06第六章商抽样与抽样分布
合集下载
概率论与数理统计 第六章 样本及抽样分布
x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n
X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )
F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]
z
(1)标准正态分布分位点
(x)
( x)dx 1 ( x)dx
z
z1
( x)
Pr[ X z ]
概率论与数理统计(06)第6章 统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
第6章抽样与抽样分布
随机变量的分布的可加性 设相互独立的随机变量X ,Y均
服从某种分布,若它们的和X Y也 服从同一种分布(参数有所不同),我们 就称该分布具有可加性.
1.设X ,Y独立,且X ~ B(m, p),Y ~ B(n, p),
则X Y ~ B(m n, p)
2.设X ,Y独立,且X ~ P(1),Y ~ P(2 ),
定义2 从总体中抽出的一部分个体叫样本(子 样).样本中所含个体的数目叫做样本容量.样本所 取的值叫做样本值.
由于抽样具有随机性,所以样本是一组随机变量 (或随机向量).
一个容量为n的样本记为
X1, X2,, Xn
样本值记为
(x1,x2, xn)
抽样方法满足的条件:
(1) 随机性
(2) 独立性
(2)显然P( X x2 ) 0.01
由对称性得 : P( X x2 ) 0.005
查表得: x2 t0.005 (10) 3.1693
t分布的性质
(1)其密度函数f(x)为偶函数; (2)当n较大时,其分布很接近正态分布.
(3)t1 (n) t (n) 在n 45时,t (n) u
常用统计量 样本均值
样本方差
X
1 n
n i 1
Xi
S 2
1 n 1
n i 1
(Xi
X
)2
样本标准差
S
1 n 1
n i 1
(Xi
X
)2
样本k阶原点矩 样本k阶中心矩 样本离差平方和
Ak
1 n
n i 1
X
k i
Bk
1 n
n
(Xi
i 1
X )k
n
(Xi X )2
服从某种分布,若它们的和X Y也 服从同一种分布(参数有所不同),我们 就称该分布具有可加性.
1.设X ,Y独立,且X ~ B(m, p),Y ~ B(n, p),
则X Y ~ B(m n, p)
2.设X ,Y独立,且X ~ P(1),Y ~ P(2 ),
定义2 从总体中抽出的一部分个体叫样本(子 样).样本中所含个体的数目叫做样本容量.样本所 取的值叫做样本值.
由于抽样具有随机性,所以样本是一组随机变量 (或随机向量).
一个容量为n的样本记为
X1, X2,, Xn
样本值记为
(x1,x2, xn)
抽样方法满足的条件:
(1) 随机性
(2) 独立性
(2)显然P( X x2 ) 0.01
由对称性得 : P( X x2 ) 0.005
查表得: x2 t0.005 (10) 3.1693
t分布的性质
(1)其密度函数f(x)为偶函数; (2)当n较大时,其分布很接近正态分布.
(3)t1 (n) t (n) 在n 45时,t (n) u
常用统计量 样本均值
样本方差
X
1 n
n i 1
Xi
S 2
1 n 1
n i 1
(Xi
X
)2
样本标准差
S
1 n 1
n i 1
(Xi
X
)2
样本k阶原点矩 样本k阶中心矩 样本离差平方和
Ak
1 n
n i 1
X
k i
Bk
1 n
n
(Xi
i 1
X )k
n
(Xi X )2
6教育统计学第六章
S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2
)
SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2
)
SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。
《抽样和抽样分布》课件
缺点
可能导致样本不均衡,造成统计结果的偏差。
系统抽样
1 定义
2 应用
系统抽样是按照固定的间隔从总体中选择 样本的方法。
适用于总体有明显的顺序结构,如时间序 列数据。
整群抽样
定义
整群抽样是按照群组进行抽样的方法,将总体划 分为不同的群组,然后从群组中选择样本。
应用
适用于总体中存在明显的群组结构,如地理区域 或机构。
《抽样和抽样分布》PPT 课件
抽样和抽样分布是统计学中重要的概念。通过抽样方法,我们可以从总体中 获取有关信息,并进行推断。本课程将介绍不同类型的抽样方法和抽样分布 的定义。
简单随机抽样
定义
简单随机抽样是从总体中随机选择样本的方法。每个个体有相等的机会被选中。
优点
结果具有代表性,能够有效减小抽样误差。
中心极限定理
定义
中心极限定理是指在一定条件下,大量样本 的平均值将呈现正许我们使用样本数据进行总体参数的估 计和假设检验。
分层抽样
1
定义
分层抽样是将总体划分为不同的层级,然后从各个层级中选择样本的方法。
2
优点
能够保证每个层级都包含在样本中,提高估计的准确性。
3
缺点
需要事先知道总体的层级结构,并且需要耗费更多的时间和成本。
抽样分布的定义
抽样分布是指在相同抽样方法下得到的样本统计量的分布。通过理解抽样分布,我们可以进行推断性统 计分析。
可能导致样本不均衡,造成统计结果的偏差。
系统抽样
1 定义
2 应用
系统抽样是按照固定的间隔从总体中选择 样本的方法。
适用于总体有明显的顺序结构,如时间序 列数据。
整群抽样
定义
整群抽样是按照群组进行抽样的方法,将总体划 分为不同的群组,然后从群组中选择样本。
应用
适用于总体中存在明显的群组结构,如地理区域 或机构。
《抽样和抽样分布》PPT 课件
抽样和抽样分布是统计学中重要的概念。通过抽样方法,我们可以从总体中 获取有关信息,并进行推断。本课程将介绍不同类型的抽样方法和抽样分布 的定义。
简单随机抽样
定义
简单随机抽样是从总体中随机选择样本的方法。每个个体有相等的机会被选中。
优点
结果具有代表性,能够有效减小抽样误差。
中心极限定理
定义
中心极限定理是指在一定条件下,大量样本 的平均值将呈现正许我们使用样本数据进行总体参数的估 计和假设检验。
分层抽样
1
定义
分层抽样是将总体划分为不同的层级,然后从各个层级中选择样本的方法。
2
优点
能够保证每个层级都包含在样本中,提高估计的准确性。
3
缺点
需要事先知道总体的层级结构,并且需要耗费更多的时间和成本。
抽样分布的定义
抽样分布是指在相同抽样方法下得到的样本统计量的分布。通过理解抽样分布,我们可以进行推断性统 计分析。
《抽样和抽样分布》课件
《抽样和抽样分布》ppt课件
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
$number {01}
目录
• 抽样调查的基本概念 • 抽样分布的基础知识 • 抽样分布的原理 • 抽样误差的评估 • 实际应用中的抽样技术 • 案例分析
01
抽样调查的基本概念
抽样的定义和意义
定义
抽样是从总体中选取一部分个体 进行研究的方法。
意义
通过对部分个体的研究,推断出 总体的特征,以节省时间和资源 。
适用场景
当总体中存在周期性变化 或某种明显的模式时,系 统抽样能够提高样本的代 表性。
注意事项
要确保抽样的间隔与总体 中的变化模式相匹配,以 避免偏差。
分层抽样
分层抽样
注意事项
将总体分成若干层,然后从每层中随 机抽取一定数量的样本。
要确保分层依据合理,且层内样本的 抽取方法一致,以避免层间和层内的 偏差。
抽样误差的衡量指标
抽样平均误差
抽样平均误差是衡量抽样误差大小的指标,它反映了样本统 计量与总体参数之间的平均偏差。
抽样变异系数
抽样变异系数是衡量非系统抽样误差的指标,它反映了由于 随机性引起的样本统计量与总体参数之间的偏差程度。
05
实际应用中的抽样技术系统ຫໍສະໝຸດ 样010203
系统抽样
按照某种规则,每隔一定 数量的个体进行抽样,直 到达到所需的样本量。
步骤 1. 明确研究目的和要求。 2. 确定总体和样本规模。
抽样的原则和步骤
01 02 03
3. 选择合适的抽样方法。 4. 制定详细的抽样计划。
5. 实施抽样调查。
02
抽样分布的基础知识
总体和样本
1 2
3
总体
研究对象的全体集合。
样本
《概率与数理统计》第06章 - 样本及抽样分布
(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布
06第六章商抽样与抽样分布PPT精品文档64页
25.12.2019
统计学院
10
第六章 抽样和抽样分布
随机数字表
9745238942 3489962435 1287087765 7077434431 9424252386
1276465909 9866332890 2136217721 1422890012 4879903443
9874763642 8036522364 9878764346 0874321123 2177609554
本例中存栏肉猪10000头组成的总体,则称为全及总体,它 是指在统计抽样中所要了解的研究对象整体,又称为母体 ,当我确定了研究目标时,它具有惟一性。一般全及总体 的单位总数用N表示,称作总体容量。
25.12.2019
统计学院
4
第六章 抽样和抽样分布
STAT
[例] 某养猪场共有存栏肉猪10000头,现欲了解这批肉猪平均每
现实世界包含的素材集合非常庞大,从中提取需要的信息 非常困难。如: •选民人数:每个候选人的支持率是多少? •产品:不合格率是多少? •环境:污染程度如何? •市场:品种、价格、质量状况、购买力等情况的了解。
在这一章里,你将会了解到样本是怎样抽取的,样本统计 量是怎样分布的,如何根据样本统计量对总体参数做估计。
25.12.2019
统计学院
5
第六章 抽样和抽样分布
一、统计抽样的几个基本概念 1、全及总体和样本总体
全及总体:研究对象全体,又称母体。容量用N表 示。具备惟一性。
样本总体:按随机原则从总体中抽出的部分单位的 全体,简称样本,被抽出的每个单位称样本单位。容 量用n表示。样本不具惟一性。
25.12.2019
不放回抽样,抽样安排---对被抽到的单位登记后不再放回总体的 抽样方法。不放回抽样与放回抽样比较,每次抽样的条件是不同 的,前一次的抽取结果会对后一次的抽取产生影响,统计中称这 样的抽样为相互不独立的试验。
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
第六章_抽样分布及总体平均数的推断
.
第四节 总体平均数的显著性检验
总体平均数的显著性检验是指对样本平 均数与总体平均数之间的差异进行的显著性 检验。若检验的结果差异显著,可以认为该 样本不是来自当前的总体,而来自另一个、 与当前总体存在显著差异的总体。即,该样 本与当前的总体不一致。
.
一、总体平均数显著性检验的原理
检验的思路是:假定研究样本是从平均 数为μ的总体随机抽取的,而目标总体的平 均数为μ0,检验μ与μ0之间是否存在差异。 如果差异显著,可以认为研究样本的总体不 是平均数为μ0的总体,也就是说,研究样本 不是来自平均数为μ0的总体。
Xt11 0.01
S n 1
Xt11 0.01
S n 1
2
2
2.9 9 1 3 .1 7 0 3 .9 62 6 2.9 9 1 3 .1 7 0 3 .9 62
1 1 2
1 1 2
2.6 240 3.3 594 .
③总体正态,σ未知,大样本
平均数的抽样分布接近于正态分布,
用正态分布代替t分布近似处理:
XZ
2
SnXZ 2
S n
(9.3)
.
例题3:从某年高考中随 机抽取102份作文试卷,算得 平均分数为26,标准差为1.5, 试估计全部考生作文成绩95 %和99%的置信区间。
.
解:学生高考分数假定是从正态总体 中抽出的随机样本,而总体的标准差σ未 知,样本平均数与总体平均数离差统计量 呈t分布。但是由于样本容量较大
从呈t分布。
于是需用t分布来估计该校三年级学生阅
读能力总体平均数95%和99%的置信区间。
.
由原始数据计算出样本统计量为
X 29.917
S3.926
当P=0.95时, t11 2.201 0.0 5
第四节 总体平均数的显著性检验
总体平均数的显著性检验是指对样本平 均数与总体平均数之间的差异进行的显著性 检验。若检验的结果差异显著,可以认为该 样本不是来自当前的总体,而来自另一个、 与当前总体存在显著差异的总体。即,该样 本与当前的总体不一致。
.
一、总体平均数显著性检验的原理
检验的思路是:假定研究样本是从平均 数为μ的总体随机抽取的,而目标总体的平 均数为μ0,检验μ与μ0之间是否存在差异。 如果差异显著,可以认为研究样本的总体不 是平均数为μ0的总体,也就是说,研究样本 不是来自平均数为μ0的总体。
Xt11 0.01
S n 1
Xt11 0.01
S n 1
2
2
2.9 9 1 3 .1 7 0 3 .9 62 6 2.9 9 1 3 .1 7 0 3 .9 62
1 1 2
1 1 2
2.6 240 3.3 594 .
③总体正态,σ未知,大样本
平均数的抽样分布接近于正态分布,
用正态分布代替t分布近似处理:
XZ
2
SnXZ 2
S n
(9.3)
.
例题3:从某年高考中随 机抽取102份作文试卷,算得 平均分数为26,标准差为1.5, 试估计全部考生作文成绩95 %和99%的置信区间。
.
解:学生高考分数假定是从正态总体 中抽出的随机样本,而总体的标准差σ未 知,样本平均数与总体平均数离差统计量 呈t分布。但是由于样本容量较大
从呈t分布。
于是需用t分布来估计该校三年级学生阅
读能力总体平均数95%和99%的置信区间。
.
由原始数据计算出样本统计量为
X 29.917
S3.926
当P=0.95时, t11 2.201 0.0 5
西南财经大学向蓉美、王青华《统计学》第三版——第6章:抽样及抽样分布
ch6统计量与抽样分布
§6.1 总体与样本的统计分布
§6.1.1 统计推断中 的总体及总体分布
研究的标志
组成元素 具体对象
组成元素
变量的具体 取值
§3.1 总体与样本
实物总体
数字总体
例:班级同学的成绩
班级同学的集合 (全体同学)
同学成绩的集合
组成元素:每位同学
组成元素:成绩分数
在统计推断中,我们感兴趣的是总体单位的某个或某些数 量特征。例如研究某种型号灯泡的寿命这一数量特征。总体的 含义是所感兴趣变量的所有取值。
T (x1, x2 ,..., xn ) 统计值
统计量既然是随机变量的函数,那么它也应该
是随机变量,并有其概率分布,统计量的分布也 称为抽样分布。抽样分布和统计推断有着密切的
联系。统计量提出以后,必须要知道其分布才能在 统计推断中使用,因为只有知道了统计量的分布, 才能利用概率论对总体的特征进行推断,并得到相 应的推断的置信度。所以在统计推断中,一项重要 的工作就是寻找统计量和导出统计量的分布。
不是 T6
1
2
( X12
X 22
.
X
2 3
)
【例6-1】总体X服从两点分布,概率分布律如下:
P(X 1) p P(X 0) 1 p
从总体中抽取容量为n的样本,求统计量T
n
Xi
的分布。
i 1
解:其取值是0到n之间的所有整数,其分布是二项分布:
P(T k) Cnk pk (1 p)nk k 0,1, 2,..., n
这样得到的X1, X2,…, Xn 称为来自总体X的一个 简单随机样本,n为这个样本的容量。
n次观察一经完成,我们就得到一组实数x1,
§6.1 总体与样本的统计分布
§6.1.1 统计推断中 的总体及总体分布
研究的标志
组成元素 具体对象
组成元素
变量的具体 取值
§3.1 总体与样本
实物总体
数字总体
例:班级同学的成绩
班级同学的集合 (全体同学)
同学成绩的集合
组成元素:每位同学
组成元素:成绩分数
在统计推断中,我们感兴趣的是总体单位的某个或某些数 量特征。例如研究某种型号灯泡的寿命这一数量特征。总体的 含义是所感兴趣变量的所有取值。
T (x1, x2 ,..., xn ) 统计值
统计量既然是随机变量的函数,那么它也应该
是随机变量,并有其概率分布,统计量的分布也 称为抽样分布。抽样分布和统计推断有着密切的
联系。统计量提出以后,必须要知道其分布才能在 统计推断中使用,因为只有知道了统计量的分布, 才能利用概率论对总体的特征进行推断,并得到相 应的推断的置信度。所以在统计推断中,一项重要 的工作就是寻找统计量和导出统计量的分布。
不是 T6
1
2
( X12
X 22
.
X
2 3
)
【例6-1】总体X服从两点分布,概率分布律如下:
P(X 1) p P(X 0) 1 p
从总体中抽取容量为n的样本,求统计量T
n
Xi
的分布。
i 1
解:其取值是0到n之间的所有整数,其分布是二项分布:
P(T k) Cnk pk (1 p)nk k 0,1, 2,..., n
这样得到的X1, X2,…, Xn 称为来自总体X的一个 简单随机样本,n为这个样本的容量。
n次观察一经完成,我们就得到一组实数x1,
第六章 样本及抽样分布
∑
n
i =1
X i , k = 1,2 , L
k
( 5 ) 样本 k 阶(中心)矩 中心)
∑
n
i =1
( X i − X ) k , k = 1,2 , L
常用统计量的性质
以下约定: 表示总体的均值, 表示总体的方差, 以下约定: µ 表示总体的均值, σ 2 表示总体的方差, α k 表示 总体的 k阶原点矩, µ k 表示总体的 k阶中心矩,即记 阶原点矩, 阶中心矩, EX = µ , D ( X ) = E ( X − µ ) 2 = σ 2 EX k = α k , E ( X − µ ) k = µ k 并且约定, 并且约定,在我们用到 α(或 µ k)时,假定它是存在的 。 k 定理 1 设总体 X 服从分布 F ( x ), X = ( X 1 , X 2 , L , X n )是从该总体
第六章 样本及抽样分布
数理统计的基本概念 抽样分布
退出 返回
Байду номын сангаас
数理统计的基本概念
总体和样本 统计量 顺序统计量和经验分布函数
继续
返回
总体、 总体、个体
总体:在统计学中, 总体:在统计学中,把所研究的全部元素组成 的集合称为母体, 总体。 的集合称为母体,或总体。 个体:而把组成母体的每个元素称为个体, 个体:而把组成母体的每个元素称为个体, 个体 例如:灯泡的平均寿命, 例如:灯泡的平均寿命,该批灯泡的全体就组 成了母体,而其中每个灯泡就是个体。 成了母体,而其中每个灯泡就是个体。但是在统 计里, 计里,由于我们关心的不是每个个体的种种具体 特性,而仅仅是它的某一项或某几项数量指标X 特性,而仅仅是它的某一项或某几项数量指标 和该数量指标X在总体中的分布情况 和该数量指标 在总体中的分布情况
6第六章 抽样分布及总体平均数的推断
师大附小二年级中48个学生的身高
容量=48 平均数=129.5625 标准差=4.8942
样本分布:样本内个体数值的频数分布
所抽取的各样本的平均数如下: 129.825 126.55 128.575 129.5 128.52 130.72 129.55 129.45 129.68 129.385 129.95 130.27 128.57 128.9 125.65
0.32
5 127-128 2 0.04 49
0.98 3
0.06
6 126-127 1 0.02 50
1
1
0.02
容量=50 平均数=129.00 标准差=1.34
根据抽样平均数频率分布表制作的多边图
例1
上海市初中一年级末数学水平的调查研究,在 该研究中假定上海市共有初中一年级学生为 150000人( N 人),如果对上海所有初中一年级学 生进行统一的标准化的数学成就测验,其测验的平 均成绩为80分( μ ),测验的标准差为9分( σ )。
( 其中
)
6.2.3 总体平均数的估计
(2)总体方差σ2 未知时
1 当总体分布为正态时
当总体分布为正态,总体方差( ) 2未知时,样 本平均数 的分布X为t分布,这时可用下式计算其 置信区间:
X
t
2
X
X
t 2 X
(其中
X )snn1
s n 1
6.2.3 总体平均数的估计
(2)总体方差σ2 未知时
•有效性:当总体参数的无偏估计不止一个统计量 时,无偏估计变异性小者有效性高,变异大者有效 性低。
6.2 总体平均数的参数估计
(2)点估计的评价标准: •一致性:当样本容量无限增大时,估计量的值能 越来越接近它所估计的总体参数值,估计值越来越 精确,逐渐趋近于真值。
管理统计学课件_第06章
管理统计学
Beijing institute of technology
北京理工大学
两个样本均值差的抽样分布
例 某手机厂商对甲、乙两省份居民进行抽样调查后发现, 甲省消费者中有约18%的人使用过该品牌手机,而乙省 消费者中使用过该品牌手机的人数比例为14%。假设以 上调查结果是真实的,现在从甲省抽取1500人,乙省抽 取2000人组成两个独立随机样本,请分析甲省用过该品 牌手机的人数比例低于乙省用过该品牌手机人数比例的 可能性有多大?
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
两个样本方差比的抽样分布
1 两个总体都为正态分布,即X1~N(μ1,σ12)的一个样本,Y1,
Y2,… ,Yn2是来自正态总体X2~N(μ2,σ22 )
2 从两个总体中分别抽取容量为n1和n2的独立样本 3
X ~ N ( ,
2
n
)
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
示例
某高校在研究生入学体检后对所有结果进行统计分析,得 出其中某一项指标的均值是7,标准差2.2。从这个总体中 随机选取一个容量为31的样本。 (1)计算样本均值大于7.5的概率, (2)计算样本均值小于7.2的概率, (3)计算样本均值在7.2和7.5之间的概率。
2
2
~ ( n 1)
2
的抽样分布为自由度为 n 1 的卡方分布。即:
2
n
( n 1) S
2
2
Beijing institute of technology
北京理工大学
两个样本均值差的抽样分布
例 某手机厂商对甲、乙两省份居民进行抽样调查后发现, 甲省消费者中有约18%的人使用过该品牌手机,而乙省 消费者中使用过该品牌手机的人数比例为14%。假设以 上调查结果是真实的,现在从甲省抽取1500人,乙省抽 取2000人组成两个独立随机样本,请分析甲省用过该品 牌手机的人数比例低于乙省用过该品牌手机人数比例的 可能性有多大?
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
两个样本方差比的抽样分布
1 两个总体都为正态分布,即X1~N(μ1,σ12)的一个样本,Y1,
Y2,… ,Yn2是来自正态总体X2~N(μ2,σ22 )
2 从两个总体中分别抽取容量为n1和n2的独立样本 3
X ~ N ( ,
2
n
)
Beijing institute of technology
北京理工大学
Management statistics
管理统计学
示例
某高校在研究生入学体检后对所有结果进行统计分析,得 出其中某一项指标的均值是7,标准差2.2。从这个总体中 随机选取一个容量为31的样本。 (1)计算样本均值大于7.5的概率, (2)计算样本均值小于7.2的概率, (3)计算样本均值在7.2和7.5之间的概率。
2
2
~ ( n 1)
2
的抽样分布为自由度为 n 1 的卡方分布。即:
2
n
( n 1) S
2
2
概率论与数理统计6.第六章:样本及抽样分布
),
,
,
,
是来
Z=
(
-
证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不放回抽样,抽样安排---对被抽到的单位登记后不再放回总体的 抽样方法。不放回抽样与放回抽样比较,每次抽样的条件是不同 的,前一次的抽取结果会对后一次的抽取产生影响,统计中称这 样的抽样为相互不独立的试验。
注意:二种方法都遵循了“等机会原则”
2020/10/10
统计学院
8
第六章 抽样和抽样分布
二、简单随机抽样
简单随机抽样也称为纯随机抽样。它是对总体单位 不做任何分类或排队,直接从总体中按“随机原则”抽 取样本单位的调查方式。
其样本抽取过程按总体为有限和无限的不同加以区别
1、有限总体抽样
从容量为N的有限总体中进行抽样,如果容量为n的每个 可能样本被抽到的可能性相等,则称被抽的样本为简单 随机样本。
2020/10/10
统计学院
6
第六章 抽样和抽样分布
STAT
2、总体参数和样本统计量
根据全及总体各单位变量值计算的反映全及总体某数量 特征的综合指标,由于全及总体唯一确定,故称总体参
数。如上例中的
根据样本总体各单位变量值计算的反映样本总体某数量 特征的综合指标,由于样本总体不具惟一性,故称为样 本统计量,它是一个随机变量。
统计学院
9
第六章 抽样和抽样分布
为了便于抽取样本单位,一般在明确抽样框的条件下, 对总体的每个单位都要编号,然后用抽签式或利用《随 机数字表》进行抽取。
例如:N=500 n=10 编码从1-500号
在随机数表中随意点二个数字,得到54-50=4行,34列。 则选取的号码从这个被选中的数开始,由于500是个三 位数,则小于500的连续三位数即为中选号码。见表中 所示。
如上例中的100头肉猪的平均每头毛重(95.5kg)
2020/10/10
统计学院
7
第六章 抽样和抽样分布
3、放回抽样与不放回抽样 从全及总体中抽取样本有两种方法——放回抽样和不放回 抽样。
放回抽样,抽样安排---对每次被抽到的单位经登记后再放回总体 ,重新参与下一次抽选的抽样方法。在每次的抽取中样本单位被 抽中的概率都等于统计中称这样的抽样为相互独立的试验。
作为公司营销部负责人来说,他必须思考怎样去采集汽车生
产厂家的这些经济机密数据?获得这些数据后,应采用什么方法 作数据分析与推断。这必然会用到统计推断的知识。
2020/10/10
统计学院
2
第六章 抽样和抽样分布
从这一章开始便进入推断统计学的学习内容,它会节省人们 的时间和财物来达到认识对象的最佳限度。
2020/10/10
统计学院
10
第六章 抽样和抽样分布
随机数字表
9745238942 3489962435 1287087765 7077434431 9424252386
1276465909 9866332890 2136217721 1422890012 4879903443
9874763642 8036522364 9878764346 0874321123 2177609554
头毛重(设为 ),如果将每头肉猪过称去称而获取数据将是不
合算的。我们可以按照“等机会原则” 从中抽出100头称其重量,
计算出这100头猪的平均毛重(假定平均每头95.5kg),以达到我们 期望的目的。
本例中所抽出的100头肉猪组成的总体,则称为样本总体,它是 指在统计抽样中按照“等机会原则” 从全及总体的N(10000)中 抽出的部分单位(每个单位称作样本单位)所组成的整体,简称样 本,又称子样。一般样本总体的单位总数用n(100)表示,称作样 本容量。样本总体则不具惟一性,它的可能个数与N、n及抽样 方法有关。通常n<30称为小样本,n>30称为大样本,在抽样调 查中取大或小样本会直接影响到抽样分布的特征。
第六章 抽样和抽样分布
STAT
本章重点: 1、简单随机抽样;
2、 x 的抽样分布;
3、 p 的抽样分布; 4、其他组织形式的抽样;
5、正态分布原理。 本章难点: 抽样分布原理。
2020/10/10
统计学院
1
第六章 抽样和抽样分布
统计实例(Statistics in Practice)
我国某家用电器公司是国内空调最大的生产厂家之一,2004 年时其空调年销售就已达到700万台,销售额为120亿元。这家低 调、在外界看来有些神秘的家电企业,尽管不作声张,极少炒作 ,甚至喊出“不想做行业老大”的话,之后3年来却成长势头迅 猛,增长率一直40%以上,赢利率极高。这背后的原因在于美的 较早就开始了提升企业竞争能力。为了避免当今家用电器行业低 价利薄的局面,实现多条腿走路,以在新一轮竞争中保持优势, 该电器集团决策人又提出了进军汽车行业的战略目标。为此他要 求公司营销部对国际国内各大汽车生产厂家生产能力、销售额、 营利能力、市场占有率等方面作调查分析。
2020/10/10
统计学院
3
第六章 抽样和抽样分布
STAT
第一节 抽样及抽样组织形式 [例] 某养猪场共有存栏肉猪10000头,现欲了解这批肉猪平 均每头毛重,如果将每头肉猪都过称去称而获取数据将是 不合算的。我们可以按照“等机会原则” 从中抽出100头 肉猪称其重量,计算这100头猪的平均每头毛重,以达到我 们期望的目的。
现实世界包含的素材集合非常庞大,从中提取需要的信息 非常困难。如: •选民人数:每个候选人的支持率是多少? •产品:不合格率是多少? •环境:污染程度如何? •市场:品种、价格、质量状况、购买力等情况的了解。
在这一章里,你将会了解到样本是怎样抽取的,样本统计 量是怎样分布的,如何根据样本统计量对总体参数做估计。
本例中存栏肉猪10000头组成的总体,则ቤተ መጻሕፍቲ ባይዱ为全及总体, 它是指在统计抽样中所要了解的研究对象整体,又称为母 体,当我确定了研究目标时,它具有惟一性。一般全及总 体的单位总数用N表示,称作总体容量。
2020/10/10
统计学院
4
第六章 抽样和抽样分布
STAT
[例] 某养猪场共有存栏肉猪10000头,现欲了解这批肉猪平均每
2020/10/10
统计学院
5
第六章 抽样和抽样分布
一、统计抽样的几个基本概念 1、全及总体和样本总体
全及总体:研究对象全体,又称母体。容量用N表 示。具备惟一性。
样本总体:按随机原则从总体中抽出的部分单位的 全体,简称样本,被抽出的每个单位称样本单位。容 量用n表示。样本不具惟一性。
2020/10/10
注意:二种方法都遵循了“等机会原则”
2020/10/10
统计学院
8
第六章 抽样和抽样分布
二、简单随机抽样
简单随机抽样也称为纯随机抽样。它是对总体单位 不做任何分类或排队,直接从总体中按“随机原则”抽 取样本单位的调查方式。
其样本抽取过程按总体为有限和无限的不同加以区别
1、有限总体抽样
从容量为N的有限总体中进行抽样,如果容量为n的每个 可能样本被抽到的可能性相等,则称被抽的样本为简单 随机样本。
2020/10/10
统计学院
6
第六章 抽样和抽样分布
STAT
2、总体参数和样本统计量
根据全及总体各单位变量值计算的反映全及总体某数量 特征的综合指标,由于全及总体唯一确定,故称总体参
数。如上例中的
根据样本总体各单位变量值计算的反映样本总体某数量 特征的综合指标,由于样本总体不具惟一性,故称为样 本统计量,它是一个随机变量。
统计学院
9
第六章 抽样和抽样分布
为了便于抽取样本单位,一般在明确抽样框的条件下, 对总体的每个单位都要编号,然后用抽签式或利用《随 机数字表》进行抽取。
例如:N=500 n=10 编码从1-500号
在随机数表中随意点二个数字,得到54-50=4行,34列。 则选取的号码从这个被选中的数开始,由于500是个三 位数,则小于500的连续三位数即为中选号码。见表中 所示。
如上例中的100头肉猪的平均每头毛重(95.5kg)
2020/10/10
统计学院
7
第六章 抽样和抽样分布
3、放回抽样与不放回抽样 从全及总体中抽取样本有两种方法——放回抽样和不放回 抽样。
放回抽样,抽样安排---对每次被抽到的单位经登记后再放回总体 ,重新参与下一次抽选的抽样方法。在每次的抽取中样本单位被 抽中的概率都等于统计中称这样的抽样为相互独立的试验。
作为公司营销部负责人来说,他必须思考怎样去采集汽车生
产厂家的这些经济机密数据?获得这些数据后,应采用什么方法 作数据分析与推断。这必然会用到统计推断的知识。
2020/10/10
统计学院
2
第六章 抽样和抽样分布
从这一章开始便进入推断统计学的学习内容,它会节省人们 的时间和财物来达到认识对象的最佳限度。
2020/10/10
统计学院
10
第六章 抽样和抽样分布
随机数字表
9745238942 3489962435 1287087765 7077434431 9424252386
1276465909 9866332890 2136217721 1422890012 4879903443
9874763642 8036522364 9878764346 0874321123 2177609554
头毛重(设为 ),如果将每头肉猪过称去称而获取数据将是不
合算的。我们可以按照“等机会原则” 从中抽出100头称其重量,
计算出这100头猪的平均毛重(假定平均每头95.5kg),以达到我们 期望的目的。
本例中所抽出的100头肉猪组成的总体,则称为样本总体,它是 指在统计抽样中按照“等机会原则” 从全及总体的N(10000)中 抽出的部分单位(每个单位称作样本单位)所组成的整体,简称样 本,又称子样。一般样本总体的单位总数用n(100)表示,称作样 本容量。样本总体则不具惟一性,它的可能个数与N、n及抽样 方法有关。通常n<30称为小样本,n>30称为大样本,在抽样调 查中取大或小样本会直接影响到抽样分布的特征。
第六章 抽样和抽样分布
STAT
本章重点: 1、简单随机抽样;
2、 x 的抽样分布;
3、 p 的抽样分布; 4、其他组织形式的抽样;
5、正态分布原理。 本章难点: 抽样分布原理。
2020/10/10
统计学院
1
第六章 抽样和抽样分布
统计实例(Statistics in Practice)
我国某家用电器公司是国内空调最大的生产厂家之一,2004 年时其空调年销售就已达到700万台,销售额为120亿元。这家低 调、在外界看来有些神秘的家电企业,尽管不作声张,极少炒作 ,甚至喊出“不想做行业老大”的话,之后3年来却成长势头迅 猛,增长率一直40%以上,赢利率极高。这背后的原因在于美的 较早就开始了提升企业竞争能力。为了避免当今家用电器行业低 价利薄的局面,实现多条腿走路,以在新一轮竞争中保持优势, 该电器集团决策人又提出了进军汽车行业的战略目标。为此他要 求公司营销部对国际国内各大汽车生产厂家生产能力、销售额、 营利能力、市场占有率等方面作调查分析。
2020/10/10
统计学院
3
第六章 抽样和抽样分布
STAT
第一节 抽样及抽样组织形式 [例] 某养猪场共有存栏肉猪10000头,现欲了解这批肉猪平 均每头毛重,如果将每头肉猪都过称去称而获取数据将是 不合算的。我们可以按照“等机会原则” 从中抽出100头 肉猪称其重量,计算这100头猪的平均每头毛重,以达到我 们期望的目的。
现实世界包含的素材集合非常庞大,从中提取需要的信息 非常困难。如: •选民人数:每个候选人的支持率是多少? •产品:不合格率是多少? •环境:污染程度如何? •市场:品种、价格、质量状况、购买力等情况的了解。
在这一章里,你将会了解到样本是怎样抽取的,样本统计 量是怎样分布的,如何根据样本统计量对总体参数做估计。
本例中存栏肉猪10000头组成的总体,则ቤተ መጻሕፍቲ ባይዱ为全及总体, 它是指在统计抽样中所要了解的研究对象整体,又称为母 体,当我确定了研究目标时,它具有惟一性。一般全及总 体的单位总数用N表示,称作总体容量。
2020/10/10
统计学院
4
第六章 抽样和抽样分布
STAT
[例] 某养猪场共有存栏肉猪10000头,现欲了解这批肉猪平均每
2020/10/10
统计学院
5
第六章 抽样和抽样分布
一、统计抽样的几个基本概念 1、全及总体和样本总体
全及总体:研究对象全体,又称母体。容量用N表 示。具备惟一性。
样本总体:按随机原则从总体中抽出的部分单位的 全体,简称样本,被抽出的每个单位称样本单位。容 量用n表示。样本不具惟一性。
2020/10/10