的平分线.(1) 试说明:∠AOB =∠COD ;(2) 若∠COD =36°,求∠MON 的度数.22.(1)如图,点C 、D 在线段AB 上,点C 为线段AB 的中点,若AC =5cm ,BD =2cm ,求线段CD 的长.(2)如图,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.23.(12分)阅读:我们知道, 于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时: 34x -≤解这个不等式,得:由条件,有: (2)当< 0,即 x < 3时,解这个不等式,得:由条件x < 3,有: < 3∴ 如图, 综合(1)、(2)原不等式的解为:根据以上思想,请探究完成下列2个小题:(1); (2)。

2.6有理数的乘法与除法(2)教案

2.6有理数的乘法与除法(2)教案

2.6有理数的乘法与除法(2)(教案)【教学目标】1、探究有理数乘法的运算律;2、能用乘法运算律简便运算;3、理解倒数的概念. 【教学重点】学会把知识运用于实践,灵活、合理地运用乘法运算律简化运算. 【教学难点】运用有理数乘法分配律计算时对“符号”的理解. 【教学过程】 一、创设情境1、请同学们回顾有理数乘法运算法则;2、请同学们回顾小学里学习的乘法交换律、结合律和分配律,猜想这些运算律对于含有负数的乘法运算中是否同样适用?(引发学生思考,让学生感到验证的必要性,主动投入验证活动.) 二、探索新知1、小组讨论:小学学习的乘法运算律在有理数范围内成立吗?为什么?【学生活动】小组活动列举多个例子(可参考P43“做一做”),从特殊到一般归纳结论.感受引入负数后小学数学中的乘法运算律仍然成立,通过类比的方法验证乘法运算律,体会其在有理数范围的有效性、合理性.2、小组代表回答结论,得出有理数乘法运算律(口述文字表示,板书字母表示) 乘法交换律:两数相乘,交换因数的位置,积不变a b b a ⨯=⨯乘法结合律:先把前两个数相乘,或者先把后两个数相乘,积不变()()a b c a b c ⨯⨯=⨯⨯乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加()a b c a b a c ⨯+=⨯+⨯三、课堂反馈(以下例1—例4的练习可不做或选做) 例1、计算(交换律和结合律的应用) (1)()()4 1.2585⎛⎫-⨯+⨯- ⎪⎝⎭(2)()()()1007.240.01-⨯-⨯-【学生先独立计算,之后交流方法,学生总结示范如何用乘法交换律简化计算】 练习:(1)()280.1253⎛⎫⨯-⨯- ⎪⎝⎭(2)()()()25854-⨯-⨯-例2、计算(正用分配律) (1)()157362612⎛⎫+-⨯- ⎪⎝⎭(2)34100(0.70.03)105-⨯--+【教师可以示范如何用乘法分配律简化计算,并强调不要漏乘,不要弄错符号】 练习:计算 (1)113)(60)234--+⨯-((2))856532(24--⨯-例3、计算(逆用分配律) (1)756071607360⨯+⨯-⨯(2)3243213)32(18⨯-⨯+-⨯【学生先独立计算,之后交流方法,教师示范过程,让学生适时地了解,对于运算律,不仅可以从左到右,还可以从右到左的运用,恰当地运用运算律就可以获得简捷的求解效果,培养学生逆向思维能力】 练习:计算 (1))725()12()725()7()725()5(-⨯---⨯-+-⨯- (2)1551151()2()277227⨯--⨯+-⨯例4、计算(变形后应用分配律) (1)981009999⎛⎫-⨯ ⎪⎝⎭(2))8(161539-⨯【教师和学生一起运用简便方法计算】 练习:计算 (1)2899-⨯(2)2499525⎛⎫-⨯ ⎪⎝⎭例5、计算 (1)188⨯(2)()144⎛⎫-⨯-⎪⎝⎭(3)7887⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭【学生活动】学生独立完成,然后观察以上三个等式,小组首先交流这三个等式中的两个因数及运算结果的特点,其次例举类似的例子,之后思考:(1)这两个因数可能相等吗?(2)若两个因数中有一个为0,则运算结果还有这个特点吗? 归纳:像8与81、-4与41-、78-与78-......乘积为1的两个数互为倒数,其中一个数叫做另一个数的倒数.注意:(1)根据倒数的定义,0没有倒数;(2)根据有理数乘法法则中“同号得正”可知互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.(3)互为倒数与互为相反数的区别:互为倒数的两个数的乘积为1,互为相反数的两个数的和为0;(4)倒数等于本身的数是 ;绝对值等于本身的数是 ;相反数等于本身的数是 . 练习:说出下列各数的倒数:()13-()122-()13325()13412-()50.2-()3614【学生活动】学生互相说,并交流归纳求一个数的倒数的方法:(1)一个不为0的整数的倒数,是用这个数作分母,1作分子的数; (2)求一个真分数或假分数的倒数,就是把这个分数的分子分母交换位置; (3)求一个带分数的倒数,要先把带分数化成假分数,再交换分子分母的位置; (4)求一个小数的倒数,要先把小数化成分数,再求其倒数.四、归纳总结 【学生活动】1、回忆所学的乘法运算律有哪几条?2、说说你对倒数的理解..。

有理数乘法(二)教学案

有理数乘法(二)教学案
例2:计算
×12.
四、课堂练习
教材32页练习题
教材33页练习题
五、课堂小结
多个有理数相乘:几个不为0的数相乘,积的符号由________决定.当负因数有________个时,积为________.当负因数有________个时,积为________.几个数相乘,其中有一个因数为0,积就为________.
绝对值的积有什么关系?
要点归纳:
1、几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积
是负数.积的绝对值是各个因数绝对值的积.
2、几个数相乘,如果其中有因数为0,那么积等于0.
探究点2:有理数乘法的运算律
第一组:
(1)25=3;3×(4×0.25)=3;
教学重点
有理数的乘法运算律及其应用.
教学难点
符号问题的处理.
教法指导
讲授与小组交流相结合.
教学设想
课堂引入,探索新知,典例精析,课堂练习,课堂小结,作业布置,教学反思
教学过程
一、创设情境
你会计算下列各题吗?试试看!
(1)5×(-6). (2)(-6)×5. (3)[3×(-4)]×(-5). (4)3×[(-4)×(-5)].
乘法的运算律:(1)乘法交换律:______________.
(2)乘法结合律:______________.
(3)乘法对加法的分配律:________________.
六、作业布置
选编练习
七、教学反思
内容、方法补充分层点拨、要点归纳、错误纠正
课题:
有理数的乘法(第二课时)
使用时间
2019年9月13日
总课时
2课时
课型
新授课

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案

有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》

七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》

七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》一. 教材分析《有理数的乘法(2)》这一节内容,是在学生已经掌握了有理数乘法的基本法则的基础上进行深入学习的。

本节内容主要让学生进一步理解有理数乘法的运算规律,能够熟练地进行有理数的乘法运算,并能够解决一些实际问题。

二. 学情分析七年级的学生已经掌握了有理数乘法的基本法则,对于有理数的乘法运算有一定的了解和认识。

但是在进行复杂的乘法运算时,部分学生可能会出现运算混乱,对运算规律理解不深的情况。

因此,在教学过程中,需要引导学生深入理解乘法运算的规律,提高运算的准确性。

三. 教学目标1.让学生进一步理解有理数乘法的运算规律。

2.培养学生熟练进行有理数乘法运算的能力。

3.培养学生解决实际问题的能力。

四. 教学重难点1.有理数乘法的运算规律。

2.复杂有理数乘法运算的准确性。

五. 教学方法采用问题驱动法,引导学生通过自主学习,合作交流,发现和总结有理数乘法的运算规律。

同时,通过例题讲解,让学生掌握有理数乘法运算的方法,提高运算的准确性。

六. 教学准备3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,让学生思考如何利用有理数乘法来解决这些问题。

通过问题驱动,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示有理数乘法的运算规律,引导学生进行自主学习,合作交流,发现和总结运算规律。

3.操练(10分钟)让学生进行一些有理数乘法的练习,巩固所学知识。

教师可以通过巡堂的方式,及时发现和纠正学生的错误。

4.巩固(10分钟)通过PPT展示一些复杂的有理数乘法运算,让学生独立完成。

教师可以选取一些典型的错误,进行讲解和分析。

5.拓展(10分钟)让学生尝试解决一些实际问题,运用所学的有理数乘法知识。

教师可以给予适当的引导和帮助。

6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。

7.家庭作业(5分钟)布置一些有理数乘法的练习题,让学生进行巩固。

2.2.1有理数的乘法(第二课时)教案++2024—2025学年人教版数学七年级上册

2.2.1有理数的乘法(第二课时)教案++2024—2025学年人教版数学七年级上册

初中数学集体备课活页纸学科初中数学主备人节次第周第节课题2.2.1第2课时有理数的乘法课时 1 课型新授课教学目标1.理解和掌握乘法交换律,乘法结合律和乘法分配律;能应用运算律使运算简便;2.培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣.3.能够利用有理数的运算律进行简便计算.教学重点理解和掌握乘法交换律,乘法结合律和乘法分配律教学难点灵活运用乘法的运算律简化运算.课堂教学设计教学环节教学过程二次备课情景引入问题1:有理数的乘法法则是什么?两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数和零相乘,都得0问题2:如何进行多个有理数的乘法运算?(1)定号(奇负偶正)(2)算值(积的绝对值)问题3:小学时候大家学过乘法的哪些运算律?乘法交换律、乘法结合律、乘法分配律新知探究探究1 计算下列各题:5×(-6)= (-4)×(-8)= (-9)×4=(-6)×5= (-8)×(-4)= 4×(-9)=从上述计算中,你能得出什么结论?探究2 计算下列各题:[3×(-4)]×(-5)= [2×(-3)]×(-6)= 3×[(-4)×(-5)]= 2×[(-3)×(-6)]= 从上述计算中,你能得出什么结论?探究3 计算下列各题:5×[3+(-7)]= 10×[4+(-3)]=5×3+5×(-7)= 10×4+10×(-3)= 从上述计算中,你能得出什么结论?巩固练习例3 (1)计算2×3×0.5×(-7); (2)用两种方法计算(216141-+)×12.1.计算:(1) (6541121-+-) ×36.(2)161519×(-8).探究4 改变例3(1)的乘积式子中某些乘数的符号,得到下列一些式子观察这些式子,它们的积是正的还是负的?2×3×(-0.5)×(-7),2×(-3)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).思考:几个不为0的数相乘,积的符号与负的乘数的个数之间有什么关系? 如果有乘数为0,那么积有什么特点?2.[2024·绍兴越城区月考]4个非零有理数相乘,积的符号是负号,则这4个有理数中,正数有( )A.1个B.2个C.3个D.1个或3个拓展提高1.计算:(1)(125-)×158×21×(32-);(2)(-1)×(45-)×158×23×(32-)×0×(-1)2. [2024上海宝山区期末]若-3,5,a的积是一个负数,则a的值可以是( )A.-15B.-2C.0D.153. 【新考向·知识情境化】小阳在计算65-×71×■时,不小心将一滴墨水滴在了本子上,盖住了其中一个数字,导致他无法计算,在求助老师时,老师告诉他:“被盖住的数字是4,7,10,11中的一个,并且这道题直接用乘法结合律来计算会非常简便”,则被盖住的数字最可能是( )A.4B.7C.10D.11课堂小结有理数乘法运算律1.乘法交换律:两个数相乘,交换两个因数的位置,积不变.ab=ba2.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.(ab)c=a(bc)3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=a(b+c)板书设计2.2.1第2课时有理数的乘法1.ab=ba2. (ab)c=a(bc)3.a(b+c)=a(b+c)教学后记。

2024年有理数乘法2教案6篇

2024年有理数乘法2教案6篇

2024年有理数乘法2教案6篇有理数乘法2教案篇1一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。

二、教学重点、难点重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。

每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。

教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×32看作向东运动2米,×3看作向原方向运动3次。

结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。

结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向运动米2 ×(-3)=④ (-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。

③任何数与零相乘,积仍为。

(3)师生共同用文字叙述有理数乘法法则。

3、运用法则计算,巩固法则。

数学七年级上册《有理数的乘法(2)》教案

数学七年级上册《有理数的乘法(2)》教案

初中20 -20 学年度第一学期教学设计
教师引学生根据已有的知识进行解答,得出几个乘,其
中有一个因数为0的特殊规律.
学生填空:几个数相乘,如果其中有因数为0,积等于_____.
五、课堂练习(8分钟)
课本32练习
六、课堂小结(3分钟)
有理数的乘法中可以运用哪些运算律?
七、作业布置(2分钟)
教师自行安排
八、当堂检测(7分钟)
1. 选择题
(1)五个数相乘,积为负数,则其中正因数的个数为().
A.0 B.2 C.4 D.0,2或4
(2)x和5x的大小关系是().
A.x<5x B.x>5x C.x=5x D.以上三个结论均有可能
2、计算
(1)
(2)(-4)×7×(-1)×0×(-0.25)
教学后记(反思成败、总结经验):板书设计:
1.4.1有理数的乘法(2)
1、积的符号与负因数的个数之间的关系.
2、多个不是0的数相乘运算步骤.
3、几个数相乘,如果其中有因数为0,积等于0.。

第一章第4节有理数的乘除法(有理数的乘法2)教案

第一章第4节有理数的乘除法(有理数的乘法2)教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
第一章第4节有理数的乘除法(有理数的乘法2)教案
一、教学内容
《第一章第4节有理数的乘除法(有理数的乘法2)》教案,本节内容主要包括以下部分:
1.掌握有理数乘法法则:同号得正,异号得负,并把绝对值相乘。
2.应用有理数乘法法则解决实际问题。
3.理解多个有理数相乘的运算顺序,并掌握其运算方法。
4.通过实例,总结有理数乘法与整数乘法的联系与区别。
此外,在学生小组讨论环节,我发现有些学生发言不够积极,可能是因为他们对讨论主题不够熟悉或者自信心不足。针对这一问题,我打算在接下来的课程中,多设置一些开放性的问题,鼓励学生们积极参与讨论,培养他们的表达能力和自信心。
在课堂总结环节,我注意到有些学生对有理数乘法的掌握程度仍然不够扎实。为了帮助他们更好地巩固知识点,我计划在课后布置一些针对性的作业,并对他们在作业过程中遇到的问题进行及时解答。
5.练习有理数乘法运算,提高运算速度和准确性。
6.掌握运用有理数乘法解决实际问题时,正确确定符号和绝对值的方法。
二、核心素养目标
《第一章第4节有理数的乘除法(有理数乘法2)》核心素养目标:
1.培养学生运用数学语言进行有效表达和交流,提高逻辑思维和推理能力。
2.通过有理数乘法法则的学习,使学生形成严谨的数学推理习惯,增强数学抽象思维能力。

北师大版七年级数学上册2.7《有理数的乘法》第2课时优秀教学案例

北师大版七年级数学上册2.7《有理数的乘法》第2课时优秀教学案例
4.个性化教学:在教学过程中,我注重关注每个学生的学习情况,针对他们的优点和不足进行评价,并提出改进建议。这种个性化的教学方式,能够帮助学生更好地理解有理数乘法知识,提高他们的学习效果。
5.教学策略的有效运用:在教学过程中,我运用了情景创设、问题导向、小组合作等教学策略。这些教学策略的有效运用,使学生能够在轻松愉快的氛围中学习,提高了他们的学习积极性和主动性。
3.了解有理数乘法在实际生活中的应用,提高学生的数学应用能力。
(二)过程与方法
1.通过生活实例,引导学生发现有理数乘法的问题,激发学生的思考。
2.利用小组合作探究的方式,培养学生的团队协作能力和问题解决能力。
3.通过课堂练习,及时反馈学生的学习情况,北师大版七年级数学上册2.7《有理数的乘法》第2课时优秀教学案例
一、案例背景
本节内容为北师大版七年级数学上册2.7《有理数的乘法》第2课时,主要讲解有理数的乘法法则以及实际应用。在教学过程中,我发现许多学生对于有理数的乘法法则理解不深,难以应用于实际问题中。因此,我制定了以下教学案例,旨在通过生活实例,引导学生理解有理数乘法法则,提高其数学应用能力。
2.小组合作探究:在教学过程中,我采用了小组合作探究的学习方式。通过小组讨论和竞赛,学生能够互相启发,取长补短,加深对有理数乘法法则的理解。这种学习方式培养了学生的团队合作能力和问题解决能力。
3.丰富的练习题目:在教学过程中,我设计了丰富的课堂练习,包括填空、选择、解答等类型,难度逐渐提高。通过练习,学生可以检验自己对于有理数乘法法则的掌握程度,并及时发现并弥补知识漏洞。
3.小组互评:在小组合作过程中,我会引导学生进行相互评价。如:在解答完一个有理数乘法问题时,让学生相互评价对方的解题过程和答案,从而提高他们的评价能力。

华师大版数学七年级上册《有理数乘法的运算律》教学设计2

华师大版数学七年级上册《有理数乘法的运算律》教学设计2

华师大版数学七年级上册《有理数乘法的运算律》教学设计2一. 教材分析《有理数乘法的运算律》是华师大版数学七年级上册的教学内容,这部分内容主要让学生掌握有理数乘法的运算律,并能够灵活运用。

教材通过引入日常生活中的实例,引导学生探究有理数乘法的运算规律,从而让学生理解并掌握有理数乘法的运算律。

二. 学情分析学生在学习这部分内容前,已经掌握了有理数的基本概念和加减乘除的运算方法,但对有理数乘法的运算律理解不够深入。

因此,在教学过程中,需要结合学生的实际情况,引导学生从生活实例中发现问题,探究问题,解决问题,从而加深对有理数乘法运算律的理解。

三. 教学目标1.让学生理解有理数乘法的运算律,并能够熟练运用。

2.培养学生的观察能力、思考能力和解决问题的能力。

3.提高学生的数学思维,使学生能够从生活中发现数学问题,运用数学知识解决问题。

四. 教学重难点1.教学重点:让学生理解并掌握有理数乘法的运算律。

2.教学难点:让学生能够灵活运用有理数乘法的运算律解决实际问题。

五. 教学方法1.情境教学法:通过引入生活实例,让学生在实际情境中感受数学问题,激发学生的学习兴趣。

2.问题驱动法:引导学生主动发现问题,探究问题,培养学生的问题解决能力。

3.合作学习法:学生进行小组讨论,让学生在讨论中相互学习,共同进步。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.实例材料:收集与有理数乘法相关的日常生活实例。

3.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示几个与有理数乘法相关的日常生活实例,引导学生关注生活中的数学问题。

2.呈现(10分钟)展示收集到的实例材料,让学生观察并思考其中的数学问题。

引导学生发现有理数乘法的运算律,并总结出规律。

3.操练(10分钟)让学生进行小组讨论,尝试运用所学的运算律解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示适量的练习题,让学生独立完成。

《有理数的乘法》(第2课时)教案 探究版

《有理数的乘法》(第2课时)教案 探究版

《有理数乘法的运算律》教案新课标要求知识与技能1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律,结合律和分配律,能用字母表示运算律的内容.3.能较熟练地运用运算律进行乘法运算.过程与方法1.体验乘法运算律在实际运算中的应用.2.能运用有理数的乘法解决问题.情感与态度通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣.教学重点理解和掌握乘法交换律、乘法结合律和乘法分配律.教学难点灵活运用乘法的运算律简化运算.教学过程设计一、合作探究1.计算下列各题,并比较它们的结果,你有什么发现?(1)(-6)×5与5×(-6);(2)59310⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭与95103⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.师生活动:让学生计算,然后在组内交流,验证答案的正确性,讨论两个算式相等有什么发现,最后师生一起总结规律.教师强调a×b也可以写出a·b或ab.当用字母表示乘数时,“×”号可以写成“·”或省略.小结:(1)5×(-6)=-30,(-6)×5=-30,即5×(-6)=(-6)×5.(2)5933102⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,9531032⎛⎫⎛⎫-⨯-=⎪ ⎪⎝⎭⎝⎭,即5995310103⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:ab =ba .设计意图:学生运用有理数的乘法运算计算两个算式和探究其规律,是让学生在解题的过程中有目的性地思考,为下面引出乘法交换律作铺垫.2.计算下列各题,并比较它们的结果,你有什么发现? (1)[(-4)×(-6)] ×5与(-4)×[(-6)×5]; (2)()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦与()17423⎡⎤⎛⎫⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦. 师生活动:学生自主探究,讨论、交流.师生共同归纳乘法结合律的内容并用数学表达式表示.小结:(1)[(-4)×(-6)] ×5=24×5=120, (-4)×[(-6)×5]=(-4)×(-30)=120. 即[(-4)×(-6)] ×5=(-4)×[(-6)×5]. (2)()()177********⎡⎤⎛⎫⎛⎫⨯-⨯-=-⨯-=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()1712814423233⎡⎤⎛⎫⨯-⨯-=⨯= ⎪⎢⎥⎝⎭⎣⎦. 即()()1717442323⎡⎤⎡⎤⎛⎫⎛⎫⨯-⨯-=⨯-⨯- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. 归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).设计意图:通过学生的自主探究,感受有理数乘法结合律的推导,培养学生的观察、归纳、总结能力.3.计算下列各题,并比较它们的结果,你有什么发现? (1)()()3232⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()()()32322⎛⎫-⨯-+-⨯- ⎪⎝⎭;(2)()4575⎡⎤⎛⎫⨯-+- ⎪⎢⎥⎝⎭⎣⎦与()45755⎛⎫⨯-+⨯-⎪⎝⎭.师生活动:让学生独立思考,然后再进行组内的讨论、交流,最后小组长将组内成员的意见、想法汇总,由代表汇报讨论的结果,教师让学生用自己的语言来描述分配律并引导学生用字母来表示分配律.小结:(1)()()()39232922⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()()32326392⎛⎫-⨯-+-⨯-=+= ⎪⎝⎭.即()()()()()332323222⎡⎤⎛⎫⎛⎫-⨯-+-=-⨯-+-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. (2)()4395753955⎡⎤⎛⎫⎛⎫⨯-+-=⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()()4575354395⎛⎫⨯-+⨯-=-+-=- ⎪⎝⎭.即()()445757555⎡⎤⎛⎫⎛⎫⨯-+-=⨯-+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.归纳:一般地,有理数乘法中,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加.分配律:a (b +c )=ab +ac .设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.4.这里为什么只说“和”呢?3×(5-7)能不能利用分配律?师生活动:四人一小组,小组讨论、交流,小组长收集汇总.教师巡查,关注学生是否认真讨论.小结:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3×(5-7)可以看成3乘以5与-7的和,当然可利用分配律.设计意图:通过举例说明,突破分配律理解和掌握的难点,并且培养学生合作的精神. 5.上面我们做的题中,你发现了什么?在有理数运算律中,乘法的交换律、结合律以及分配律还成立吗?小结:小学学习的乘法运算律都适用于有理数乘法.我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样. 在有理数运算律中,乘法的交换律、结合律以及分配律还成立.设计意图:学生通过观察思考主动地进行学习,在共同探索、共同发现的过程中分享成功的喜悦.并使学生感受到集体的力量.培养学生的语言表达能力及从特殊到一般的归纳能力.二、例题分析 例 计算:(1)()532468⎛⎫-+⨯- ⎪⎝⎭;(2)()457314⎛⎫-⨯-⨯ ⎪⎝⎭. 师生活动:采用大组竞赛的方法,让其中的两个大组采用一般的运算顺序进行计算,另两个大组采用运算律进行计算.教师强调:运算律在运算中有重要作用,它是解决许多数学问题的基础.(1)解法1:()()()53209112424241168242424⎛⎫⎛⎫⎛⎫-+⨯-=-+⨯-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解法2:()()()()5353242424209116868⎛⎫⎛⎫⎛⎫-+⨯-=-⨯-+⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)()()4554541077314143233⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯=-⨯⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设计意图:通过竞赛让学生更深刻地体验到运用运算律可简化运算,同时也增强了学生的竞争意识与集体荣誉感.通过比较,学生会选取用运算律来简化运算,形成知识的正迁移.问题:比较上面(1)中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种运算量小?师生活动:教师提出问题,学生观察、比较,小组讨论,小组长收集、汇总,汇报结果. 小结:解法1先做加法运算,再做乘法运算.解法2先做乘法运算,再做加法运算.解法2用了分配律.解法2的运算量小,因为解法1先要计算两个分数的和.设计意图:通过讨论,加深学生对运算律在运算中有重要作用的认识,培养探究精神. 三、练习巩固 1.计算(1)506⎛⎫⨯- ⎪⎝⎭; (2)133⎛⎫⨯- ⎪⎝⎭; (3)()30.3-⨯; (4)1667⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.解:(1)5006⎛⎫⨯-= ⎪⎝⎭;(2)1133133⎛⎫⎛⎫⨯-=-⨯=- ⎪ ⎪⎝⎭⎝⎭; (3)()()30.330.30.9-⨯=-⨯=-; (4)1616167677⎛⎫⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.计算:(1)()384⎛⎫-⨯- ⎪⎝⎭; (2)113023⎛⎫⨯- ⎪⎝⎭;(3)()20.25363⎛⎫-⨯- ⎪⎝⎭; (4)418516⎛⎫⨯-⨯ ⎪⎝⎭.解:(1)()3388644⎛⎫⎛⎫-⨯-=+⨯= ⎪ ⎪⎝⎭⎝⎭;(2)1111303030151052323⎛⎫⨯-=⨯-⨯=-=⎪⎝⎭;(3)()()()()212120.25363636369241534343⎛⎫⎛⎫-⨯-=-⨯-=⨯--⨯-=-+= ⎪ ⎪⎝⎭⎝⎭; (4)41411428885165161655⎛⎫⎛⎫⎛⎫⨯-⨯=-⨯⨯=-⨯⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设计意图:考查了对有理数乘法运算律的理解和掌握. 四、课堂小结 1.乘法交换律:两个数相乘,交换因数的位置,积相等. 符号表示:ab =ba . 2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 符号表示:(ab )c =a (bc ).3.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 符号表示:a (b +c )=ab +ac .设计意图:鼓励学生用自己的语言加以总结,通过知识反馈,优化学生的认知结构. 五、布置作业 1.计算:(1)11124346⎛⎫+-⨯ ⎪⎝⎭; (2)(-4)×(-5)×0.25; (3)100×(-3)×(-5)×0.01; (4)111369618⎛⎫--⨯⎪⎝⎭; (5)111128428⎛⎫--⨯⎪⎝⎭; (6)()1944⎛⎫⨯-⨯-⎡⎤ ⎪⎣⎦⎝⎭; (7)()32.25 2.325⨯-⨯; (8)()32.1 6.57⎛⎫-⨯⨯- ⎪⎝⎭. 设计意图:加深对乘法交换律、乘法结合律、分配律的理解,培养学生的应用意识和能力.2.如果两个数的乘积为负数,你能说出这两个数的符号分别是什么吗?如果两个数的乘积为正数呢?你能推广到多个数相乘的情形吗?3.用“>”“<”“=”填空: (1)若a <0,则a 2a ; (2)若a <c <0<b ,则a ×b ×c 0.参考答案:1.解:(1)1111112424242486410346346⎛⎫+-⨯=⨯+⨯-⨯=+-= ⎪⎝⎭;(2)(-4)×(-5)×0.25=20×0.25=5;(3)100×(-3)×(-5)×0.01=100×3×5×0.01=100×0.01×3×5=15;(4)11111136363636462496189618⎛⎫--⨯=⨯-⨯-⨯=--=-⎪⎝⎭;(5)11111112812812812832641648428428⎛⎫--⨯=⨯-⨯⨯-⨯=--=⎪⎝⎭;(6)()()()111949494919444⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯-=⨯-⨯-=⨯-⨯-=⨯=⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦;(7)()()32.25 2.3 2.25 2.30.120.62125⨯-⨯=-⨯⨯=-; (8)()332.1 6.5 2.1 6.50.9 6.5 5.8577⎛⎫⎛⎫-⨯⨯-=+⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 2.由于“两数相乘,同号得正,异号得负”,所以两数乘积为负数,说明这两数符号是一正一负;如果两数乘积为正数,说明这两数符号或者同时为正,或者同时为负.对于多个数相乘,积的符号由负因数的个数决定:当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正;只要有一个因数为0,积就为0.3.解析:(1)因为1<2,a <0,所以a >2a .(2)因为a <c <0<b ,所以a ,c 为负,b 为正,则a ×b ×c >0. (1)>;(2)>.六、目标检测设计 1.计算:(1)()()()587.2 2.512-×-×-×; (2)-|-0.25|×(-5)×4×125-⎛⎫ ⎪⎝⎭.2.计算:(1)111(8)1248-×-+⎛⎫ ⎪⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭.3.计算:2215130.34(13)0.343737-×-×+×--×.设计意图:考查了对乘法交换律、乘法结合律、分配律的理解与掌握. 目标检测答案:1.(1)53655(8)(7.2)( 2.5)860125212-×-×-×=-×××=-⎛⎫ ⎪⎝⎭; (2)1110.25(5)40.25(5)425255--×-××-=-×-××-=-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.2.(1)111111(8)1(8)(8)1(8)5248248-×-+=-×--×+-×=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭;(2)1131(48)123646--+-×-⎛⎫ ⎪⎝⎭1131(48)(48)(48)(48)123646=-×--×-+×--×-⎛⎫⎪⎝⎭=443683+-+2223=-.3.2215130.34(13)0.343737-×-×+×--× 2125(13)0.343377=-×++×--⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=-13-0.34 =-13.34.。

有理数的乘法(2)教案

有理数的乘法(2)教案

1.4有理数的乘法(第二课时)【教学目标】知识技能:掌握有理数乘法法则,能利用乘法的三个运算定律实行简化计算。

过程方法:会确定多个因数相乘时积的符号,并会用法则实行多个因数的乘积运算。

情感态度:通过学生经历探究、猜测规律的发现过程,体会转化思想。

【教学重难点】重点:会使用乘法运算律实行乘法运算及积的符号的确定。

难点:灵活使用运算律实行乘法运算。

【教学过程】一、复习引入:1.计算:(1) (-8)×(-7);(2) (—7)×(-8);(3) (-36)×2;(4) 2×(-36).2.计算:(1)(-7)×8 8×(-7)(2)[(-2)×(-3)]×5 (-2)×[(-3)×5](3)5×[(-2)+(-3)] 5×(-2)+5×(-3)二、探究新知:[师]小学里学过的那些运算律?[生]第1题使用的是乘法交换律,第2题使用的是乘法结合律,第3题使用的是乘法的分配律.[师]前面所探索的加法交换律、结合律对任意有理数仍然适合,在引入了负数这个新的成员之后,乘法运算律是否还会成立呢?2、归纳、总结两个数相乘,交换因数的位置,积 .乘法交换律: ab=三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积乘法结合律:(ab)c=一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

乘法分配律:a(b+c)=本卷须知:(1)这里的“和”不再是小学中说的“和”的概念,而是指“代数和”.(2)使用乘法运算律实行计算时,注意符号.(3)几个数直接相乘,有时计算量较大,要适当使用乘法交换律、结合律.(4)有理数乘法运算时,有时能够反向使用分配律,逆用乘法分配律.三、例题剖析例1 计算:(1)例题:用两种方法计算 (41+16-12)×12〖设计说明〗通过这两种方法的比照训练,让学生体会乘法分配律的实际应用,2计算:(1)(-85)×(-25)×(-4); (2)(-87)×15×(-171); (3)(151109-)×30 ( 4) 91716 ×17 例2(学生观察后寻找解题方法)(叫学生自己动手,把不同解法的写到黑板上)分析:学生可能有两种不同解法.法(一):直接做题(先乘除,后加减);法(二)用简便方法,有理数乘法运算时,能够反向使用分配律,逆用乘法分配律〖设计说明〗通过两种方法的比较,让学生自己总结出反用乘法分配律来解题,要比直接计算简便得多,渗透乘法分配律的灵活应用,进行技巧解题.本题主要考查乘法分配律的逆运用.计算:(1(2(3(4(5)(-8); (6 说明:解题过程由学生板演,同时说出每步的根据和目的,并强调书写的规范化.师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.四、 学生小组交流,并总结.〖设计说明〗课堂小结可以回顾新知识,加强学生的记忆,并使有关的教学内容系统连贯和相对完整;更使学生感到“言已尽而意无穷”,跨越课堂教学和课后休闲的时空界限,课后学生还会自觉“回味咀嚼”,获得更多教益.。

《有理数的乘法(第2课时)》优质教案

《有理数的乘法(第2课时)》优质教案

有理数的乘法和除法有理数的乘法第2课时有理数乘法的运算律教学目标:1、知识与技能:经历探索乘法运算律的过程,进一步发展观察、验证、猜想、归纳的能力,促使学生学好乘法运算律及多个有理数相乘积的符号的确定。

2、过程与方法:运用乘法的运算律简化乘法运算。

重点、难点:1、重点:乘法运算律的理解和运用2、难点:乘法运算律的灵活运用及运算中符号的确定。

教学过程:一、创设情景,导入新课复习:有理数的乘法法则,互为倒数的定义,两个有理数相乘积的符号的确定。

二、合作交流,解读探究1、做一做:P32“做一做”填空,并比较她们的结果。

<1> (-2) ×7=,7×(-2)=(-3)×(-4)=,(-4)×(-3)=师:由上面的两组式子,我们发现了什么规律生:乘法满足交换律。

<2> [3×(-4)]×(-5)=×(-5)=3×[(-4)×(-5)]=3×=师:由上面的两组式子,我们发现了什么规律学:乘法满足结合律。

<3>(-6)×[4+(-9)]=(-6)×=(-6)×4+(-6)×(-9)=+=师:由上面的两组式子,我们发现了什么规律学:乘法满足分配律2、想一想:<1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。

那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。

2、刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律。

乘法的交换律:a×b=b×a乘法的结合律:(a×b )×c=a×(b×c)乘法的分配律:a×(b+c)=a×b+a×c三、应用迁移,巩固提高1、例2计算:(1) (-12)×(-37)×65 (2) 6×(-10)××31 (3)-30×(21-32+54) (4) ×(-12) (1)、(2)两题的解题过程引导学先处理符号,再运用交换律与结算.(3)师:这道题如何计算能相对简便一些,请同学们思考一下。

最新2024人教版七年级数学上册2.2.1 第2课时 有理数乘法的运算律及运用--教案

最新2024人教版七年级数学上册2.2.1 第2课时 有理数乘法的运算律及运用--教案

2.2.1 有理数的乘法思考:几个不为0 的数相乘,积的符号与负因数的个数之间有什么关系?师生活动:第一步:学生先独立完成.第二步:小组探讨(1)有序交流:组长主持,组内交流,及时指导.(2) 汇总意见:组内总结得到的结论.(3) 展学准备:组长分工,做好展讲准备.第三步:展学方式:抽一小组做展讲要求:声音洪亮,语言流畅,分工合理,各小组认真倾听,积极补充、质疑提问,对展示小组进行评价. 带领学生归纳总结多个有理数相乘的积的符号法则.归纳总结:几个不是0 的数相乘,负因数的个数是_____时,积为正;负因数的个数是_____时,积为负.简而言之:奇负偶正例1 计算:师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.你能看出下式的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6)归纳总结:几个数相乘,如果其中有因数为0,那么积等于____.知识点二:有理数的乘法运算律思考:对于例1 (2) 有没有简便的方法计算.想一想:我们学过的非负有理数的乘法运算律有哪些?追问:在有理数运算过程中,这些运算律也是成立的吗?探究2 结合非负有理数运算律的探究过程,请大家“依葫芦画瓢”,完成以下几个任务.(1) 在以下图案中任意填写一个有理数(至少有个数是负数),相同图案中所填写的数字相同.好的促进作用.(2) 计算各式,观察左右两个式子的结果有什么特点?预设结果1:生:设定为5,为-6 .5×(-6)=-30 (-6)×5=-30师:通过以上计算过程,可以获得怎样的结论?生:两个数相乘,交换两个因数的位置,积相等.师:用含字母的式子表示乘法交换律呢?生:乘法交换律:ab=ba预设结果2:生:设定为3,为-4,为-5.[3×(-4)]×(-5)=60 3×[(-4)×(-5)]=60师:通过以上计算过程,可以获得怎样的结论?生:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.师:用含字母的式子表示乘法交换律呢?生:乘法结合律:(ab)c = a(bc)预设结果3:生:设定为3,为-7,为 5.5×[3+(-7 )]=-20 5×3+5×(-7 )=-20师:通过以上计算过程,可以获得怎样的结论?生:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.师:用含字母的式子表示乘法交换律呢?生:分配律:a(b + c) = ab + ac例2 用两种方法计算师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.例3 用两种方法计算师生活动:1.两名学生板演,其余学生在练习本上做题.2小组内批阅.3.对板演的内容进行评价纠错.三、当堂练习,巩固所学1. 计算:教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有理数的乘法二》教案
教材分析
通过回顾上堂课内容复习有理数的乘法法则,通过一些实例使学生发现小学时学过的乘法的三种运算律仍然成立,会用字母表示.并能够在运算中体会运算律对简化运算的作用. 教学目标
1、通过学生自己动手实际操作,证明有理数运算中乘法的交换律、结合律以及分配律依然成立.
2、培养学生积极参与对数学问题的讨论,敢于发表自己的观点,并用实例来给予证明,对数学有好奇心与求知欲.
教学重点
乘法运算律及其运用.
教学难点
例2第(3)题的简便算法需要一定的观察和分析能力.
教学过程
一、提问有理数的乘法法则,互为倒数的定义,几个有理数相乘积的符号的确定.
二、新课
1、做一做:计算下列各题,并比较她们的结果.
<1>(-7)×8与8×(-7)结果相等
2×5与5×2结果相等
师:由上面的两组式子,我们发现了什么规律?
学:乘法满足交换律.
<2>[(-4)×(-6)] ×5与(-4)×[(-6)×5]结果相等
师:由上面的两组式子,我们发现了什么规律?
学:乘法满足结合律.
<3>3(2)(3)2⎡
⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦与3(2)(3)(2)()2
-⨯-+-⨯-结果相等 45(7)()5⎡⎤⨯-+-⎢⎥⎣
⎦与45(7)5()5⨯-+⨯-结果相等 师:由上面的两组式子,我们发现了什么规律?
学:乘法满足分配律
2、想一想:<1>由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立.那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的
交换律、结合律以及分配律的式子.
<2>刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律.
乘法的交换律:a×b=b×a
乘法的结合律:(a×b)×c=a×(b×c)
乘法的分配律:a×(b+c)=a×b+a×c
3、例2计算:(1)(-12)×(-37)×5
6
(2)-30×(
1
2
2
3
-
4
5
+)
(3)4.99×(-12)
(1)题的解题过程引导学先处理符号,再运用交换律与结算.
(2)师:这道题如何计算能相对简便一些,请同学们思考一下.
(3)师:这道题如何计算能相对简便一些呢?引导学生仔细观察算式中的数字特征,如4. 99与5很接近,如果把4.99写成(5-0.01),就可以利用分配律进行简便计算.
师:由这四道计算题,同学们能否总结出我们运用乘法
交换律、结合律、分配律进行简便运算的原则?
学:能约分的、凑整的、互为倒数的数要尽可能的结合在一起.
4、例3:某校体育器材室共有60个篮球.一天课外活动,有3个级分别计划借篮球总数的
1 2,
1
3

1
4
.请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺
几个?
分析:篮球总数的1
2

1
3

1
4
的含义是什么?在这种背下,体育器材室的篮球总数可
以看做什么数?三个班级若按计划借走篮球总数的1
2

1
3

1
4
后,剩下的篮球占篮球总数
的几分之几?应怎样列式?
三、随堂练习:
P41课内练习
四、小结:在有理数运算中乘法满足交换律结合律、以及分配律,使用它们的原则是能约分的、凑整的、互为倒数的数要尽可能的结合在一起.
五、作业:课本P44作业题.
教后反思:
本课主旨意在巩固有理数乘法法则,并会进行相应的简便运算,这类知识小学时就已经做过很多的练习,学生掌握很好.。

相关文档
最新文档