深基坑支挡结构设计技术手册
2020最新《建筑深基坑工程施工安全技术规范》JGJ311-2013
2020最新《建筑深基坑工程施工安全技术规范》JGJ311-2013Technical Specification for Safety Construction of Deep BuildingFoundation Pits1 总则1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。
1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。
1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验制定施工安全技术措施。
1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 基坑construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。
2.1.2 风险控制Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。
2.1.3 基坑支护retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。
2.1.4 基坑侧壁side of foundation pit 构成基坑围体的某一侧面。
2.1.5 基坑周边环境surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.6 支护结构retaining structure支挡或加固基坑侧壁的承受荷载的结构。
2.1.7 设计使用年限design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。
启明星技术手册
用心整理可以编辑的word文档深基坑支挡结构设计计算软件FRWS2006技术手册1 土压力计算《建筑基坑支护技术规程》(JGJ 120-99)1.1.1 主动土压力3.4.1支护结构水平荷载标准值e ajk应按当地可靠经验确定,当无经验时可按下列规定计算(图:图3.4.1 水平荷载标准值计算简图1.对于碎石土及砂土:1)当计算点位于地下水位以上时:(3.4.1-1)2)当计算点位于地下水位以下时:(3.4.1-2)式中K ai—第i层的主动土压力系数,可按本规程第3.4.3条规定计算;σajk—作用于深度z j处的竖向应力标准值,可按本规程第3.4.2条规定计算;c ik—三轴试验(当有可靠经验时可采用直接剪切试验)确定的第i层土固结不排水(快)剪粘聚力标准值;z j—计算点深度;m j—计算参数,当z j<h时,取z j,当z j≥h时,取h;h wa—基坑外侧水位深度;ηwa—计算系数,当h wa≤h时,取1,当h wa>h时,取零;γw—水的重度。
2.对于粉土及粘性土:e ajk=σajk K ai-2c ik(K ai)1/2 (3.4.1-3)3.当按以上规定计算的基坑开挖面以上水平荷载标准值小于零时,应取零。
3.4.2基坑外侧竖向应力标准值σajk可按下列规定计算:σajk=σrk+σ0k+σ1k (3.4.2-1)1.计算点深度z j处自重竖向应力σrk1)计算点位于基坑开挖面以上时:σrk=γmj z j (3.4.2-2)式中γmj—深度z j以上土的加权平均天然重度。
2)计算点位于基坑开挖面以下时:σrk=γmh h (3.4.2-3)式中γmh—开挖面以上土的加权平均天然重度。
2.当支护结构外侧地面作用满布附加荷载q0时(图3.4.2-1),基坑外侧任意深度附加竖向应力标准值σ0k可按下式确定:σ0k=q0 (3.4.2-4)图3.4.2-1 地面均布荷载时基坑外侧附加竖向应力计算简图3.当距支护结构b1外侧,地表作用有宽度为b0的条形附加荷载q1时(图3.4.2-2),基坑外侧深度CD范围内的附加竖向应力标准值σ1k可按下式确定:σ1k=q1b0/(b0+2b1) (3.4.2-5)图3.4.2-2 局部荷载作用时基坑外侧附加竖向应力计算简图4.上述基坑外侧附加荷载作用于地表以下一定深度时,将计算点深度相应下移,其竖向应力也可按上述规定确定。
建筑工程深基坑支护施工技术及质量控制措施
建筑工程深基坑支护施工技术及质量控制措施摘要:目前我国经济发展迅速,建筑工程逐渐扩大规模。
深基坑边坡支护技术具有一定的复杂性和较大的风险性,直接影响到综合工程、技术控制工作的质量、现场施工人员和机械设备的安全,也对建筑物的使用构成威胁。
软土中性基坑边坡治理,施工过程中经常遇到滑坡等隐患。
由于复杂的地理条件,管理工作直接影响工程质量,造成严重安全事故的意外后果。
关键词:建筑工程;深基坑支护;施工技术;质量控制引言当前的工程项目中,基坑开挖深度越来越大,给施工和基坑的支护带来了极大的困难。
为了确保工程安全,必须采取合理的开挖和支护措施,以确保其安全性和稳定性。
深基坑事故频发,给社会、经济带来了严重的损失,本文结合工程实际,主要分析了深基坑支护工程的施工技术与施工管理要点。
1建筑工程深基坑支护施工技术概述深基坑支护技术与开挖深度有关,基本所有的建筑工程都会有基础开挖施工内容,但只有地质条件较差、地下施工环境复杂或深度高达5m及以上的工程项目才需要考虑基坑维稳措施。
面对上述情形,施工人员应在基坑四周设置垂直挡土围护结构,再以桩、墙、支撑等形式有效抵挡基坑内外部的土体压力,从而达到合理传递和分散压力的目的,以保证基坑及周边设施、建构筑物等安全。
虽然只是一种临时围护结构,但其建造方式和工艺分类却十分丰富。
目前,我国建筑工程中应用较多的有重力式挡墙、锚杆支护以及各种桩支护形式。
在实际应用过程中,施工人员需要考虑不同工程项目所处施工区域的地质环境、地面现状和地下管线布设等条件,并结合基坑深度、支护结构的安全等级设定、支护方案的可行性及经济性等因素确定最佳支护施工方案。
2建筑工程深基坑支护施工技术特点2.1施工深度大、危险性高建筑工程深基坑支护施工在充分利用地下资源的同时,增大深基坑深度,深基坑工程开挖深度多超过5m,施工场地复杂,多为临时结构,施工危险性高、综合性强,整个工程施工需要做好安全防控,预先制订好应急预案,实现全过程的工程监测。
建筑工程施工中深基坑支护的施工技术管理研究
建筑工程施工中深基坑支护的施工技术管理研究建筑工程施工中采用深基坑支护技术的科学应用,就能从整体上提高施工质量水平。
要能从多方面加强重视,做好深基坑支护施工技术的管理工作,从这些基础层面得到了强化,才能保障工程顺利开展。
基于此,本文先就建筑施工深基坑支护技术的类型和应用问题加以阐述,然后就施工技术的管理措施详细探究。
标签:建筑工程,深基坑支护,技术管理一、建筑工程施工深基坑支护技术的类型和应用问题(一)建筑工程施工深基坑支护技术的类型建筑工程的实际施工中,所运用的深基坑支护技术对保障工程质量有着积极作用,深基坑支护技术的类型不同,在应用过程中的操作流程也有着不同。
如钻孔灌注桩支护技术的应用,这是应用比较广泛的深基坑支护技术类型,通过该技术能保障建筑施工质量,避免建筑施工受到渗漏的影响使得深基坑支护问题发生。
通过钻孔灌注桩支护技术的应用,就能对部分区域地下水位粘土硬度低以及含沙量多等问题得到有效解决。
另外,建筑工程中深基坑支护技术的类型当中,旋喷桩支护喷射注浆法也是比较重要的支护技术类型。
采用这一支护的方式就能在深层搅拌水泥土形成围护墙,采用这一施工技术所占地的面积也相对比较小。
通过旋喷注浆支护方式建立围护墙的方式,就能够起到良好的挡水作用,在技术的应用稳定上有着保障。
(二)建筑工程施工深基坑支护技术应用问题从当前建筑工程深基坑支护技术的应用现状能发现,其中还存在着诸多的问题有待解决,主要体现在深基坑支护工程对技术应用上还不是很完善。
施工中使用的钢板支护技术比较容易对周边环境造成影响,使得地面出现凹凸不平的现象,这对建筑深基坑支护的质量也会产生不利的影响。
通过深基坑支护施工技术的科学应用下,就能使周边土体稳定性得到有效保障。
再者,深基坑支护施工技术的应用过程中,受到环境以及地质等因素的影响下,开挖施工中就会造成土壤的松动,造成坍塌的质量问题[3]。
另外,建筑工程深基坑支护技术的应用当中在施工技术的应用管理方面没有加强重视,从而就比较容易造成工程质量问题。
高层建筑工程深基坑支护施工技术分析_1
高层建筑工程深基坑支护施工技术分析发布时间:2022-06-13T08:25:26.772Z 来源:《工程建设标准化》2022年37卷第4期作者:郝涛[导读] 社会经济稳步增长的同时,城市化进程的步伐逐渐加快,高层建筑项目逐年增多,各种新型施工技术也得到了迅速的发展郝涛青岛旭辉工程咨询有限公司摘要:社会经济稳步增长的同时,城市化进程的步伐逐渐加快,高层建筑项目逐年增多,各种新型施工技术也得到了迅速的发展,高层建筑项目的施工环境比较复杂,涉及到的方面众多,而深基坑施工技术便是其中非常重要的组成部分,关乎着整个高层建筑工程项目的施工质量。
只有不断优化施工技术并合理应用于施工环节当中,才能够保障施工建设任务稳步有序开展,不断提升高层建筑工程建设施工进度与质量。
关键词:高层建筑;深基坑施工;支护施工技术引言近年来,随着国内城市化建设进程的持续推进,建筑工程领域的建设规模与体量呈现出逐年扩张的态势,且高层建筑占据的比例不断攀升,从而增加了项目总体的施工体量与难度,深化了深基坑对各种支护技术的需求。
深基坑支护作为基础施工的重要分部工程,其分部施工的质量效果也影响着工程整体的质量与安全。
为此,加强对深基坑支护施工技术运用重点的全面解析,对推进建筑工程项目的高效与建筑业高质量发展具有重要意义。
1深基坑支护的意义工程建设对土地资源的需求量较大,因此,为了保证建筑企业稳定发展,工作人员必须坚持国家的可持续发展方针,提高土地资源的利用率。
充分利用土地资源能够在保证建筑工程项目顺利开展的同时,为建筑企业带来良好的经济效益。
因此,在建筑工程施工过程中,工作人员需要全面考察施工建设区域,包括环境、水文、地质等情况,并且根据实际建设情况来做好环境保护工作,从而减少环境污染以及对施工区域周边居民日常生活的影响。
随着我国科学技术的不断发展,人们对建筑工程的施工标准要求也在不断提高。
在深基坑施工中,随着基坑施工深度的不断增加,土方开挖的面积也越来越大。
路基支挡结构
路基支挡结构1 概述支挡结构是用来支撑、加固填土或山体土坡,防止其坍塌以保持稳定的一种建筑物,主要用于承受土体侧向土压力.在铁路、公路路基工程中,支挡结构被广泛应用于稳定路堤、路堑、隧道洞口以及桥梁两段的路基边坡等,在水利、矿场、房屋建筑等工程中,支挡结构主要用于加固山坡,基坑边坡和河流岸壁。
当以上工程或其他岩土工程遇到滑坡。
崩塌。
岩堆体、落实.泥石流等不良地质灾害时,支挡结构主要用于加固或挡拦不良地质体.2 支挡结构的分类支挡结构类型划分的方法很多,一般按支挡结构的材料、结构形式、设置位置进行换分的多种方法,现说明如下:(一)按结构形式分1。
重力式挡土墙(包括衡重式挡土墙);2。
托盘式挡土墙和卸荷板式挡土墙;3.悬臂式挡土墙和扶壁式挡土墙;4。
加筋挡土墙;5.锚定挡土墙;6.抗滑桩和由此演变而来的桩板式挡土墙;7。
锚杆挡土墙;8。
土钉墙;9。
预应力锚索加固技术和由此发展而来的锚索桩等锚索复合结构。
10.桩基托梁挡土墙.(二)按设置支挡结构的地区划分条件分为一般地区、地震地区、浸水地区以及不良地质地区和特殊岩土地区等。
(三)按支挡结构的材料划分1。
分为浆砌片石支挡结构(如浆砌片石挡土墙)2。
混凝土支挡结构(如混凝土挡土墙、桩板墙、抗滑桩等)3.土工合成材料支挡结构(如包裹式加筋挡土墙)4.复合型支挡结构(如卸荷板或托盘式挡土墙、土钉墙、预应力锚索、锚索桩等)。
(四)按支挡结构设置的位置划分1。
用于稳定路堑边坡的路堑边坡支挡结构;2.用于稳定路堤边坡的路堤边坡支挡结构,路肩式与路堤式支挡结构;3.用于稳定建筑物旁的陡峻边坡减少挖方的边坡支挡结构;4。
用于稳定滑坡、岩堆等不良地质体的抗滑支挡结构;5.用于加固河岸。
基坑边坡、拦挡落石等其他特殊部位的支挡结构;3 支挡结构简介3。
1重力式支挡结构重力式挡土墙是以挡土墙自身重力来维持挡土墙在土压力作用下的稳定。
重力式挡土墙可用石砌或混凝土建成,其特点是体积、重量都大。
4.2深基坑支护类型与设计计算
0.5Dmin 0.33Dmin 0.5Dmin 0.33Dmin
25.83Dmin 1.55Dmin
2
3
14.28Dmin 6.45Dmin
2
3
主动区力矩合计: 1.55Dmin3+25.83Dmin2+143.35Dmin+265.2 被动区力矩合计: 6.46Dmin3+14.28Dmin2
沿桩排方向取1m长度计算土压力计算见表2-9,表2-10
2.求反弯点位置 2.求反弯点位置
反弯点位置可以用桩前后土压力为零点近似确定: 35.489+5.403D1=57.288D1 解出:D1=0.68m
表2-10 被动土压力计算表
参数 c=0 φ=32 γ=17.6 Kp=3.255 O
Kp =1.804
2)等反力布置
算例: 算例:某工程基坑支护拟采用悬臂桩结构,主要参数
如图2-3(a)所示。试计算桩的设计长度,桩身最大弯矩 及所在位置。
土压力计算
主动土压力计算表
计算 深度 Z c=10 φ=20 A γ=19 Ka=0.49 =0.7 B C 0 0.45 6.0 0 8.55 114 20 28.55 134 9.8 14 65.66 14 14 14 -4.2 0 51.66 σz=γ·Z σz+q 2C· (σz+q)Ka
因为摩擦力作用方向,墙前墙体摩擦力向下。摩擦力阻止 土体滑动,被动土压力增大。 表4.2中当为混凝土板桩时,40度(3.0);35度(2.6);30 度(2.3);25度(2.1);20度(1.8);15度(1.5);10度 (1.2)。
土压力强度等于零的位置的计算。 t 所需实际板桩的入土深度为: = (1.1 − 1.2)t 0 (用等值梁法计算板桩是偏于安全的,实际 计算时将最大弯矩予以折减,根据丹麦 的研究成果折减系数为0.6-0.8,一般为 0.74。) 对支撑反力,则发现有不够的安全度,实 际设计时,将支撑反力加大35%, R=1.35R0 例4-1
最新同济启明星软件:深基坑支挡结构分析计算软件(frws v7.1用户手册
同济启明星软件深基坑支护工程结构分析计算软件系列之一深基坑支挡结构分析计算软件FRWS v7.1用户手册(建筑之家)上海济博土木工程科技有限公司二0一一年九月第二章用户界面说明在FRWS软件日常工作中,整个软件的主界面由六个分区组成:标题栏:显示软件的名称。
菜单栏:与当前编辑器可用的功能对应。
工具栏:列出菜单栏内的一些常用功能,方便用户调用。
状态栏:显示提示信息。
编辑区:所有打开文件的编辑器都分布在这个区,可以同时打开多个文件,通过点击其编辑器的标签进行切换。
只有一个编辑器是活动的,菜单栏、工具栏的显示项是依据活动编辑器可用的功能而变化的,视图中显示的内容也是和当前编辑器对应的。
视图区:视图区显示打开的视图,视图从某个视角显示当前编辑器的数据,目前有三种视图:大纲视图:显示围护设计的剖面图,编辑区的数据改变,剖面图的图形自动作出相应的变化。
输出视图:执行计算后,显示计算结果。
帮助视图:对当前输入焦点的上下文帮助,可按“F1”键、工具栏或编辑器中的“”按钮激活帮助视图。
第三章软件使用流程第1步:开始工作从window“开始”菜单点击“同济启明星”程序组启动软件FRWS7。
第2步:新建、导入或打开已有的桩墙式支护结构工程文件若第一次使用本软件,将显示欢迎页面。
关闭欢迎页面后,软件自动新建“桩墙式支护结构工程”。
可从工具栏点击“新建桩墙式支护结构工程”按钮,也可从菜单“文件/新建/墙式支护结构”来重新建立一个桩墙式支护结构工程文件。
如果需要在FRWS4.0或FRWS2006/2008的数据文件基础上采用FRWS7.1进行设计计算工作,可从菜单项“文件/导入/frws2006/2008”和“文件/导入/frws4.0”进行。
对已有的frws7桩墙式支护结构工程文件,有四种方式打开:1)上次打开,退出软件前没有关闭的,本次启动后自动打开;2)选择“文件/打开”菜单项,弹出打开文件对话框,选择要打开的文件;3)从“文件”菜单中直接打开,最近打开文件列在“文件”菜单中;4)直接将文件拖至软件的编辑区。
深基坑工程支护结构设计计算分析
深基坑工程支护结构设计计算分析本文以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
通过该深基坑支护方案的设计计算分析、肋板锚杆挡墙支护方式介绍及对支护结构的内力分析,获得了一些工程经验,为当地的深基坑工程的推广和应用提供参考。
标签:深基坑工程;桩锚支护;设计计算;内力分析深基坑支护问题已经成为建筑界的热点和难点之一,我国的很多城市或地区相继发生多起深基坑事故。
造成基坑事故的原因有很多,其中基坑支护方案的设计就是其中一个重要的原因。
基坑支护设计是一个半理论半经验的设计,如何确保基坑的稳定,满足周边环境的要求,设计经济,并且在设计中考虑到尽可能多的因素,降低不可见因素的影响等等都具有着重要的现实意义。
下面,笔者以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
1.工程概况巴山站基坑位于金开大道西段,两侧有民用住宅,建筑密度较高,周边场地狭窄。
基坑起讫里程为YAK9+294.350~YAK9+564.350;基坑成矩形分布,南北方向宽23.2m,东西方向长272.0m,开挖面积达7000 ;设计±0.00标高为+307.50m,场地地面标高+306.90m~+307.30m,基坑最深开挖深度为20.24m,属于Ⅰ级基坑。
2.支护工况根据工程特点及场地条件,经过对土体位移变化、基坑稳定性、施工速度、工程造价等方面综合考虑,决定该工程采用排桩(截面:1.5m×1.8m、间距:4.0m)进行支护,加五道锚索(分别距基坑顶2.5m、5.5.0m、8.5m、11.5m、14.5m)。
肋板锚杆挡墙支护形式在本地区应用比较广泛且技术成熟,其特点是施工速度较快,支护效果好,对其他工序的干扰较少,比较经济。
其工况图如图1所示。
图1 支护工况图3.基坑支护结构计算分析3.1 土压力计算模型及系数调整土压力计算采用朗肯土压力理论,“规程”分布模式,除砂土层采用水土分算外,其余土层均采用水土合算,计算所得土压力系数表如表1所示:表1 土压力系数表土层素填土 0.552 0.743 ——粉质粘土0.507 0.712 1.973 1.404砂岩0.832 0.937 2.572 1.603粉质泥岩0.725 0.862 2.035 1.4453.2 支护结构嵌固深度及桩长的确定支护结构的嵌固深度,目前常采用极限平衡法计算确定。
深基坑技术措施
深基坑技术措施在建筑工程中,深基坑技术是一种重要的施工方法,它不仅涉及到工程的稳定性,也直接影响到建筑物的安全。
因此,采取适当的技术措施对于深基坑的施工至关重要。
本文将详细介绍深基坑技术措施,包括前期准备、开挖过程、支撑体系和回填等方面。
一、前期准备1、场地勘察:在施工前,需要对场地进行详细的勘察,了解地质条件、地下水位和周围环境等情况,以便制定合适的施工方案。
2、设计阶段:根据勘察结果,进行深基坑设计,确定开挖深度、形状和支护结构等。
同时,应考虑施工过程中的安全性、可行性和经济性。
3、施工组织:根据设计要求,合理安排施工流程,明确各阶段的施工任务和技术要求。
同时,需要对现场人员进行培训和交底,确保施工质量。
二、开挖过程1、开挖顺序:深基坑开挖应遵循自上而下、分层开挖的原则,先挖土方后做支撑和锚杆。
2、开挖方法:根据场地条件和施工设备,可以选择不同的开挖方法,如放坡开挖、竖井开挖等。
在开挖过程中,应注意保持土体的稳定性,防止坍塌事故的发生。
3、开挖监测:在开挖过程中,需要对深基坑进行变形监测,包括水平位移、竖向位移和倾斜等。
通过对监测数据的分析,可以及时调整施工方案,确保施工安全。
三、支撑体系1、支撑材料:根据设计要求,选择合适的支撑材料,如钢支撑、混凝土支撑等。
2、支撑安装:在开挖到设计深度后,应及时安装支撑结构,确保深基坑的稳定性。
3、支撑监测:在支撑安装完成后,需要对支撑结构进行监测,包括支撑轴力、变形和稳定性等。
通过对监测数据的分析,可以及时发现异常情况并采取相应措施。
四、回填1、回填材料:根据设计要求,选择合适的回填材料,如砂土、碎石等。
2、回填方式:回填应遵循分层回填的原则,每层回填厚度不宜过大,以确保压实质量。
同时,应注意回填材料的含水量控制,避免出现“橡皮土”现象。
3、回填监测:在回填过程中,需要对深基坑进行变形监测和沉降监测,以确保回填质量和建筑物安全。
五、总结深基坑技术措施是建筑工程中一项重要的施工技术,它涉及到工程的稳定性、安全性和经济性等方面。
基坑支护计算书
同济启明星深基坑支挡结构设计计算软件FRWS 8.2工程名称:1-1一、工程概况基坑设计深度15.8m, 基坑安全等级为一级。
1.土层参数(26#)续表地下水位埋深:9.5m。
2.荷载工作荷载邻近荷载3.放坡4.挡土墙挡墙类型: 灌注桩;嵌入深度: 5.2m;混凝土等级: C30;桩径: 0.8m;桩间距: 1.6m;截水帷幕嵌入深度: 4.75m截水帷幕桩径: 0.85m截水帷幕搭接长度: 0.25m截水帷幕排数: 15.支撑和锚杆2018设0806.工况工况示意图工况信息表二、计算依据采用《北京市建筑基坑支护技术规程DB11/489-2016》进行设计计算。
并且1.整体稳定验算采用总应力法三、变形内力1.各工况变形内力7.开挖到15.8m 2.变形内力包络图四、整体稳定验算圆心(-6.32,-9.5),半径13.53m,滑动力51.4kN/m,抗滑力43.8kN/m圆心(-2.75,0),半径25.33m,滑动力1285.4kN/m,抗滑力7244.1kN/m圆心(-3.01,0),半径25.3m,滑动力2313.3kN/m,抗滑力6437.3kN/m圆心(-3.29,0),半径25.54m,滑动力3045kN/m,抗滑力5997.4kN/m圆心(-3.42,0),半径26.02m,滑动力3550.6kN/m,抗滑力5884.3kN/m 五、配筋M=1.25×1.1×Mk, V=1.25×1.1×Vk。
1.灌注桩0~19m六、锚杆承载力验算Rk/Nk应达到: 1.8;七、地表沉降计算方法: 同济抛物线模式1.各工况地表沉降7.开挖到15.8m八、渗透稳定性验算1.流土稳定性验算′应达到1.6同济启明星深基坑支挡结构设计计算软件FRWS 8.2工程名称:1a-1a一、工程概况基坑设计深度19.25m, 基坑安全等级为一级。
1.土层参数(26#)续表地下水位埋深:9.5m。
深基坑支挡结构设计参考手册
2017/11/8
33/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
34/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
25/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
26/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
31/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
32/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
45/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
2017/11/8
46/51
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/context/context.html
最新《建筑深基坑工程施工安全技术规范》JGJ311-2013
最新《建筑深基坑工程施工安全技术规范》JGJ311-2013Technical Specification for Safety Construction of Deep BuildingFoundation Pits1 总则1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。
1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。
1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验制定施工安全技术措施。
1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 基坑 construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。
2.1.2 风险控制 Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。
2.1.3 基坑支护 retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。
2.1.4 基坑侧壁 side of foundation pit 构成基坑围体的某一侧面。
2.1.5 基坑周边环境 surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。
2.1.6 支护结构 retaining structure支挡或加固基坑侧壁的承受荷载的结构。
2.1.7 设计使用年限 design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。
基坑支护结构施工及降水排水
基坑支护结构施工及降水排水3.1 基坑支护基坑支护是指为保护地下主体结构施工和基坑周边环境的安全,对基坑采用临时性支挡、加固、保护与地下水控制的措施(图3.1)。
支护结构是指支挡或加固基坑侧壁用以承受荷载的结构。
图3.1 基坑支护3.2 深基坑支护结构施工深基坑是指开挖深度超过5 m的基坑,或深度未达到5 m但地质情况和周围环境较复杂的基坑。
①基坑支护应能保证基坑周边建(构)筑物、地下管线、道路的安全和正常使用,确保主体地下结构的施工空间。
②根据《建筑基坑支护技术规程》(JGJ 120—2016)规定,各类支护结构及其形式的适用条件如表3.1所示。
表3.1 各类支护结构的适用条件注:①基坑不同部位的周边环境条件、土层性、基坑深度等不同时,可在不同部位分别采用不同的支护形式。
②支护结构上、下部可采用不同结构类型组合的形式。
3.2.1 支挡式结构施工支挡式结构是以挡土构件和锚杆或支撑为主要构件,或以挡土构件为主要构件的支护结构。
支挡式结构的形式有锚拉式结构(图3.2)、支撑式结构、悬臂式结构、双排桩、逆作法。
这里主要介绍排桩施工。
1)排桩排桩是指由沿基坑侧壁排列设置的支护桩及冠梁所组成的支挡式结构部件或悬臂式支挡结构。
其中,冠梁是设置在挡土构件顶部的钢筋混凝土连梁。
图3.2 锚拉式结构2)排桩的桩型排桩的桩型与成桩工艺应根据桩所穿过土层的性质、地下水条件及基坑周边环境要求等选择,有钢板桩、混凝土灌注桩、型钢桩、钢管桩、型钢水泥土搅拌桩等桩型(图3.3、图3.4)。
图3.3 钢板桩图3.4 混凝土灌注桩排桩3)混凝土灌注桩排桩①采用混凝土灌注桩时,支护桩桩身混凝土强度等级、钢筋配置和混凝土保护层厚度应符合下列规定:a.桩身混凝土强度等级不宜低于C25;b.支护的纵向受力钢筋宜选用HRB400、HRB335钢筋;c.箍筋可采用螺旋式箍筋,箍筋直径不应小于纵向受力钢筋最大直径的1/4,且不应小于6 mm;d.箍筋间距宜取100~200 mm,且不应大于400 mm及柱的直径;e.沿桩身配置的加强箍筋应满足钢筋笼起吊、安装要求,宜选用HPB300、HR335钢筋,其间距宜取1 000~2 000 mm;f.纵向受力钢筋的保护层厚度不应小于35 mm,采用水下灌注混凝土工艺时,不应小于50 mm。
深基坑支护技术ppt
深基坑支护技术
一、支护结构的选型
(一)支挡式结构 4、内支撑
——设置在基坑内用以支撑挡土构件的结构部件。 内支撑包括:
腰梁或冠梁(围檩)、支撑、立柱。 (图)
内支撑分类: 钢内支撑、混凝土内支撑。
深基坑支护技术
一、支护结构的选型
(一)支挡式结构 4、内支撑
(1)钢支撑——包括钢管支撑(多用φ609钢管)、型钢支撑 (多用H型钢)。(图)
排桩的桩型:
◇型钢桩、钢管桩、钢板桩 ◇混凝土灌注桩 ◇型钢水泥土搅拌桩
深基坑支护技术
一、支护结构的选型
(一)支挡式结构 2、地下连续墙
——分槽段用专用机械成槽、浇筑钢筋混凝土所形成的连续 地下墙体。 ◇现浇地下连续墙
与排桩相比,更有整体性好、抗渗止水的特点; 地下连续墙需专用成墙施工设备,工艺较复杂,工程造 价较高。 宜同时用作主体地下结构外墙,可同时用于截水。
《深基坑支护技术》
支护结构的选型 支护结构的设计
深基坑支护技术
一、支护结构的选型
◇支护结构选型时,应综合考虑下列因素:
1 基坑深度;
2 土的性状及地下水条件; 3 基坑周边环境对基坑变形的承受能力,以及支护结构一旦 失效可能产生的后果; 4 主体地下结构及其基础形式、基坑平面尺寸及形状; 5 支护结构施工工艺的可行性; 6 施工场地条件及施工季节; 7 经济指标、环保性能和施工工期。
主要支护形式:
悬臂式结构:适用于较浅的基坑; 锚拉式、支撑式结构:适用于较深的基坑;
双排桩:当上述类型不适用时,可考虑采用;
逆作法:适用于基坑周边环境条件很复杂的深基坑。
深基坑支护技术
一、支护结构的选型
(一)支挡式结构 1、排 桩
深基坑工程技术讲座(19):第十九讲 基坑稳定性(下)—柔性挡土支护结构基坑稳
深基坑工程技术讲座(19):第十九讲基坑稳定性(下)—
柔性挡土支护结构基坑稳
沈保汉
【期刊名称】《建筑技术开发》
【年(卷),期】1999(026)006
【总页数】5页(P41-45)
【作者】沈保汉
【作者单位】北京市建筑工程研究院
【正文语种】中文
【中图分类】TU753.1
【相关文献】
1.深基坑工程技术讲座(11):第十一讲挡土支护结构侧压力(中) [J], 沈保汉
2.深基坑工程技术讲座(12)──第十二讲挡土支护结构侧压力(下_1) [J], 沈保汉
3.深基坑工程技术讲座(10)──第十讲挡土支护结构侧压力(上) [J], 沈保汉
4.深基坑工程技术讲座(2) 第二讲挡土支护结构类型的选择 [J], 沈保汉
5.深基坑工程技术讲座(16)第十六讲挡土支护结构强度计算(下1)——多支点柔性挡土支护结构强度计算 [J], 沈保汉
因版权原因,仅展示原文概要,查看原文内容请购买。
深基坑支护施工方案(5)
深基坑支护施工方案(5)深基坑工程是城市建设中常见的一项工程,通常用于地下车库、地铁站等建筑物的施工。
深基坑在执行过程中,需要进行支护工作以确保施工过程中的安全性和稳定性。
本文将针对深基坑支护施工方案进行探讨。
1. 地质勘察与分析在进行深基坑支护工程前,必须对场地的地质情况进行详细勘察与分析。
在得到相关数据后,需结合设计要求及技术要求,确定支护设施的类型和施工方案。
2. 支护结构设计根据地质勘察的结果,制定适当的支护结构设计方案。
支护结构主要包括土方支撑结构和混凝土支撑结构,根据实际情况选择合适的支护方式。
3. 施工工艺流程3.1 地面支撑首先进行地面支撑,根据设计要求采用合适的支撑方式。
常见的地面支撑方式包括预应力锚杆支护、钢支撑支护等。
3.2 桩基施工根据设计方案进行桩基施工,确保桩基的合理布置和质量。
3.3 基坑开挖进行基坑开挖时,要采取合理的开挖方式,确保基坑开挖过程中的安全性和稳定性。
3.4 支护结构施工根据设计方案进行支护结构施工,保证支护结构的稳定性和承载能力。
4. 施工中的风险控制在深基坑支护施工过程中,存在各种风险,如地质灾害、施工安全事故等。
必须严格按照设计方案执行,配合相关监测设备对施工过程进行实时监控,及时发现并处理潜在的安全隐患。
5. 施工质量验收在支护工程完成后,需要进行施工质量验收。
验收内容包括支护结构的稳定性、承载能力等方面,确保支护工程的质量符合相关标准要求。
通过以上深基坑支护施工方案的介绍,可以看出在进行深基坑支护施工时,地质勘察、支护结构设计、施工工艺流程、风险控制以及施工质量验收等环节都至关重要,只有严格按照规范要求进行施工,才能确保支护工程的安全、稳定和质量。
建筑工程施工中的深基坑支护施工技术
建筑工程施工中的深基坑支护施工技术摘要:进入新世纪以来,人们对建筑的地下空间有了更高的要求。
深基坑工程便随之应运而生,其中的支护施工技术首当其冲的直接影响建筑工程的施工质量和安全。
因此,在基坑工程施工中务必熟练掌握深基坑支护施工的要点,并将其合理应用于建筑项目的施工建设中。
基于此,本文对于建筑工程施工中深基坑支护的施工技术进行了探讨。
关键词:建筑工程;深基坑支护;施工技术引言:随着我国城市化发展速度的加快,建筑工程的规模也在不断扩大。
作为工程建设的基础工程,深基坑施工技术受到了社会各界的广泛关注和重视。
由于深基坑的施工特点,深基坑施工中会存在较大的安全风险,因此施工人员必须具有较高的专业技术水平。
同时,建筑施工企业也需要加强深基坑施工管理,最大限度地保证建筑工程施工质量以及建筑工程项目的顺利开展,从而降低安全问题发生的概率,在保证施工人员生命财产安全的同时,为建筑工程企业创造良好的经济效益。
1建筑工程施工中深基坑支护施工技术的具体类型1.1土层锚杆施工技术实施土层锚杆施工作业期间,应当依照实际情况对孔的位置以及间距进行合理设计,制订较为完善的设计方案,确保设计无误差后再展开施工,落实规范性的施工流程。
一是进行测量和定位。
工作人员深入施工现场,按照标准要求精准确定和检验锚杆的具体位置,将各点位的测量误差控制在合理范围内。
有关的安全和质量管理层组织专业性强并且经验丰富的人员再次检验测量定位作业,避免倾角、标高以及位置出现不良问题。
二是完成测量定位作业后,再实施钻孔作业。
在钻孔期间,一旦受到硬质材料的影响,钻孔作业将会受到阻碍。
面对此种现象,应该马上停止钻进作业,禁止强行钻进,检验钻孔位置,研究受到阻碍的根本来源,进而采取合理的钻进方式或者更换钻头等方式彻底解决问题,避免钻具受损致设备性能降低。
三是做好灌浆工作。
要想提升锚杆的稳固性,就需要保持灌浆的固定性,在该阶段内,合理设计灌浆材料的各项比例,控制实际的搅拌时间,并且检查灌浆前期阶段作业,将杂物彻底清除干净,以此促使灌浆作业稳定开展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/11/8
28/33
a
b
Q1k— qk―
τc― quk— γs—
ξ—
σ— Mdmax―
Mdmax=γMmax Mmax
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
γ [σ]― W—
Skepmton
qd— c φ―
1 r0
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
r0—
ab k— H— M— S— R―
r0=0.29(a+b) r0=(A/π)0.5
A
R=2S(kH)0.5 R=10S(k)0.5
2017/11/8
27/33
αg αq Mmax Mmin—
I― e― b― γg— q― z― qu— β2— z―
|Q|max—
A― μ― qu— β3—
SMW
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
i=1,2,…,n m
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
α―
()
()
δ2 K2=1/(δ2s)
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
K's― K― Ec― Ic― ξ―
E― L― T―
12/33
E― D― A―
E― l― I―
Peck
ui─ i
19/33
0
Qi─
i
TNj─ j
/
Sj─ j
/
θi─ i
αj─ j
/
ζ ξ─
Np─
θp─
Mc─
hp─
γp─ hp
Sp─
1m
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
20/33
Ks―
ic―
Gs i―
L m1
e
γ
m2
γw B
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
pcz― pwy― Ky―
21/33
Nkj─ j αj─ j Shj─ j Svj─ j ξ─ η0― β─
Md― α1— fc― fy fy'― As As'— b― h0― h― d― c― αs'― x―
ξb
Md=γηMk Mk
γ
η
As ;
h0=h-(c+d/2)
0.002bh 1m
αs'=c+d/2
εcu 0.0033 0.0033
fcu,k
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
18/33
-
K
-
K
Ks─ Nj─ ci─ i φi─ i
(
(
tgφ
Ka─
Li─ i
Gi─ i
(
)
c) φ)
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
Wi─ i Wi'─ i
bs―
b0―
zsi― i Ksi― i
―i ―i T0i― i zL― ― Kθ―
;
b0=0.9(1.5d+0.5) d b0=1.5b+0.5 b
b0
/
m
Kθ=1×b3×kp(D)/12 D
m
0 SMW
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
4/33
m=a/H n=z/H
hwp,i─ δi δi'─
i (2/3~3/4)φ φ'
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
p1─
p2─
P(z)─
z
5/33
1/33
zi
eak,i
γj─ j γw─ Δhj─ j hwa,i─ ci ci'─ i φi φi'─ i
q─
10kN/m3
zi
e0k,i
00 00
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
2017/11/8
kp=mz m
kp=k k
C
kp=cz0.5 c
9/33
z
k'p― kp― β―
/
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
Ks― α―
0.8~1.0 A― L― s― θ― E― Ec― Ic― λ―
λ=0.5
λ=0.5~1.0 ξ―
10/33
1.0
1-λ
Ks― α― Es― Ec― Em― L― s― Lf― Ap― A―
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
11/33
Ks― E― s― K1― K2―
c φ― c' φ'― Ka Ka'—
θ— R— u— Mu—
u=γwzw γw
zw
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
31/33
Kq—
P―
B
Ra―
B
Ra=raB ra
Prandtl
p1─
p2─
P(z)─
z
P'(z)─
z
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
γ─
10kN/m3
6/33
AB
1
BCDE
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
A A
15/33
o―
Ea1 Ea2― o
Ew1 Ew2― o
Hw1 Ha1― o
o
Hw2 Ha2― o
o
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
Байду номын сангаас
16/33
Ks― Ea― Ep― Ewa Ewp― Ha Hwa― Hp Hwp― G―
ξ─ αj─ j φj─ j
0.5L L Tkj
ξ─ γs─ fy─ fyk─ As─
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
Ndj─
Shj─ j Tcj─ j αj─ j
GB50010-2010
zi
ek,i
η0─
2/33
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
3/33
45° 45°
45° 45°+φ/2
m≤0.4 m>0.4
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
φ─ Eaj─ j
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
2017/11/8
22/33
ηj─ j zj─ j h─ Eai─ i ηb─
ηb 1
1/4
ηj 1
0.6
0.7
Epj─ i pj─ j
http://127.0.0.1:64350/help/topic/com.qimstar.frws/help/tech/tech.html
25/33
Md―
,Md=γηMk Mk
γ