初三数学黄金分割ppt

合集下载

数学沪科版九年级(上册)22.1.4黄金分割(共21张PPT)

数学沪科版九年级(上册)22.1.4黄金分割(共21张PPT)

C
平直单调的塔身变得丰富多彩,
更协调、美观,设计师决定在
靠近塔尖的黄金分割点处设计
A
一个球体,请你计算这个球体
距离地面的高度.(精确到百
分位)
1.你身边有黄金分割的实例吗? 如何验证你的猜想呢?
2.小实验:下列矩形中,哪个看起来更美?
1
2
3
分组测量,计算矩形1宽与长的比 .
你的身边有这样的矩形实例吗?
(1)以下3张图片,哪张构图最美?
(2)芭蕾 舞演员做相 同的动作, 踮脚尖和不 踮脚尖,哪 个更美?
(3)脸型相同,五官基本相同的3张脸,哪个更美?
A
C
B
A
B
如图,点C 把线段 AB 分成两条线段 AC 和 BC ,
如果 AC = BC , 那么称线段 AB 被点 C 黄金分割,
AB
AC
摄影构图通常运用的三分法就是黄金分割的演变,把 长方形画面的长、宽各分成三等分,整个画面呈井字形 分割,井字形分割的交叉点便是画面主体(视觉中心) 的最佳位置,是最容易诱导人们视觉兴趣的视觉美点.
B C
A
在人的面部,五官的分布越符合黄金分割, 看起来就越美.
A C B
A B
C C
BA
在礼品包装中,也经常用到黄程得:
x
1
=
1
–x x

AB AC
化为整式方程: x2 + x–1=0 ,
利用一元二次方程知识可以解出x=
√5
– 2
1

利用计算器计算
x
=
√5 – 1
2

0.618 .(精确到千分位)
A
C

6.2 黄金分割 课件(共28张PPT) 苏科版数学九年级下册

6.2 黄金分割 课件(共28张PPT)  苏科版数学九年级下册

-﹦-﹦ ﹦ 如果 BC AB 黄金比 ?( AB² BC·AC ) AB AC
A
B
C
那么称线段AC被点B黄金分割,
点B为线段AC的黄金分割点.
AC AB BC
AB与AC(或BC与AB)的比称为黄金比.
活动二:探索美
例 如图,点B 在线段 AC上,且 -ABBC﹦-AACB ,设AC=1,求AB的长.
N
G
.F
C
D
活动三:应用美
C

..
A
B
C
黄金矩形:宽与长的比为黄第5题“你最喜欢的矩形”?
活动三:应用美
举世闻名的完美建筑. 它建于古希腊数学繁荣 的年代,它的高和宽的 比值接近黄金比,建筑 师们发现按这个比例设 计殿堂,殿堂更加雄伟 美丽.
活动四:升华美
A
1.上海东方明珠电视塔高468 m,如果把塔身 C
看作一条线段AC,中间的球体看作点B,那
么点B是线段AC的黄金分割点. 求AB的长
(精确到0.1 m).
B
解:∵B点是黄金分割点
∴ AB 0.618
AC

AB 0.618 468
解得:AB≈289.2(m)
?
A
答:AB的长约是289.2 m.
活动三:应用美
文艺复 兴时期
重新发现 高度推崇
毕达哥拉斯发 现黄金分割
公元前6 世纪
黄金分割 的由来
19世纪
黄金分割 逐渐流行
小结与思考
美妙的黄金分割
欣赏美
探索美
方程思想
黄金分割 黄金比
应用美
生长
升华美
构造
黄金矩形
转化思想

第2课时黄金分割学习课件PPT

第2课时黄金分割学习课件PPT

(2)如图,正五边形ABCDE的5条边相等,5个 内角也相等. ①找找看,图中是否有黄金三角形?
②点F是线段 AC、AN、BG、的黄金分割点.
BE
B
A
FN
C
G
M
H
E
D
巩固练习
(1:) 如图,乐器上的一根弦AB=80cm,两个端点A、B固
定在乐器板面上,支撑点C是靠近点B的黄金分割点 (即
AC是AB与BC的比例中项), VIP累积特权在购买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
5 1
____2_____;
AC
AD
(4)
CD
5 1
___2_____,
DB
5 1
____2_____;
DB
CB
(5)
BD
3 5
___2_____,
CD
____5__2___ .
AB
AB
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
D
CD
EC
A
BA
FB
归纳黄金矩形的条件和性质:
黄金三角形
A
一、黄金三角形条件:
顶角是36°的等腰三角形是黄金三角形.

北师大版数学九年级上册.4黄金分割课件

北师大版数学九年级上册.4黄金分割课件
AB的黄金分割点(AP>PB),
求观光区的高度.(结果精
确到1米)
训练:B本--第30页--第7题
7.如图,乐器上的一根弦AB=80 cm,两个
端点A.B固定在乐器板面上,支撑点C是靠
近点B的黄金分割点,支撑点D是靠近点A
的黄金分割点,求支撑点C,D之间的距离.
阅读:数学书--第97页--随堂练习
采用如下方法找到黄金分割点:
已知线段AB,按照如下方法画图:

(1)过B作BD⊥AB使 = ;
D
E

(2)连接AD,在DA上截取DE=DB;A
(3)在AB上截取AC=AE,
则点C即为线段AB的黄金分割点.
C
B
阅读:数学书--第97页--读一读
F
A
G
H
B
E
D
C
小结
黄金分割
C
1.定义以及结论
A
B
2.一条线段有两个黄金分割点.
D
A
C
B
家庭作业
B本---第30页
第四章
图形的类似
第4节 黄金分割
书本第95页
类似三角形
1.定义:
三角分别相等、三边成比例的两个三角形叫
做类似三角形.
2.判定定理:
①两角分别相等的两个三角形类似.
②两边成比例且夹角相等的两个三角形类似
③三边成比例的两个三角形类似.
欣赏图片
黄金分割定义


A
C
B
短 长

长 全

点C把线段AB分成两条线段AC和BC,
BC AC
如果 AC AB 那么称线段AB被点C黄金分割.

《黄金分割》PPT课件1-九年级上册数学北师大版

《黄金分割》PPT课件1-九年级上册数学北师大版
BC AB
(1)点E是AB的黄金分割点吗?
A
(2)矩形ABCD的宽与长的比是黄金比吗?
D
E
B
F
C
活动六:解决问题(应用美)
已知:矩形ABCD 作正方形AEFD,BE BC
(1)点E是AB的黄金分割点吗? BC AB
(2)矩形ABCD的宽与长的比
是黄金比吗? A
E
B
BE AE AE AB
∵ 矩形ABCD与 正方形AEFD
468×0.618≈289
B
? 总高度 468米
几何双宝
勾股定理 黄金分割
黄金矿 钻石矿
A
活动四:欣赏美
A



C




B
小提琴是一种造
型优美、声音诱人的 弦乐器,它的共鸣箱 的一个端点C正好是整 个琴身AB的黄金分割 点。
读一读 • 神奇的0.618
人体肚脐不但是美化身型黄金点,有时还是医疗效 果黄金点,许多民间名医在肚脐上贴药治好了某些疾病。 这说明医学与0.618有千丝万缕联系,尚待开拓研究。
∴ BC=AD=AE
黄金矩形 D
F
宽与长的比等于黄金比
矩形ABCD和矩形BCFE 都是黄金矩形
AE BE AB AE
C
点E是AB的黄金分割点
AE 是黄金比 AD 是黄金比
AB
AB
回顾学习历程:
1. 创设情境 探寻黄金分割(寻) 2. 归纳结论 认识黄金分割(认) 3. 计算推理 求证黄金比(证) 4. 欣赏图片 感悟黄金分割美(赏) 5. 实践操作 确定黄金分割点(画) 6. 解决问题 应用黄金比(用)
如图,点C把线段AB分成两条线段AC和BC,

黄金分割(全国一等奖)-ppt课件

黄金分割(全国一等奖)-ppt课件

人体与黄金分割
• 人体还有几个黄金点:肚脐上部分的黄金点在咽喉,肚脐以下 部分的黄金点在膝盖,上肢的黄金点在肘关节,上肢与下肢的 长度之比均近似0.618
• 人体最感舒适的温度是23摄氏度,也是正常人体温度的黄金点 (23=37×0.618)
数学美的魅力
雕塑断臂女神维纳斯 的体型完全与黄金比相符, 即以人的肚脐为分界点,上 身与下身之比,或者说下身 与全身之比约是0.618 这样的身体给人的感觉就 是非常的匀称,充满着美 感.
尺规作黄金分割点
1.经过点B作BD⊥AB, 使BD= 1/2AB 2.连接AD,在AD上 截取DE=DB. 3.在AB上截取 A AC=AE. 故点C即为所求.
D E
C
B
小结 拓展 悟出一个新自己
• 什么是黄金分割. 如何去确定黄金分割点或黄金比. 要用数学美去装点和美化生活. 与同伴谈谈你对黄金分割的收获与体会.
上海东方明珠塔,塔 高462.85米,设计师将 在295米处设计了一个上 球体,使平直单调的塔 身变得丰富多彩,非常 协调美观
乐器与黄金分割
小提琴是一种造 型优美、声音诱人 的弦乐器,它的共 鸣箱的一个端点正 好是整个琴身的黄 金分割点
美术与黄金分割
著名画家达•芬奇的蒙娜丽莎构图就完 美的体现了黄金分割在油画艺术上的应 用。通过下面两幅图片可以看出来,蒙 娜丽莎的头和两肩在整幅画面中都完美 的体现了黄金分割,使得这幅油画看起 来是那么的和谐和完美.
探索交流
什么是黄金分割
点C把线段AB分成两条线段AC和BC,如果 AC BC 那么称线段AB被点C黄金分割
AB AC
(golden section),点C叫做线段AB的黄金分
割点,AC与AB的比叫做黄金比.

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

最新北师大版九年级数学上册《黄金分割》精品ppt教学课件

10.宽与长的比是
5-1
(
2
综合能力提升练
拓展探究突破练
约 0.618 )的矩形叫做黄金矩形,黄金矩形蕴
藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样
的方法画出黄金矩形:作正方形 ABCD,分别取 AD,BC 的中点 E,F,连
接 EF:以 F 为圆心,以 FD 为半径画弧,交 BC 的延长线于点 G;作 GH
拓展探究突破练
-9-
9.“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使
画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小
狗,按照黄金分割的原则,应该使小狗置于图中的位( B )
A.①
B.②
C.③
D.④
第四章
第4课时 黄金分割
知识要点基础练
∴梯形 ABGH 与梯形 GCDH 的上、下底分别相等,高也相等,
1
∴S 梯形 ABGH=S 梯形 GCDH=2S 梯形 ABCD.
∴直线 GH 不是直角梯形 ABCD 的黄金分割线.
第四章
第4课时 黄金分割
归纳总结、拓展提升
知识要点基础练
综合能力提升练
通过这节课的学习,
你有哪些收获?
拓展探究突破练
扇子比较美观.若取黄金比为0.6,则α为( B )
A.216°B.135°
C.120° D.108°
第四章
第4课时 黄金分割
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
6.自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,点P为AB的黄金分
割点( AP>PB ),如果AB的长度为10 cm,黄金比为0.618,那么PB的长度为 3.82 cm.( 结果

黄金分割初中数学课件

黄金分割初中数学课件
详细描述
在直角三角形中,如果斜边和一条直角边的比例符合黄金分割,那么另一条直角边将满 足勾股定理,从而形成一个完美的直角三角形。
黄金分割与无理数
总结词
黄金分割与无理数之间存在关联,无理数π 在黄金分割中扮演着重要的角色。
详细描述
黄金分割的比值可以用无理数π来表示,这 表明黄金分割与圆周、弧度等概念密切相关 ,进一步展示了黄金分割在几何学中的重要 地位。
练习题三:探究黄金分割的数学奥秘
总结词
深入探究黄金分割的数学性质和证明方法
详细描述
通过数学推导和证明,探究黄金分割的数学性质和证明 方法,理解其在几何学中的重要地位和作用,提高数学 思维和推理能力。
THANKS
感谢观看
详细描述
在生活中寻找具有黄金分割特征的实例,如 建筑设计、艺术作品、自然景观等,通过观 察和测量,理解黄金分割的美学价值和实际
应用。
练习题二:利用黄金分割创作图案
要点一
总结词
要点二
详细描述
运用黄金分割原理设计图案,培养创造力和审美能力
根据黄金分割原理,设计具有美感的图案或几何图形,可 以使用绘图工具或软件进行创作,通过实践进一步理解黄 金分割的原理和应用。
黄金分割的线段实例
例如,在等腰三角形中,底边上的高将底边分为两段,较长的一段与腰的比值等于较短的一段与高的比值,这就 是黄金分割在三角形中的应用。
黄金分割与矩形
黄金分割与矩形
黄金分割也可以应用于矩形中。一个 矩形如果满足长边和短边的比值为 1.618,则被称为黄金矩形。
黄金矩形的应用
在建筑、艺术和设计等领域中,黄金 矩形被广泛运用,因为它具有视觉上 的美感。例如,许多名画和建筑都采 用了黄金分割的比例来构图和设计。

九年级数学上册PPT课件《黄金分割》

九年级数学上册PPT课件《黄金分割》
3.在AB上截取AC=AE.
A
D E
CB
思考:点C是线段AB的黄金分割点吗?
BD 1 ; AD
12


1
2


5 , AC AE
51
2
2 2
22
5 1, BC 1 AC 1 5 1 3 5 ;
2
2
2
5 1
3 5
AC 2 5 1, BC 2 3 5 2
美神维纳斯,她身体的各个 部位都暗藏比例0.618,虽然 雕像残缺,却能仍让人叹服她 不可言喻的美.
黄金分割的魅力
Apple logo苹果中小叶子的高度和缺口的高度比是0.6, 而缺口的位置也和黄金分割有着千丝万缕的关系。也许这里 面还有更多黄金的分割的密码,这里就要同学们自己去发现。
当堂练习
1.已知线段AB,点P是它的黄金分割点,AP>BP,设 以AP为边的正方形的面积为S1,以PB、AB为边的矩 形面积为S2,则S1与S2的关系是( C ) A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S2
B C A
在人的面部,五官的分布越符合黄金分割,看起 来就越美.
设计与黄金分割
文明古国埃及的金字塔,形似方锥,大小各异.但 这些金字塔底面的边长与高的比都接近于0.618.
东方明珠塔,塔高 468米.设计师在263米处 设计了一个球体,使平直 单调的塔身变得丰富多彩, 非常协调、美观.
人的俊美,体现在头部及躯 干是否符合黄金分割.
【解析】本题考查黄金分割的有关知识,由题
意知 AC2 B≈6.2 cm.
3.如图所示,乐器上的一根弦AB=80 cm,两个端 点A、B固定在乐器板面上,支撑点C是靠近点B的 黄金分割点,支撑点D是靠近点A的黄金分割点, 则AC=______cm,DC=_______cm.

苏科版数学九年级下册6.2《黄金分割》课件(共23张PPT)

苏科版数学九年级下册6.2《黄金分割》课件(共23张PPT)

黄金分割的性质
黄金分割具有美学上的重要性然界中也有所体现,如 植物生长、动物身体比例等方面。
黄金分割能够给人带来和谐、平衡和 美感,符合人类对美的基本认知。
黄金分割在数学、物理学、工程学等 领域也有广泛的应用,如建筑设计、 音乐理论、摄影构图等。
黄金分割与自然界的联系
探讨黄金分割在自然界中的存在和意义,如植物生长、动物身体比 例等。
THANKS
感谢观看
人类生活
在建筑设计、室内装修、服装设计等领域,黄金分割也被广泛应用, 以实现美观和功能性的平衡。
02
黄金分割的定义与性质
黄金分割的定义
01
黄金分割是一种比例关系,表示 为一个整体被分割成两个部分, 其中较大部分与较小部分的比值 等于整体与较大部分的比值。
02
黄金分割通常用希腊字母φ来表示, 其比值约为1.618。
在艺术中的应用
01
02
03
绘画构图
艺术家利用黄金分割原理, 将画面主体放置在画面的 黄金分割点上,以达到最 佳的视觉效果。
音乐节奏
在音乐中,黄金分割被用 于确定乐曲的节奏和旋律, 使音乐听起来更加和谐。
舞蹈编排
在舞蹈编排中,舞者位置 和动作的排列可以按照黄 金分割的比例来安排,以 增强视觉效果。
在建筑设计中的应用
确定线段的一个端 点A。
在线段AC上找到一 个点D,使得CD是 AC的0.618倍。
线段AE即为线段AC 的黄金分割。
通过线段的黄金分割点作黄金分割
确定线段的两个端点A和B。
在线段AB上找到黄金分割点C。
通过点C作一条垂直于线段AB的线,交AB于点D。
线段AD即为线段AB的黄金分割。
04

黄金分割初中数学课件

黄金分割初中数学课件
E
A
B
D
C
(1)若AB=2,BD=1,则AD=____,AC=______,
则C是线段AB的________点.
黄金分割
(2)若AB=2a,BD=a
则C点呢?
E
A
B
D
C


则C即为AB的黄金分割点.
用尺规作图找出黄金分割点
1、经过点B作 BD⊥AB, 2、连接AD, 在DA上截取 DE=DB . 3、在AB上截取 AC=AE. 作法: 如图,已知线段AB, 求作其黄金分割点. 点C即为线段AB的黄金分割点.
方法总结 :
证黄金分割点即证
五 欣赏美
1
这幅《蒙娜丽莎的微笑》给了数以亿万计的人们美的艺术享受,备受推崇。意大利画家达芬奇在创作中大量运用了黄金矩形来构图。整个画面使人觉得和谐自然,优雅安宁。
2
找一找:画中有几个黄金矩形?
3
黄金矩形的“迷人面容”----蒙娜丽莎的微笑。
叶子中的黄金分割
图中主叶脉与叶柄和主叶脉的长度之和比约为0.618
四 应用美
这是古希腊的巴台农神庙,如果把图中用蓝线表示的矩形画成矩形ABCD,并以矩形ABCD的宽为边在内部作正方形AEFD,那么我们可以惊奇地发现
1.点E是AB的黄金分割点吗?
2.矩形ABCD宽与长的比是黄金比吗?
D
(1)可得比例式
(2)若MN=1,则MP≈_____,NP≈_____.
(3)若MN=5,则MP≈______,NP≈______.
N
M
P
0.618
0.382
3.09
1.91
(4)若MN=a,则MP≈______,NP≈______.

数学沪科版九年级(上册)22.1.4黄金分割(共32张PPT)

数学沪科版九年级(上册)22.1.4黄金分割(共32张PPT)

三、操作运用,巩固概念
试一试
东方明珠塔,塔高468米,在设计的最初,设计师将塔身设计为 直线形。后来为了使平直单调的塔身变得丰富多彩,更协调、美观, 设计师决定在靠近塔尖的黄金分割点处,设计一个球体,请你计算 这个球体距离地面的高度(精确到0.1m)。
468×0.618≈289.2(m)
三、操作运用,巩固概念
再计算:
CD ABC
0.6. 1(8精确到0.001)
黄金三角形
☆顶角为36°的等腰三角形 底边 与腰之比约为0.618;
E DD ☆点D是线段AC的黄金分割点.
B
C
黄金矩形:
如果矩形的长为a ,宽为b, 且满足条件:
b
b
5 1
a
2
a
那么此矩形称为黄金矩形。
课题:黄金分割
建 筑 中 的 神 秘 数 字
四、深化提高,继续探索
绘画艺术中的黄金分割
四、深化提高,继续探索
绘画艺术中的黄金分割
四、深化提高,继续探索
黄 金 分 割 在 摄 影 上 的 应 用
摄影中4条线的4个交点是人们视觉最敏感的地方。
四、深化提高,继续探索
找一找 你身边有黄金分割的实例吗?
四、深化提高,继续探索

N


D


E
G
六、课堂小结
归纳小结:
通过本节课的学习,你有什么收获?
1、概念:黄金分割、黄金分割点、黄金比、 黄金三角形、黄金矩形; 2、方法(1)判断黄金分割点的方法
(2)作线段黄金分割点的方法。 3、延伸:黄金分割在现实生活中的价值与意义。
六、课堂小结
通过本节课的学习,你有什么收获? 你认为数学就是一种美的学科吗?

《黄金分割与数学》课件

《黄金分割与数学》课件

1.B 在代数中,黄金分割常被用于解决一些与
比例、分式和不等式相关的问题。
1.C 黄金分割还可以用于研究函数的性质和图像 ,以及解决一些代数方程和不等式的问题。
1.D 黄金分割在代数中的应用,有助于我们更好
地理解数学中的比例和分式问题,以及它们 在解决实际问题中的应用。
黄金分割在微积分中的应用
微积分是数学中的一门基础学 科,黄金分割在微积分中也具
有广泛的应用。
在微积分中,黄金分割被用于 研究函数的极值、曲线的长度
和面积等问题。
黄金分割还可以用于解决一些 与积分和微分相关的问题,以 及研究函数的性质和图像。
黄金分割在微积分中的应用, 有助于我们更好地理解数学中 的连续性和可微性问题,以及 它们在实际问题中的应用。
黄金分割的数学模型
03
黄金分割的几何模型
01
黄金分割的几何定义
黄金分割是一种比例关系,其中较长的线段是较短线段 与整个线段的比例等于较长线段与较长线段之和的比例 。
02
黄金分割的应用
黄金分割在自然界和艺术中广泛存在,如植物生长、建 筑设计、音乐和绘画等领域。
03
黄金分割的几何证明
通过构造相似三角形和利用相似三角形的性质,可以证 明黄金分割的正确性。
05 黄金分割的历史与发展
黄金分割的历史背景
1 2
古希腊数学家发现黄金分割
黄金分割的起源可以追溯到古希腊时期,数学家 们通过研究发现了黄金分割的美学原理。
中世纪欧洲的黄金分割研究
在中世纪欧洲,艺术家和数学家开始将黄金分割 应用于艺术和建筑中,创造出了许多经典作品。
3
文艺复兴时期的黄金分割
文艺复兴时期,艺术家们重新发掘了黄金分割的 价值,并将其广泛应用于绘画、雕塑和建筑等领 域。

4.4.4黄金分割-2024-2025学年初中数学九年级上册(北师版)上课课件

4.4.4黄金分割-2024-2025学年初中数学九年级上册(北师版)上课课件


.你同意他的看法吗?说说你的理由.

新知探究
知识点1:黄金分割:
一般地,点C把线段AB分成两条线段AC和BC(如图),
如果

=

,那么线段AB被点C黄金分割,点C叫做
线段的黄金分割点,AC与AB的比叫黄金比.
A
C
B
例1 计算黄金比.
解:由


=


,得AC 2=AB·BC. 设AB=1,AC=x,
黄金分
割点
黄金比
一条线段有两个
黄金分割点
较长线段
原线段

较短线段
较长线段

5−1
2
,以矩形ABCD的宽为边在其内部作正方形AEFD.
图1
A
E
B
D
F
图2
C
想一想
那么我们可以惊奇地发现
BE BC

.
BC AB
点E是AB的黄金
分割点吗?矩形ABCD的宽与长的比是黄金比吗?
图1
A
E
B
D
F
图2
C

BC BE
BE BC


,可得
AB AE
BC AB
AE BE


AB AE
因此点E是AB的黄金分割点.
较短线段
较长线段
C
ห้องสมุดไป่ตู้
A
注意:
黄金分割是一种分割线段的方法,每条线段有两个
黄金分割点.如图,点C和点D都是线段AB的黄金分

割点,

=


=
5−1
,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析:考虑到刚才我们是以AC为宽 AB为长做出的 矩形 同样 还可以以BC为宽 AC为长进行作图 它 们的比值依然是黄金比.
所以 我们可以过点C 作CF⊥AB于C 交DE 于F 则矩形CBEF就 是黄金矩形.
在矩形ABED中去掉一个 正方形ACFD 得到了一 个新的矩形CBEF 仍然 是黄金矩形.
我们再把这个方法继 续下去 就会得到很 多个黄金矩形.
黄金螺线
AC BC AB AC
,这
个比值为 5 1 ,约等于0.618.
2
.
. .
祝同学们学业进步,更上一层楼!
初三年级 数学
分别测量出点C到A,B的距离, 并计算 AC 的值.
AB
测得: AC=19mm AB=30mm
AC ≈0.633
AB
咱们接下来量出维拉斯的 肚脐到脚底的长度,再量出 她的身长,并计算它们的比 值.
测得
AC=42mm AB=69mm AC ≈0.609
AB
将这个比值与五角星中AC 的比
A
CB
AB 1, AC x, BC 1 x,
AC BC AB AC
x 1 x 1x
x2 1 1 x,
A
x2 x 1 0,
5 1 5 1 x1 2 , x2 2
AC BC 5 1 AB AC 2
即在线段AB上截取这条线段长的
约0.618倍,得到点C
CB
AC BC AB AC

黄金分割点,则
AC BC AB AC
5 2
1≈0.BC AB AC x 8x 8x
x 4 5 4 cm(舍负)
.
方法2:较长线段的长为 8 5 1 4 5 4,
2
答:较长线段的长为 4 5 4 cm.
. .
BD 1 AB. 2
∵BD⊥AB, BD 1 AB. 2
AB
值比较一下,又能有什么发现?
AC
AC
≈0.609
≈0.633
AB
AB
BC AC
这两幅图我们都可以抽象为同一个数学模型:
A
CB
下面,我们来计算出 BC 的值 计算可得: BC≈0.642,
AC
AC
我们发现,这个比值与 AC 的值也是较为接近的
AB
也都是近似值,那它们能不能相等呢?
AC BC AB AC
,
5
,
,
5,
5
5
AC
5 1 k
5 1
AB
2k
2
BC 3
5 k 3
5
5 1
AC 5 1 k 5 1 2
AC BC AB AC
.
.
B
A
D
C
CB D A
B C
A
资料
.
请你画出一个黄金矩形.
分析:过点A作线段AB的垂 线 再在这条垂线上截取 AD=AC 再以AD为宽 AB为长做出矩形ABED .
相关文档
最新文档