排列组合的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合应用(一)排列
解排列问题,首先必须认真审题,明确问题是否是排列问题,那是否有序,抓住问题本质特征,灵活运用基本原理和公式进行分析,同时要讲究一些基本策略与方法技巧。
1、特殊元素的“优先按排法”。
例1、用0、1、2、3、4这五个数字,组成没有重复的三位数,其中偶数共有多少?
(分析)由于三位数是偶数,故末尾数字必须是偶数,以“0”不能排在首位,所以“0”就是其中特殊元素,优先按排。按“0”在末尾
和不在末尾分为两类。共A2
4+A1
2
A1
3
A1
3
=30种。
2、相邻问题有“捆绑法”。对于某几个元素要求相邻的排列问题,可将先相邻的元素“捆绑”起来,作为一个“大”的元素,与其他元素排列,然后再对相邻元素的内部进行排列。
例2、7人站成一排照相,要求甲、乙、丙三人相邻有多少种不同的排法?
(分析)先把甲乙丙三人“捆绑“看作一个元素,与其余4个元素进
行排列再对甲、乙、丙三人进行排列。共A5
5A3
3
种。
3、不相邻问题有“插空法”。对于某几个元素不相邻的排列问题,可先将其他元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙间插入即可。
例3、7人站成一排照相,要求甲、乙、丙三人不相邻有多少种不同的排法?
(分析)先让其余4人站好,有A4
4
种排法,这时有5个“空隙”可
供甲、乙、丙选取,即A3
5种。共A4
4
A3
5
种排法。
4、间接法或淘汰法。理解题中的要求,把不符合要求的除去,此时应注意既不能多减也不能少减。
例4、5名男生,5名女生排成一行,其中5名男生不排在一起,有几种排法?
(分析)先计算出10人的全排列数,再减去5名男生排在一起的排
列数即可。共A10
10—A5
5
A6
6
排法。
5、合理分类与准确分步。解含有约束条件的排列组合问题,应按元素的性质进行分类,事情发生的连续性分步,做到分类标准明确,分步层次清楚,不重不漏。
例5、五人从左到右站成一排,其中甲不站排头,乙不站第二个位置,共有多少种不同站法
(分析)若甲在第二位置上其余4人可自由按排,有A4
4
种;
若甲在第3、4、5位置上,则乙可站在其他3个位置上,有A1
3A1
3
A3
3
种;共A4
4+ A1
3
A1
3
A3
3
种排法。
或用间接法:①甲在第一位置,乙在第二位置有A3
3
种;②甲在第一
位置,乙不在第二位置有A1
3A3
3
种;③甲不在第一位置,乙在第二位
置有A1
3A3
3
种;即共有A3
3
+ A1
3
A3
3
+ A1
3
A3
3
种不符合要求,则符合要求
的有A5
5—(A3
3
+ A1
3
A3
3
+ A1
3
A3
3
)种。
6、顺序固定问题有“除法”。对于某几个元素顺序一定的排列问题,
可先将这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。
例7、五人排列,甲在乙前面的排法有多少种?
(分析)先将5人全排列有A 55种排法,而甲、乙之间排法有A 22种排
法,而甲在乙前的排法只有一种符合,故符合条件的排法有22
5
5A A 种。
例8、由1、2、3、4、5、6六个数字可组成多少个无重复且是6的倍数的五位数?
(分析)6的倍数的数既是2的倍数不是3的倍数,其中3的倍数又满足“各个数位上的数字和是3的倍数”的特征。把6个数字分成4组:(1,5)(2,4)(3)(6),每组数字之和为3的倍数,因而可分成两类,一类由1、5、2、4、6作为数码,另一类由1、5、2、4、3作为数码,且末尾数字为偶数即可。第一类有A 13A 44种,第二类有共
有A 12A 44种,共有A 13A 44+ A 12A 44种。
巩固练习
1、 有3名男生、4名女生、排成一排
(1) 选其中5人排成一行(2)甲只能在中间或两头(3)甲、乙二
人必须在两头(4)甲不在排头,乙不在排尾(5)男生、女生各站一边(6)男生必须排在一起(7)男生、女生各不相邻(8)男生不能相邻(9)甲、乙、丙三人中甲必须在前,丙必须在后,但三人不一定相邻(10)甲、乙中间必须有3人,各有多少种
不同的排法
(答案)(1)A5
7(2)A1
3
A6
6
(3)A2
2
A5
5
(4)3720(5)A3
3
A4
4
A2
2
(6)
A3
3A5
5
(7)A3
3
A4
4
(8)A4
4
A3
5
(9)
3
3
7
7
A
A(10)A2
2
A3
5
A3
3
2、由数字0、1、2、2、4、5组成(各位上数字不允许重复)(1)
多少六位数?(2)多少个六位偶数(3)多少个被5整除的五位数?(4)多少个被3整除的五位数(5)比240135大的六位数有多少个?允许重复呢?
例1求不同的排法种数:
(1)6男2女排成一排,2女相邻;
(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;
(4)4男4女排成一排,同性者不能相邻.
例3 某小组6个人排队照相留念.
(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?
(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?
(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?
(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?
(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?
(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?
(答案)(1)A1
5A5
5
(2)312(3)216(4)216(5)407
(二)组合
组合与排列有许多联系,在解决组合问题中常借用解决排列问题的方法。以下是解决组合问题的几种方法
1、直接法或间接法
例1、在100件产品中有98件合格品,2件次品。从这100件产品中任意取出3件(1)一共有多少种不同的取法(2)恰好取出1