现代热物理测试技术一些知识点总结

合集下载

现代分析测试技术复习知识点答案

现代分析测试技术复习知识点答案

《现代分析测试技术》复习知识点答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到的吸光度的某元素的浓度称为特征浓度。

计算公式: S=×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。

通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。

只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。

计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~33.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。

这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。

5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。

TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。

热重分析通常可分为两类:动态(升温)和静态(恒温)。

检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。

现代力学测试技术

现代力学测试技术

动态力学测试技术
用于研究材料在动态载荷作用下的力学性能,如冲击、疲 劳等试验。在航空航天、汽车、军事等领域有重要应用。
断裂力学测试技术
主要研究材料在裂纹扩展过程中的力学性能,如断裂韧性 、裂纹扩展速率等。在结构安全评估、材料耐久性等方面 有重要意义。
无损检测技术
在不破坏被检测对象的前提下,利用声、光、磁等物理现 象对材料或构件进行内部缺陷或性能变化的检测。广泛应 用于航空航天、石油化工等领域。
磁结构分析
中子具有磁矩,可用于研究材料的磁结构和磁畴行为。
电子显微镜观察
01
透射电子显微镜(TEM)
利用高能电子束穿透样品,通过电磁透镜成像,观察材料的微观形貌、
晶体结构和缺陷。
02
扫描电子显微镜(SEM)
用电子束扫描样品表面,通过检测样品发射的次级电子等信号,获取表
面形貌和成分信息。
03
原位力学测试
有限元法在复杂结构力学测试中的应用
针对复杂结构如复合材料、多孔材料等,有限元法可建立精细化的模型,准确预测其力学 行为。
离散元法
离散元法基本原理
将连续体离散为一系列刚性元素的集合,元素之间通过接触力相互作用,通过求解元素运动方程 得到整体结构的力学响应。
离散元法在破碎、磨损等问题中的应用
针对涉及大变形、破碎和磨损等问题的力学测试,离散元法可有效模拟元素间的相互作用和破坏 过程。
金属、非金属、复合材料等材料的抗疲劳性能测 试,如桥梁、建筑、机械零部件等。
振动试验
振动试验原理
通过施加振动载荷,模拟实际使用中的振动环境,测试材料的抗 振性能。
振动试验设备
电磁振动台、液压振动台等。
振动试验应用
电子电器产品、航空航天产品、轨道交通产品等的抗振性能测试。

测试技术考试知识点总结

测试技术考试知识点总结

1仪器测量的主要性能指标:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间。

2测量误差可分:系统误差、随机(偶然)误差、过失误差。

系统误差的分类:仪器误差、安装误差、环境误差、方法误差、操作误差、动态误差。

3随机误差的四个特性为:单峰性、对称性、有限性、抵偿性。

4热电偶性质的四条基本定律:均质材料定律、中间导体定律、中间温度定律、标准电极定律。

5造成温度计时滞的因素:感温元件的热惯性和指示仪表的机械惯性。

6流量计可分为:容积型流量计、速度型流量计、质量型流量计。

7扩大测功机量程的方法:采用组合测功机、采用变速器。

8现代常用的测速技术:除利用皮托管测量流速外,热线(热膜)测速技术、激光多普勒测速技术(LDV )、粒子图像测速技术。

温度、压力、流量、功率、转速等。

按照得到最后结果的过程不同,测量方法分三类:直接测量(直读法、差值法、替代法、零值法)间接测量、组合测量10任何测量仪器都应包括感受件,中间件和效用件。

11测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。

12系统误差的综合包括:代数综合法、算数综合法和几何综合法。

消除系统误差的方法:消除产生系统误差的根源、用修正方法消除系统误差、 常用消除系统误差的具体方法:交换低消法、替代消除法、预检法。

16使用较多的温标:热力学温标、国际实用温标、摄氏温标和华氏温标。

17热力学温标T 和摄氏温标t 的转换关系T=t+273.1519流量计的类型:容积型流量计、速度型流量计和质量型流量计。

21可疑测量数据剔除的准则:莱依特准则、格拉布斯准则、t 检验准则、狄克逊准则、肖维涅准则。

取压设备、后面的直管段三部分组成。

孔板取压有:角接取压、法兰取压、径距取压。

23常用的压力传感器有:应变式、压电式、压阻式、电感式和电容式等型式。

24热电阻测温常采用“三线制”接法,其目的在于消除连接导线电阻造成的附加误差 。

现代测试技术学习心得

现代测试技术学习心得

现代测试技术学习心得摘要:随着微电子技术、通信技术、计算机技术的发展,现代测试技术进一步得到发展。

测试技术与科学研究、工程实践密切相关。

科学技术的发展促进测试技术的发展,测试技术的发展反过来又促进科学技术的提高,相辅相成推动社会生产力不断前进。

如今,计算机已经成为现代测试与测量技术的基础和核心,现代测试技术的发展几乎是与计算机技术的发展同步的、协调向前发展的,离开了计算机、软件、网络、通信发展的轨道,测试技术将不可能壮大。

现代测试技术的发展方向主要有四个方面:传感器的发展、测试手段的发展、测量信号处理的发展、开放平台的发展趋势。

科学技术与生产水平的高度发达,要求有更先进的测试技术与仪器做基础。

现代测试技术具有广阔的应用空间,由于各行各业的广泛要求,在各种现代装备系统的设计和制造工作中,测量工作内容已经占据首位,它是保证现代工程装备系统实际性能指标和正常工作的重要手段,是其先进性能及实用水平的重要标志。

水力发电上的测试技术应用。

水力机组是水电站的核心设备,它在运行过程中会产生一系列问题,振动故障是水力发电机组最常见的故障之一。

对振动信号的进行分析,解决故障问题。

关键词:现代测试传统的发展发展方向水轮机发电机组振动故障诊断信号分析Abstract:With the development of micro electronic technology,communication technology and computer technology,modern testing technology has been further developed.Test technology is closely related to scientific research and engineering practice.The development of science and technology to promote the development of test technology,test technology development in turn promote the improvement of science and technology,and promote social productive forces continue to progress. Today,the computer has become the core and foundation of modern testing and measurement technology,the development of modern testing technology is almost the coordinated development of computer technology and synchronization,moving forward, left the development of computer,software,network communication,track testing technology will not be able to grow.The development direction of modern test technology mainly has four aspects:the development of sensors,the development of testing means,the development of measurement signal processing,and the development trend of open platform.The level of science and technology is highly developed, which requires more advanced testing techniques and instruments.Modern testing technology has a broad application space,due to the extensive requirements of all walks of life,in a variety of modern equipment system design and manufacturing work, measurement work has to occupy the first place,it is the important means to guarantee that modern engineering equipment system of actual performance and the normal work, is an important indicator of the performance of advanced and practical level. Application of test technology in hydraulic power generation.Hydraulic power unit is the core equipment of the hydropower station,it will produce a series of problems in the process of operation,the vibration fault is one of the most common faults of the hydropower generating set.Analysis of the vibration signal to solve the problem of failure.Key words:Modern test traditional development development direction turbine generator Vibration fault diagnosis signal analysis我们正处在一个信息的时代,随着微电子技术、通信技术、计算机技术的发展,现代测试技术进一步得到发展。

材料现代分析测试方法-热分析

材料现代分析测试方法-热分析
a
c
A-峰面积 -Speil公式
从DTA曲线上可以看到物质在不同温度下的吸热和放热反应,但因影 响因素太多,计算的热量误差较大。
二、 差热分析(DTA)方法
(一)差热分析(DTA)曲线 国际热分析协会对大量试样的 分析表明曲线偏离基线那点的切线 与曲线斜率最大的直线的交点最接 近热力学平衡温度。 (二)定性分析 通过实验获得DTA曲线,根据曲线上吸、放热峰的形状、数量、特 征温度点的温度值,即曲线上特定形态来鉴定分析试样及其热特性。 所以,获得DTA曲线后,要清楚有关热效应与物理化学变化的联系, 再掌握一些纯的或典型物质的DTA曲线(可查相关手册),便可进行 定性分析。
§7.1 热分析简史 §7.2 差热分析基本原理 §7.3 差示扫描量热分析 §7.4 热重分析
热分析技术
§7.5 差热分析的定性和定量鉴定
第七章
§7.1 热分析简史
热分析技术
1780 年,英国的Higgins 使用天平研究石灰粘结剂和生石灰受热重量 变化。 1899年,英国的Roberts-Austen第一次使用了差示热电偶和参比物,大 大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。 1903年,Tammann首次提出“热分析”术语。 1915年,日本的本多光太郎,在分析天平的基础上研制了“热天平”即 热重法(TG),后来法国人也研制了热天平技术。 1945年,首批商品化热分析天平生产。 1964年,美国的Watson和O’Neill在DTA技术的基础上发明了差示扫描 量热法(DSC),美国P-E公司最先生产了差示扫描量热仪,为 热分析热量的定量作出了贡献。
第七章
热分析技术
§7.1 热分析简史
第七章
热分析技术
§7.1 热分析简史

热能与动力工程测试技术完整版

热能与动力工程测试技术完整版

热能与动力工程测试技术HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、何为动压静压总压P129答:静压是指运动气流里气体本身的热力学压力。

总压是指气流熵滞止后的压力,又称滞止压力。

动压为总压与静压之差。

2、试画出皮托管的结构简图,说明皮托管的工作原理,并导出速度表达式(条件自拟,不考虑误差)。

P143~P1443、某压力表精度为级,量程为0~,测量结果显示为,求精确度、最大绝对误和差示值相对误差δ4、在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜。

P55、测量误差可分为系统误差、随机(偶然)误差、过失误差。

6、随机误差正态分布曲线的四个特性为单峰性、对称性、有限性、抵偿性。

7、热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律。

8、流量计可分为:容积型流量计、速度型流量计、质量型流量计。

P1619、除利用皮托管测量流速外,现代常用的测速技术有:热线(热膜)测速技术、激光多普勒测速技术(LDV)、粒子图像测速技术。

10、简述金属应变式传感器的工作原理。

答:金属应变式传感器的工作原理是基于金属的电阻应变效应,即导体或半导体在外力作用下产生机械形变时,电阻值也随之产生相应的变化。

P6311、在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等。

12、按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量。

13. 按工作原理,任何测量仪器都应包括感受件,中间件和效用件。

14. 测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。

15. 系统误差的综合包括代数综合法、算术综合法和几何综合法。

16. 金属应变式电阻传感器温度补偿的方法有桥路补偿(补偿片法)和应变片自补偿。

材料现代分析测试方法总结(2)

材料现代分析测试方法总结(2)

名词解释:晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。

辐射被吸收程度对ν或λ的分布称为吸收光谱。

辐射的发射:物质吸收能量后产生电磁辐射的现象。

辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。

光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。

点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。

结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。

衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。

背散射电子:入射电子与固体作用后又离开固体的总电子流。

特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。

俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。

当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。

二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。

X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。

X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。

热物理性质测试技术研究现状和发展趋势

热物理性质测试技术研究现状和发展趋势
近廿多年来多研究对象已进入亚微米纳米尺度这对热物性的测试提出了新的挑战于是近十多年来热物性测试从传统方法研究进入了又一个新的发展阶段纳米尺度低维材料和微器件热物性测试新原理新方法和新装置的研究热物性学研究范畴简表热的运动热的传递热的转换方法的物理模型和测试原理的研究热的测量电的测量光的测量温度测量时间测量长度测量质量称量热物性测试方法和装置的研究二次检测手段的研究实验数据的分析整理和误差分析制定不同级别的标准方法和装置标准试样的研究和确定气孔率气孔尺寸气孔排列取向气孔连通性气孔气其他物性晶系晶态或非晶态化学组分晶体结构多晶或单晶相变晶界状态晶粒尺寸晶粒取向热物性学宏观热物性与微观结构化学组分工艺因素关系的研究显微组织缺陷气孔裂纹工艺因素分子光子物理模型理论预测和计算经验方程热物性机理和微观粒子的运动碰撞规律的研究数据的搜集和整理数据的综合分析热物性数据库的建立和应用研究数据判断和归纳据的优化和优选数据推荐值的确定研究现状和进展正比的
· 8 · 《上海计量测试》2002 年 29 卷第五期
综述评论 Comprehensive Revie w
年来 ,热物性测试从传统方法研究进入了又 纳米尺度低维材料和微器件热物性测试新原 一个新的发展阶段 ,其主要标志是亚微米 — 理新方法和新装置的研究 。
表 1 热物性学研究范畴简表
热的运动
声技术等新技术在热物性测试技术中越来越
广泛的应用 ,使测试的准确度和精度不断提
高 ,测试功能不断扩大 ,试样尺寸和体积明显 减小 ,促使热物性测试技术向高速化 、自动
化 、多功能化发展 。在这方面较有代表性的
如上世纪六七十年代发展起来的计算机运控
的激光热导仪以及毫秒和微秒热物性测试技
· 1 0 · 《上海计量测试》2002 年 29 卷第五期

现代热分析技术

现代热分析技术

现代热分析技术现代热分析技术是在程序控温下,测量物质的物理性质随温度变化的一类技术。

通过检测样品本身的热物理性质随温度或时间的变化,来研究物质的分子结构、聚集态结构、分子运动的变化等。

热物理性质变化包括:温度和热焓的变化,质量的变化,尺寸的变化,力学特性的变化,电磁学变化。

热分析仪器可用于测量物质的静态转变、熔融、脱水、升华、吸附、解吸、玻璃化转变、液晶转变、燃烧、固化、模量、阻尼、热化学常数、纯度、分解等性质的转变与反应。

1差示扫描量热(DSC)差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。

该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。

差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。

DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。

换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。

如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

DSC和DTA技术的区别。

1.试样和参比物分别具有独立的加热器和传感器见图。

整个仪器由两套控制电路进行监控。

一套控制温度,使试样和参比物以预定的速率升温,另一套用来补偿二者之间的温度差。

2.无论试样产生任何热效应,试样和参比物都处于动态零位平衡状态,即二者之间的温度差 T等于0。

2差热分析(DTA)差热分析法(Differential Thermal Analysis)是以某种在一定实验温度下不发生任何化学反应和物理变化的稳定物质(参比物)与等量的未知物在相同环境中等速变温的情况下相比较,未知物的任何化学和物理上的变化,与和它处于同一环境中的标准物的温度相比较,都要出现暂时的增高或降低。

11年现代热物理测试技术实践考试题

11年现代热物理测试技术实践考试题

现代热物理测试技术考试题一、回答下列问题:(40分)1.LDA测量仪是如何解决方向模糊性及PDA测量仪是如何解决2模糊性问题的?LDA测量仪解决方向模糊性是采用光束平移,即使入射到散射体的两束光之间的一束光的频率增加,这样散射体中的干涉条纹就不再是静止不动的了,而是一组运动的条纹系统,这样,在检测器检测到的一个静止的粒子产生的信号频率等于光束增加的频率deltaV。

如果粒子运动的方向与干涉条纹运动的方向相反,则得到大于光束增加频率deltaV多普勒频率,这时粒子运动的速度方向为正,如果粒子运动的方向与干涉条纹运动的方向相同,则得到小于光束增加频率deltaV多普勒频率,这时粒子的运动速度方向为负,这就解决了方向模糊问题,光束增加频率delta V多采用40MHZ.2π的模糊性在于不能识别Φ和±2nπ,n=1,2,3…之间的相位差,PDA测量仪解决2π的模糊性采用了下述2种方法:使用不对称放置的三个检测器相对于Φ12的测量值可以对应一系列的D值,然后使用Φ13值来选择哪一个D值是正确的粒径值。

2.什么是格拉布斯准则?第13讲中3.问热膜探针的特点是什么?频率响应范围比热线窄。

上限仅为100khz工作温度较低,只比环境温度高20℃工艺复杂,制造困难机械强度比热线高受振动的影响小,不存在内应力的问题阻值可由控制热膜厚度来调节热传导损失较小4. 问产生粗大误差的原因主要有哪些?产生粗大误差的原因主要有:测量者的主观原因:测量时操作不当,或粗心、疏忽而造成读数、记录的错误客观外界条件的原因:测量条件的意外改变(如机械冲击、振动、电源瞬间大幅度波动等)引起仪表示值的改变。

二、回答下列设备模化及工作原理:(30分)1.问锅炉模型实验的冷态模化原理?第一讲 4冷态模化原理2.问差热扫描量热法(DSC)的基本原理?第七讲二.33.问质谱仪的工作原理?第十讲一三、分析并选择仪器编号解答以下各题(10分)用在速度测量的仪器有,①皮托管;②热线、热线热膜风速计;③激光多普勒风速计;④粒子成像速度场分析仪。

热重分析(TG)

热重分析(TG)
可以推导出CuSO4·5H2O 的脱水方程如下:
热天平种类
➢根据试样与天平横梁支撑点之间的相对位置,热
天平可分为下皿式,上皿式与水平式三种。
热天平测量原理
➢ 当天平左边称盘中试样因受热产生重量变化时,天平横梁连同光栏则向
上或向下摆动,此时接收元件接收到的光源照射强度发生变化,使其输 出的电信号发生变化。这种变化的电信号送给测重单元,经放大后再送 给磁铁外线圈,使磁铁产生与重量变化相反的作用力,天平达到平衡状 态。因此,只要测量通过线圈电流的大小变化,就能知道试样重量的变 化。(零为平衡)
➢粒度越小,反应速率越快,使TG曲线上的Ti和Tf
温度降低,反应区间变窄。
➢试样粒度大往往得不到较好的TG曲线。粒度减小
不仅使热分解温度下降,而且也使分解反应进行 的很完全。
德国NETZSCH STA449C型综合热分析仪
应用举例
• 大同煤的TG-DTG分析
Weight loss(wt%, daf) Rate of weight loss (%/s)
为了获得精确的实验结果,分析各种 因素对TG曲线的影响是很重要的。影响TG 曲线的重要因素包括:
一、仪器因素 二、试样因素
仪器因素
➢升温速率 ➢炉内气氛 ➢支持器及坩埚材料 ➢炉子的几何形状 ➢热天平灵敏度
(1) 升温速率
➢对热重法影响比较大。 ➢升温速率越大,所产生的热滞后现象越严重,
往往导致热重曲线上的起始温度Ti和终止温度 Tf偏高。虽然分解温度随升温速率变化而变化, 但失重量保持恒定。
CuSO4·5H2O的TG曲线
曲线EF段也是一平台,相应质量 为m2;曲线FG 为第三台阶,
质量损失为0.8mg,可求得质量 损失率

现代测试分析技术SEM、TEM、表面分析技术、热分析技术

现代测试分析技术SEM、TEM、表面分析技术、热分析技术

现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。

电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。

物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。

电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。

此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。

2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。

扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。

扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。

2、扫描电镜的特点分辨本领较⾼。

⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。

现代分析测试技术_07热分析技术综合练习

现代分析测试技术_07热分析技术综合练习

第七章热分析技术(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:热分析,差热分析,差示扫描量热法,热重法(或热重分析),参比物(或基准物,中性体),程序控制温度,外推始点。

2.影响DTA(或DSC)曲线的主要因素有()、()、()、()、()、()等。

3.影响TG曲线的主要因素有()、()、()、()、()、()等。

4.金属铁粉在空气气氛中进行热重分析(TGA)和差热分析(DTA),其TGA曲线上会有增重台阶,DTA曲线上会出现放热峰。

这种说法()。

A.正确;B.错误5.碳酸钙分解在DTA曲线上表现为放热峰。

这种说法()。

A.正确;B.错误6.如果采用CO2气氛,DTA曲线上碳酸钙分解吸热峰的位置会向高温方向移动。

这种说法()。

A.正确;B.错误7.物质脱水在DTA曲线上表现为吸热谷。

这种说法()。

A.正确;B.错误8.升温速率对DTA曲线(或DSC曲线)没有影响。

这种说法()。

A.正确;B.错误9.样品粒度对DTA曲线(或DSC曲线)没有影响。

这种说法()。

A.正确;B.错误10.样品用量对DTA曲线(或DSC曲线)没有影响。

这种说法()。

A.正确;B.错误11.炉内气氛对DTA曲线(或DSC曲线)可能有影响。

这种说法()。

A.正确;B.错误12.无论测试条件如何,同一样品的差热分析曲线都应是相同的。

这种说法()。

A.正确;B.错误13.升温速率对TG曲线没有影响。

这种说法()。

A.正确;B.错误14.样品粒度对TG曲线没有影响。

这种说法()。

A.正确;B.错误15.样品用量对TG曲线没有影响。

这种说法()。

A.正确;B.错误16.炉内气氛对TG曲线可能有影响。

这种说法()。

A.正确;B.错误17.无论测试条件如何,同一样品的TG曲线都应是相同的。

这种说法()。

A.正确;B.错误18.同一样品在不同仪器上的热分析结果应该完全相同。

这种说法()。

A.正确;B.错误19.差热分析(DTA)测量的物理量是()。

高2物理知识点总结气温

高2物理知识点总结气温

高2物理知识点总结气温一、概念气温是指空气分子的热运动对人体感觉的表现,是描述大气温度的物理量。

气温通常以摄氏度(℃)或华氏度(℉)表示。

二、气温的测量1. 气温计气温计是一种测量气温的仪器,包括传统的水银气温计和现代的电子气温计。

水银气温计利用水银的膨胀和收缩来测量温度,而电子气温计则通过电子传感器来测量温度。

2. 风力与气温计气温还可以通过风力计和气温计来直接测量。

风力计通过空气的运动速度来计算温度,而气温计则利用气温对金属丝的影响来测量温度。

三、气温的影响因素1. 纬度气温受纬度影响很大,一般来说,越往赤道靠近,气温越高;太阳照射角度越大,日照时间越长。

2. 海拔海拔对气温的影响也很大,高海拔地区气温一般比低海拔地区低,因为高海拔地区的空气稀薄,大气温度梯度大。

3. 地形山地和平原气温差别较大,山地气温较低,平原气温较高。

4. 大气环流大气环流对气温的变化也有影响,例如,在靠近赤道的地方,气温一般比较高;而在靠近极地的地方,气温一般比较低。

四、气温与热传递1. 热传递方式气温的传递主要包括对流、辐射和传导三种方式。

对流是指气体的运动对气温的传递,例如:风;辐射是指太阳的辐射对气温的传递,例如:阳光照射;传导是指物体与物体之间直接接触导致气温传递,例如:接触导致的热量传递。

热平衡是指物体和周围环境之间温度的平衡。

当一个物体和周围环境温度相等时,就达到了热平衡。

五、气温变化的影响1. 植被生长气温的变化对植被生长有着重要的影响。

温度适宜条件下植物的光合作用、呼吸作用和生长代谢将逐渐加快,植物生长速度也会提高。

2. 天气变化气温的变化直接影响着天气的变化,例如:气温升高可能导致降雨减少、气温下降可能导致降雨增加。

3. 生物适应气温的变化也会对生物的生存和适应产生影响,一些生物会根据气温的变化进行适应和调整。

4. 生活影响气温的变化对人们的日常生活也会产生很大的影响,例如:决定了人们的着装和活动方式。

现代材料分析技术及应用

现代材料分析技术及应用

现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。

它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。

现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。

下面将介绍几种常见的现代材料分析技术及其应用。

一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。

常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。

这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。

例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。

二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。

常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。

这些技术可以确定材料中元素的种类、含量以及化学结构。

化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。

三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。

常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。

这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。

显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。

四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。

常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。

这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。

表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。

五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。

常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。

这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。

光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。

热分析的定义与技术分类

热分析的定义与技术分类

导热性较差时,更是如此。这时所测得的TG曲线就不能确切表
征随温度变化时反应进展的客观规律。因此,在实际测试中。 在仪器灵敏度允许的范围内,一般都应采用尽可能少的试样量
来进行实验。
3、试样形状、粒度和填装情况的影响
试样的形状和颗粒度大小的不同,对气体产物扩散的 影响也不同,它改变了反应速度,进而改变了TG曲线的 形状。一般来讲,大片状试样的分解温度比颗粒状的要高, 粗颗粒的试样比细颗粒的分解温度要高。此外,某些大晶 粒试样在加热过程产生烧爆现象,致使TG曲线上出现突 然失重,这种情况应加以避免。 试样的装填情况对TG曲线也有影响。一般试样填装 越紧密,试样颗粒间接触好,热传导性越好,因而温度滞 后现象越小。但是,这不利于气氛与试样颗粒间的接触, 或者是阻碍了分解气体的扩散和逸出。因此通常把试样放 入坩埚后,轻轻地敲一敲,铺成均匀的薄层,这样可以获 得重现性较好的TG曲线。
Temperature(oC)
3、热重分析的应用
热重分析主要研究试样在空气或惰性气体中的热稳
定性、热分解作用和氧化降解等化学变化。广泛用于
研究涉及质量变化的所有物理过程,可测定物料中的
水分、挥发物和残渣,也可测定试样对某种气体的吸
附和解吸。
TG的应用:材料的成分测定、材料中挥发性物质
的测定、材料的热稳定性和热老化寿命的研究、材料
3、差热分析的应用: 用DTA对材料进行鉴别主要是根据物质的相变 (包括熔融、升华和晶型转变)和化学变化(脱水、 分解和氧化还原等)所产生的吸热或放热峰。 有些材料常具有比较复杂的DTA曲线,虽然不能 对DTA曲线上所有的峰作出解释,但它们像“指纹” 一样表征着材料的种类。 DTA应用:材料相态结构的变化、玻璃微晶化热
40 -10 30 -20

物理实验技术中的材料过冷性能测试方法与实验技巧

物理实验技术中的材料过冷性能测试方法与实验技巧

物理实验技术中的材料过冷性能测试方法与实验技巧材料过冷性能测试方法与实验技巧一、引言材料的过冷性能是指在固态转液态的过程中,其熔点是否能够进一步降低而达到过冷状态的能力。

过冷材料具有许多独特的物理和化学特性,对于材料科学和应用具有重要意义。

为了研究材料的过冷性能,需要使用一些特定的实验方法和技巧。

二、差热扫描量热法差热扫描量热法是一种常用的测试材料过冷性能的方法。

该方法通过对材料加热的同时测量其热容量的变化,可以得到材料的熔点和过冷度。

在实验中,样品通常被包裹在惰性气体(如氮气)环境下,以避免样品与空气的反应。

差热扫描量热法可以提供材料的熔化热和熔融熵等重要的热力学参数。

三、电化学方法电化学方法是另一种常用的测试材料过冷性能的方法。

该方法利用电化学电池的原理,通过改变电流密度和温度来控制溶液的过冷度。

通过测量溶液的电流密度和过冷度之间的关系,可以得到材料的过冷性能。

这种方法适用于液体材料的过冷性能研究。

四、光学方法光学方法是测试材料过冷性能的一种重要手段。

其中,差示扫描量热法(DSC)和偏振光显微镜(POM)是最常用的光学方法之一。

DSC可以通过测量材料的热容量变化来获得其熔点和过冷度。

POM则可以通过观察材料的晶体结构和形态来判断其过冷性能。

五、实验技巧在进行材料过冷性能的实验研究时,需要注意以下几点实验技巧:1. 样品纯度:高纯度的样品可以减少杂质对材料过冷性能测试的影响。

因此,在实验中应尽量使用纯度高的样品。

2. 温度控制:在实验过程中,严格控制温度可以保证实验结果的准确性。

可以使用恒温器或温度计等设备来进行温度控制。

3. 气氛控制:在差热扫描量热法等实验中,保持样品的环境气氛是很重要的。

通常使用惰性气氛来减少样品与空气的反应。

4. 测量精度:在实验测量过程中,要注意提高测量精度。

可以使用精密仪器和设备,如电子天平和显微镜等,以减少误差。

六、应用与展望材料的过冷性能研究对于现代材料科学和工程技术具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章:红外气体分析分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱).E E E E ∆=∆+∆+∆电子振动转动 .气体特征吸收带: 气体:1~25μm 近、中红外 .红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点:优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制.烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达155℃ 2.冷凝器 )、去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理)傅立叶分光原理(属于分光红外常用一种)、特点 :原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。

透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。

也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换.特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快.第12章:色谱法色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。

物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。

高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。

气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。

2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。

3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。

特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。

4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。

气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。

5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。

色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178色谱柱:填充柱(不锈钢;直径2~6mm;柱长0.5 ~ 10m.填充固定相,根据相似相溶的原则选择)、毛细管柱(玻璃或石英;直径0.1 ~ 0.5mm;柱长10 ~ 100m.没有填料,内壁涂一层固定液膜或吸附剂)(P177)。

检测器:热导检测器(TCD)、氢火焰离子化检测器(FID)(P197)色谱图(P175)、定性分析、定量分析:第11章:阴影法与纹影法阴影法原理、反映的参数 :密度梯度==》光线折射偏转,导致光偏转,适用范围可压缩流体。

反映折射率二阶导。

(P160)阴影法装置:阴影图像简单识别:?纹影原理、两对成像(?)、反映的参数:光强反映折射率的一阶导数。

(P161)纹影法装置:纹影图像简单识别:?透射式、反射式对比:P(162)第8章:LDV与PIV多普勒现象 :波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。

双光束系统原理(干涉条纹的理解)、方向模糊性解决 :?激光多普勒测速(LDV)的优点和缺点 :LDV优点:非接触式测量、干扰少,精度最高、无需标定、测量分辨率高、动态响应好、可扩展2D、3D ;LDV缺点:成本高、单点测量、需要示踪粒子.粒子图像测速(PIV)原理、系统组成:查问区、相关法原理 :?示踪粒子要求、双激光、粒子衍射 :示踪粒子要求: 粒子直径 、直径小跟随性好、直径大光散射强 、密度与流体接近、球形最佳、散射性好。

双激光为了获得两个不同时间的像?。

粒子衍射,粒子典型直径:10μm 、放大率M 0<1 、像素典型尺寸:5~10μm 、衍射光斑直径: 02.44(1)S d M F λ≈+、典型值:6 μm 、实际直径:d τ≈ PIV 优缺点、激光安全 :PIV 优点:非接触测量、可测速度场、干扰少,精度高 。

PIV 缺点:添加示踪粒子、透明流道、流体、需要尺寸标定。

激光致盲、实验注意事项:摘掉手表及金属饰物、确定紧急停止激光器、不在疲劳时使用、采取适当防护措施、所有人员方位确认、移动前确认光路 。

注意点:测量区物体、两相流、多相流 、颗粒不均匀 、蒸汽凝结 、叶轮、水面 发现大粒子后立即停止测量,去除大粒子。

第6章:CCD 基础及图像处理CCD(电荷耦合器件)原理:光电转换、电荷存储、电荷转移、电荷检测 ???CCD彩色获得原理及其缺点 :光圈、景深,以及相互影响关系 :???曝光时间: 曝光时间长会线性增加图像亮度,同时造成拖尾增益、白平衡 :全局增益: Gain、对所有信号等比例放大(变亮),但噪声也被同时放大。

普通相机中,表现为ISO(感光度)可调。

支路增益:R Gain,G Gain,B Gain 、对单路信号放大,该路噪声也被放大。

普通相机中,表现为白平衡调节。

高速摄像及其要求:帧率高(帧率高:>128fps )、曝光时间短(冻结图像)。

第4章:压力测量技术压力单位、种类 :Pa, bar, atm, kgf/cm2;绝对压力、表压、真空度;应变式压力计与压阻式压力计应变式压力计原理(P45)、测量电路:单臂桥路、半桥差动、全桥差动;温度补偿压阻效应、(扩散型)压阻式传感器及其特点???:(即优点:灵敏度高、误差较小、简单方便,不用接线等、、、、、)压电效应、压电材料种类(P48):压电效应;压电材料受力发生机械变形,内部将发生极化现象,并在表面产生电荷。

压电传感器及其特点:特点;电荷少、内阻大、漏电(边界漏电、导线电流)压电传感器的漏电影响:无法测静态压力、不可静态标定(压电式最严重的缺陷)压电传感器优缺点 :优点:体积小,重量轻、简单可靠,工作温度高、灵敏度高,线性好、测量范围宽(100MPa)、动态响应好,常测动态压力、无电源,减少噪声缺点:无法测静态压力、需要信号放大、仪表高输入阻抗、定期动态标定、电缆影响大(固定、干燥、绝缘)压阻式传感器:优点:体积小(Φ1.8~2mm)、灵敏度高、测量范围宽(109Pa)、动态性好(数千Hz)、准确度高(0.02~0.2)、重复性好,频带宽。

缺点:温度影响大、非线性、灵敏系数不稳定,受方向影响。

应变式压力计特点:优点:结构简单,使用方便、工艺成熟,价格便宜、性能稳定,灵敏度高(相对)、测量速度快,可静态、动态测量。

缺点:受温度影响大、灵敏系数小、尺寸较大、粘贴导致应变传递差传统(弹簧管压力计、液柱式压力计)方法的弱点:动态性差、非电信号,不易记录、远传、准确度低。

第3章:温度测量技术温标:经验温标、热力学温标、国际温标热电阻原理、电阻温度系数、热电阻分度表??:物体电阻随温度变化而变化热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

原理;热电阻测温是基于金属导体的电阻值随温度的增加而增加(或减小)这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

热电阻材料、类型、接线制:铂、铜、半导体;装配、铠装、铂膜;两线制、三线制热电效应、热电偶原理:(P37可以理解为Seeback效应)热电偶四大定律及其应用 :标准热电偶、热电偶分度表 :补偿导线及其要求、冷端补偿 :补偿导线:在一定温度范围内,其热电特性与被连接的热电偶的热电特性相接近的连接导线,称为该热电偶的补偿导线。

补偿导线的作用:(1) 将热电偶参考端从温度波动的地方(t n )延伸到温度稳定的地方(t 0)。

(2) 节省贵金属材料补偿导线注意点:只能与相应型号热电偶配套 + 与热电偶连接处温度必须相同 + 在规定温度范围使用(一般0~100℃) + 存在正、负之分.冷端温度补偿器原理:根据电桥平衡原理,让电桥在20ºC (或0℃)时达到平衡,当偏离20ºC 时,电桥输出)20,(n AB t E 根据中间温度定律)20,()20,(),(t E t E t t E CD n CD n CD =+辐射测温原理、辐射测温的最大障碍 :热电阻温度计的特点:优点:应用范围广,性价比高。

稳定性好,准确度高,便于远传,无需冷端补偿。

灵敏度高,输出信号大。

铂电阻稳定、准确、互换性好,可用作基准仪表。

缺点:需要电源;自热现象,影响测量精度;测温上限不能太高,铂电阻上限低于1000 ℃。

热电偶 :目前应用最广泛的测温手段 ;精度高、简单方便、便宜、响应快、电信号使用中注意: 选型及分度表匹配 ;冷端补偿 ;补偿导线 ;降低传热误差 ;动态性第2章:热分析热分析技术、TG 、DTA 、DSC 方法的基本概念、基本原理 :热分析是在程序温度控制下测量物质的物理性质与温度关系的一类技术 。

热分析法的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化.TG ;1786年英国人Wedgwood 在研究粘土时测得了第一条热重曲线,观察到粘土加热到“暗红”时出现明显的失重,这就是热重法的开始.DTA; 差热分析法由法国科学家Le Chatelier 在1887年首次提出。

他第一次使用热电偶测温的方法研究粘土矿物在升、降温过程中热性能的变化。

相关文档
最新文档