3.2019江苏高考应用题专项

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.应用题

1.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC(如图).设计要求彩门的面积为S(单位:m2),高为h(单位:m)(S,h为常数).彩门的下底BC固定在广场底面上,上底和两腰由不锈钢支架组成,设腰和下底的夹底为α,不锈钢支架的长度之和记为l.

(1)请将l表示成关于α的函数l=f(α);

(2)问:当α为何值时l最小,并求最小值.

2.某宾馆在装修时,为了美观,欲将客户的窗户设计成半径为1 m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口.

(1)若窗口ABCD 为正方形,且面积大于14

m 2(木条宽度忽略不计),求四根木条总长的取值范围;

(2)若四根木条总长为6 m ,求窗口ABCD 面积的最大值.

3.(2018·江苏省启东中学模拟)为了庆祝江苏省启东中学九十周年校庆,展示江苏省启东中学九十年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一

个半径为2百米,圆心角为π3

的扇形展示区的平面示意图.点C 是半径OB 上一点(异于O ,B 两点),点D 是圆弧AB 上一点,且CD ∥OA .为了实现“以展养展”,现在决定:在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每百米为2a 元,线段CD 及圆弧DB 处每百米均为a 元.设∠AOD =x 弧度,广告位出租的总收入为y 元.

(1)求y 关于x 的函数解析式,并指出该函数的定义域;

(2)试问x 为何值时,广告位出租的总收入最大,并求出其最大值.

4.(2018·连云港质检)如图(1)是一直角墙角,∠AOB=90°,墙角的两堵墙面和地面两两互相垂直.ABCD是一块长AB为6米,宽BC为2米的板材,现欲用板材与墙角围成一个直棱柱空间堆放谷物.

(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?

(2)由于墙面使用受限,OA面只能使用2米,OB面只能使用4米.此矩形板材可以折叠围成一个直四棱柱空间,如图(2),如何折叠板材才能使这个空间最大?

5.在我国某海域O处有一海警执法舰发现位于北偏西60°的A处有一艘走私船,并测得O,A 两点相距12海里,且走私船行驶速度是海警执法舰行驶速度的一半.现以点O为坐标原点,东西方向为x轴,建立如图所示的平面直角坐标系.

(1)若两者均沿直线匀速行驶,求走私船能被海警执法舰截获的路径的曲线方程;

(2)若满足3x-y+40<0的点(x,y)组成的区域是公海,试问海警执法舰是否一定能在我国领海内截获走私船?若能,请说明理由;若不能,则需要使用巡逻艇进行快速追击,请问巡逻艇的速度至少应为走私船速度的几倍才能在我国领海内截获走私船?

6.(2018·常熟调研)如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米, CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点. MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风).

(1)设MN 与AB 之间的距离为x ⎝⎛⎭

⎫0≤x <52且x ≠1米,试将通风窗的通风面积S (平方米)表示成关于x 的函数

y =S (x );

(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?

相关文档
最新文档