基因工程药物干扰素的制备

合集下载

干扰素生产工艺(共45张PPT)

干扰素生产工艺(共45张PPT)

第二十八页,共45页。
3.4.菌体收集
连续流离心机:冷却的发酵液,16000 r/min离心收集。菌体保存:-20℃冰柜,不超过12个月。检测:干扰素含量、菌体蛋白含量、菌体枯燥失重、质粒结构一致性、质粒稳定性。
第二十九页,共45页。
4 干扰素的别离纯化工艺过程
4.1、干扰素别离工艺过程 4.2、干扰素的纯化工艺过程
第十页,共45页。
免疫调节活性机制
对巨噬细胞的作用:IFNγ可使巨噬细胞外表MHCⅡ类分子的表达增加,增强其抗原递呈能力;此外还能增强巨噬细胞外表表达Fc受体,促进巨噬细胞吞噬免疫复合物、抗体包被的病原体和肿瘤细胞。对淋巴细胞的作用:干扰素对淋巴细胞的作用较为复杂,可受剂量和时间等因素的影响而产生不同的效应。在抗原致敏之前使用大剂量干扰素或将干扰素与抗原同时投入会产生明显的免疫抑制作用;而低剂量干扰素或在抗原致敏之后参加干扰素那么能产生免疫增强的效果。在适宜的条件下,IFNγ对B细胞和CD8+T细胞的分化有促进作用,但不能促进其增殖。IFNγ能增强TH1细胞的活性,增强细胞免疫功能;但对TH2细胞的增殖有抑制作用,因此抑制体液免疫功能。IFNγ不仅抑制TH2细胞产生IL-4,而且抑制IL-4对B细胞的作用,特别是抑制B细胞生成IgE。
第三十四页,共45页。
〔4〕初级别离
盐析: 4M硫酸铵,2℃~10℃,搅匀,静置过夜。离心:连续流离心机,16000 r/min保存:收集沉淀,粗干扰素,4℃保存。
第三十五页,共45页。
4.2、干扰素纯化工艺过程
溶解粗干扰素沉淀与疏水层析阴离子交换层析与浓缩阳离子交换层析与浓缩凝胶过滤层析无菌过滤分装
第十二页,共45页。
1.5.干扰素生产工艺路线〔1〕

〖医学〗基因工程药物的质量控制

〖医学〗基因工程药物的质量控制

检测方法
鲎试剂、家兔热原法 免疫分析、SDS-PAGE、CE 免疫分析、SDS-PAGE、 HPLC、CE DNA杂交、紫外光谱、蛋白结合 肽谱、HPLC、 IEF、 CE 肽谱、HPLC、 IEF、 CE 肽谱、HPLC、 质谱、氨基酸分析 SDS-PAGE、IEF、HPLC、 CE、质谱、 凝胶过滤
〖医学〗基因工程药物的质量控制
宿主细胞中表达的外源基因, 在转录翻译精制工艺放大过程 中都可能发生变化,故从原料 以及制备全过程都必须严格控 制条件和鉴定质量。
一、 原材料的质量控制
原材料的质量控制是确保编码 药品的DNA序列的正确性,重组微 生物来自单一克隆,所用质粒纯而 稳定,以保证产品质量的安全性和 一致性。
在重复生产发酵中,工程菌表 达稳定;
始终能排除外源微生物污染。
生产基因工程产品应有种子 批系统,并证明种子批不含有致 癌因子,无细菌、病毒、真菌和 支原体等污染,并由原始种子批 建立生产用工作细胞库。
原始种子批须确证克隆基因 DNA序列,详细叙述种子批来源、 方式、保存及预计使用期,保存 与复苏时宿主载体表达系统的稳 定性。
⒌产品一致性的保证
五、产品的保存 ⒈液态保存 ⑴低温保存 ⑵在稳定的下保存 ⑶高浓度保存 ⑷加保护剂保存 ⒉固态保存
第十节 基因工程药物制造实例
干扰素(interferon,IFN)是人体细胞分泌的一种 活性蛋白质,具有广泛的抗病毒抗肿瘤和免疫调节活性, 是人体防御系统的重要组成部分。根据分子结构和抗原性 的差异分为α、β、γ、ω等4个类型。α型干扰素在分 为α1b α2a α2b等亚型。
弄不明白,治疗受到制约,在小小SARS、 禽流感 面前竟 束手无 策,在 糖尿病 、癌症 、心脑 血管疾 病、尿 毒症等 相当多 疾病面 前更是 不得不 求助或 借助中 医治疗 。一个 是疗效 不确实 ,一个 是有些 甚至相 当多疾 病无法 治疗, 这就是 中西医 学结合 的缘由 。然而 ,由于 二者是 两套理 论、两 股道上 跑的车 (肺血 液血小 板红血 球白血 球), 风马牛 不相及 ,从理 论上讲 就没有 结合的 可能, 只是形 式上的 融合罢 了。( 肺炎青 霉素肝 炎)

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程干扰素是一种重要的生物制剂,被广泛应用于医学和生物制药领域。

其中,基因工程合成的干扰素具有高纯度和高效性,成为医药行业备受瞩目的制备临床药物之一。

下面将介绍基因工程制备干扰素的具体流程。

1. 选择干扰素基因:首先,需要确定要制备的干扰素类型,比如干扰素α、β或γ。

然后从合适的来源中提取相应的基因序列,这些基因将用于转染哺乳动物细胞中。

2. 克隆基因:将提取的基因进行PCR扩增,然后将扩增的基因与表达载体连接,形成重组质粒。

这一步大多数需要利用大肠杆菌进行克隆。

3. 转染细胞并表达:将重组质粒导入哺乳动物细胞中,并使用适当的转染试剂进行转染。

转染后,细胞将利用其自身的基因组表达干扰素基因,产生干扰素蛋白。

4. 提取纯化干扰素:采用细胞破碎和超声波等技术,将细胞内的干扰素进行提取。

接着,利用柱层析、凝胶过滤等方法对干扰素进行纯化,确保获得高纯度的目标蛋白。

5. 结构分析和活性检测:对制备的干扰素进行质谱分析、核磁共振等结构分析技术,确保合成的干扰素与天然干扰素的结构相似。

同时,需要进行活性检测,验证其在体外和体内的抗病毒、抗肿瘤等生物活性。

6. 毒性和稳定性评价:进行毒性和稳定性测试,确保制备的干扰素对人体没有不良影响,并且在不同条件下具有一定的稳定性。

7. 大规模生产:通过以上步骤初步制备的干扰素需要进行大规模发酵生产,确保满足医药市场对干扰素的大量需求。

通过上述基因工程制备流程,可以获得高效、高纯度的干扰素制剂,为医药健康事业做出重要贡献。

8. 注册和临床试验:在成功实现大规模生产后,制备的干扰素需要进行严格的注册和临床试验。

在注册过程中,需要提供充分的数据支持其安全性和有效性,以及符合各项规定标准。

对于基因工程制备的干扰素,还需要提供详细的制备工艺和质控措施,证明产品的稳定性和一致性。

在完成注册后,需要进行临床试验以验证干扰素在不同病症(如乙肝、乙型肝炎、多发性硬化症、癌症等)的疗效和安全性。

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程概述干扰素是一类重要的基因工程药物,具有抗病毒、抗肿瘤等作用。

本文将详细介绍干扰素的制备流程,包括干扰素的基因工程、表达和纯化等主要步骤。

1. 干扰素的基因工程干扰素的基因工程是制备干扰素的第一步,可以通过重组DNA技术构建包含干扰素基因的重组质粒。

具体步骤如下:•选择干扰素基因:从已知的干扰素基因库中选择合适的基因序列。

•克隆基因:将选定的干扰素基因通过PCR扩增等技术获得基因片段。

•构建重组质粒:将干扰素基因插入适当的表达载体中,构建重组质粒。

2. 干扰素的表达完成基因工程后,接下来是通过表达系统将干扰素基因表达为蛋白。

常见的表达系统包括大肠杆菌、哺乳动物细胞等,其中大肠杆菌表达系统是最常用的。

表达步骤如下:•转染表达宿主:将构建好的重组质粒导入表达宿主中。

•培养表达宿主:在适当的培养条件下,培养表达宿主,促使干扰素基因表达为蛋白。

•蛋白提取:采用合适的方法提取表达的干扰素蛋白。

3. 干扰素的纯化获得表达的干扰素蛋白后,还需要进行纯化步骤,将目标蛋白从其他杂质中分离出来,确保干扰素的纯度。

常见的纯化方法包括亲和层析、离子交换层析等:•亲和层析:利用干扰素与某种亲和基质之间的特异识别作用,实现干扰素的分离纯化。

•离子交换层析:根据蛋白的电荷性质,通过离子交换柱将干扰素与杂质分离。

4. 干扰素的检测与质控最后一步是对制备好的干扰素进行检测与质控,确保其质量符合要求。

常见的检测方法包括SDS-PAGE凝胶电泳、Western blotting等:•SDS-PAGE凝胶电泳:通过电泳分析蛋白的相对分子质量。

•Western blotting:通过特异抗体的靶向检测确认蛋白的存在。

结语通过上述步骤,干扰素的制备工作完成,得到的干扰素蛋白可以用于临床治疗等用途。

干扰素的基因工程、表达和纯化过程都需要严格控制,保证干扰素的质量和稳定性,为临床应用奠定基础。

基因工程药物-干扰素的制备

基因工程药物-干扰素的制备
基因工程药物-干扰素的 制备
基因工程技术为干扰素的制备带来了革命性的突破。本节将介绍干扰素的概 述以及基因工程在干扰素制备中的应用。
基因工程技术在干扰素制备中的应用
1
基因克隆
通过克隆干扰素基因,实现大规模制备。
2
表达与纯化
将干扰素基因导入宿主细胞,并优化表达和纯化工艺。
3
转化与改性
通过转化和改性技术,提高干扰素的稳定性和疗效。
市场增长潜力
随着生命科学技术的发展,干 扰素药物市场有望持续增长。
疗效和安全性
干扰素在疾病治疗中的广泛应 用为其市场发展提供了机遇。
竞争格局
多家制药公司已进入干扰素药 物市场,竞争激烈。
பைடு நூலகம்
干扰素的生产工艺
步骤1
干扰素基因的克隆和构建。
步骤2
干扰素基因的表达与纯化。
步骤3
干扰素的转化和改性。
常见干扰素药物的种类和特点
α-干扰素
广谱抗病毒活性,治疗病毒感染和肿瘤。
β-干扰素
用于多发性硬化症等自身免疫性疾病的治疗。
γ-干扰素
具有免疫调节和抗肿瘤活性。
干扰素药物的临床应用
抗病毒治疗
干扰素可用于治疗乙型肝炎、丙 型肝炎等病毒感染。
自身免疫疾病
用于多发性硬化症等自身免疫性 疾病的治疗。
抗肿瘤治疗
干扰素可用于肝癌、黑色素瘤等 肿瘤的辅助治疗。
干扰素药物的不良反应与副作用
1 注射部位反应
2 全身反应
局部疼痛、红肿等不良反应常见。
发热、乏力、恶心等全身不适感可能发生。
3 免疫反应
干扰素可引起免疫相关不良反应,如抑制造血功能等。
干扰素药物市场前景分析

干扰素及其制备工艺

干扰素及其制备工艺
THEEND Nhomakorabea
干扰素不能直接灭活病毒,而是通过诱导细 胞合成抗病毒蛋白(AVP)发挥效应。干扰 素首先作用于细胞的干扰素受体,经信号转 导等一系列生化过程,激活细胞基因表达多 种抗病毒蛋白,实现对病毒的抑制作用。抗 病毒蛋白主要包括2′-5′A合成酶和蛋白激酶等。 前者降解病毒mRNA、后者抑制病毒多肽链 的合成,使病毒复制终止。
20世纪50年代:Alick Isaacs和Jean Lindenmann发现了干扰素(IFN),到IFN的抗 病毒机制被阐明 20世纪70年代中期:医学界发现慢性乙型肝 炎患者自身产生干扰素的能力低下,在应用外源 性干扰素后,不仅产生了上述抗病毒作用,同时 可以增加肝细胞膜上人白细胞组织相容性抗原的 密度,促进T细胞溶解感染性肝细胞的效能。成 人注射(2~5)X106单位干扰素后,3小时血清 中干扰素活性开始测出,6小时达高位,48小时 基本消失。经历了十余年。随后,IFN开始用于 治疗乙型肝炎.
广谱抗病毒活性(rhuIFNα) 慢性乙型、丙型、丁型肝炎;疱疹、病毒性角 膜炎。 直接抗肿瘤活性(rhuIFNα) 毛细胞和慢性髓样白血病、 Kaposi肉瘤、非 霍奇金淋巴瘤。 免疫调节活性——治疗慢性肉芽肿瘤 (rhuIFNγ) 多发性硬化症 rhuIFNβ



普通干扰素 普通干扰素分子小、作用时间短,一般情况下,普通干 扰素注射12小时后基本完全排出体外,因而需要多次注射, 普通干扰素的注射方法可以为隔一天注射一针或是一周注射 三针。对于普通干扰素的价位,普通干扰素价格比较低, 300万剂量的普通干扰素价格一般在50-80元不等。 长效干扰素 相对于普通干扰素,长效干扰素半衰期长,长效干扰素 的半衰期长达40小时,可以在乙肝患者体内持续作用168个 小时,因而,长效干扰素一周只需要注射一次,使用比较方 便,而且提高了干扰素治疗的安全性。至于长效干扰素的价 格是多少?长效干扰素价格相对较贵,长效干扰素的价格一 般在1200-1500元之间。

干扰素的工艺制备流程

干扰素的工艺制备流程

干扰素的工艺制备流程干扰素是一种细胞因子,具有抗病毒、抗肿瘤和免疫调节等多种功能。

干扰素的制备是通过基因工程技术来实现的,下面将介绍干扰素的工艺制备流程。

1. 基因克隆在干扰素的工艺制备中,首先需要进行基因克隆。

这一步是将目标基因与表达载体连接起来,形成重组 DNA 分子。

常用的表达载体包括质粒和病毒载体。

基因克隆的具体步骤如下:1.1 选择目标基因:根据所需要制备的干扰素类型,选择相应的目标基因序列。

1.2 购买引物:根据目标基因设计引物,并购买合成。

1.3 PCR 扩增:使用引物进行 PCR 扩增,得到目标基因的 PCR 产物。

1.4 酶切与连接:将目标基因的 PCR 产物切割与载体进行连接,形成重组 DNA 分子。

常用的酶切酶有 EcoRI、BamHI、XhoI 等。

1.5 转化:将重组 DNA 转化至宿主菌中,如大肠杆菌,以便后续大规模培养。

2. 克隆表达在克隆表达阶段,需要将重组 DNA 导入到宿主细胞中,并使其表达干扰素。

克隆表达的具体步骤如下:2.1 酵母菌检测: 通过将宿主细胞转化至酵母菌中,进行孢子碟试验来筛选高表达的菌株。

2.2 培养: 选取高表达的菌株进行大规模培养,提供充足的菌体用于干扰素的表达。

2.3 诱导表达: 通过添加合适的诱导剂,如等温诱导或化学诱导,使菌体产生干扰素。

2.4 培养时间控制: 根据不同的干扰素类型,确定合适的培养时间。

2.5 菌体破碎: 将培养得到的菌体进行破碎,以释放干扰素。

2.6 干扰素纯化: 利用分离纯化技术,如柱层析、高效液相层析等,对菌体提取液进行纯化,得到纯净的干扰素。

3. 干扰素的活性检测制备干扰素后,需要对其进行活性检测,以确保其具有预期的抗病毒、抗肿瘤和免疫调节等功能。

干扰素活性检测的方法有多种,包括:3.1 细胞抑制实验:通过对目标细胞进行处理,并观察细胞生长情况,来判断干扰素抑制细胞生长的能力。

3.2 抗病毒实验:通过对目标病毒感染细胞进行处理,并观察细胞感染情况,来判断干扰素抗病毒能力。

基因工程药物之干扰素的制备流程课件

基因工程药物之干扰素的制备流程课件

基因工程药物之干扰素的制备流程课件•引言•基因工程药物制备基础•干扰素制备流程详解•质量控制与安全性评估目•临床应用与市场前景•总结与展望录干扰素的基因克隆与表达目的基因的获取从人或动物细胞中提取干扰素基因,或通过化学合成方法获得。

基因克隆将目的基因插入到合适的载体中,如质粒、病毒等,构建重组DNA分子。

基因表达将重组DNA分子导入到宿主细胞中,如大肠杆菌、哺乳动物细胞等,进行基因表达,产生干扰素蛋白。

通过机械、化学或酶解等方法破碎细胞,释放干扰素蛋白。

细胞破碎初步纯化高度纯化利用离心、过滤、层析等技术对干扰素蛋白进行初步纯化,去除杂质和宿主细胞蛋白。

通过高效液相色谱、凝胶过滤层析等技术对干扰素蛋白进行高度纯化,获得高纯度的干扰素制品。

030201干扰素的分离纯化干扰素的制剂与质量控制制剂工艺将纯化后的干扰素蛋白进行制剂加工,如冻干、分装等,制备成适合临床使用的干扰素制剂。

质量控制对干扰素制剂进行质量检测和控制,包括外观、纯度、活性、安全性等方面的检测,确保产品质量符合规定标准。

基因工程药物是指利用基因工程技术生产的药物,包括基因重组蛋白质、基因治疗剂、基因疫苗等。

具有高效、特异性强、安全性高等优点,已成为现代医药产业的重要组成部分。

基因工程药物概述特点定义干扰素介绍定义干扰素是一类具有抗病毒、抗肿瘤和免疫调节等多种生物活性的蛋白质,是机体天然免疫的重要组成部分。

分类根据结构和功能不同,干扰素可分为α、β、γ等多种类型,其中α-干扰素是临床上应用最广泛的一种。

制备流程研究背景随着重组DNA技术的不断发展,利用基因工程技术生产干扰素已成为可能。

市场需求干扰素具有广泛的临床应用价值,市场需求量大,因此研究其制备流程具有重要意义。

基因重组通过体外DNA重组技术,将目的基因与载体DNA进行切割、拼接,构建重组DNA分子。

基因表达将重组DNA分子导入宿主细胞,利用宿主细胞的转录和翻译系统,表达出具有特定生物学活性的蛋白质分子。

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程

基因工程药物之干扰素的制备流程引言干扰素是一类重要的基因工程药物,对许多疾病的治疗具有重要的作用。

干扰素可以调节免疫系统,抑制病毒感染和癌细胞增殖,被广泛用于临床治疗。

本文将介绍干扰素的制备流程,包括基因克隆、表达以及纯化的步骤。

1. 基因克隆在干扰素的制备过程中,首先需要获得目标基因的DNA序列,并进行基因克隆。

基因克隆的主要步骤如下:1.1 DNA提取从人体组织或其他细胞中提取目标基因的DNA。

可以使用商业化的DNA提取试剂盒,按照厂家提供的操作步骤进行提取。

1.2 PCR扩增利用聚合酶链式反应(PCR)方法扩增目标基因。

设计引物,将目标基因序列扩增出来。

可以使用热稳定DNA聚合酶和PCR反应缓冲液进行PCR。

1.3 质粒构建将扩增得到的目标基因连接到适当的质粒载体上。

质粒载体可以选择常用的表达质粒,如pUC19。

连接可以使用DNA连接酶将目标基因和质粒连接。

1.4 转化将质粒构建得到的重组质粒转化至大肠杆菌等适当的宿主细胞中。

可以使用热激冲法或电穿孔法等方法进行细胞转化。

2. 基因表达在基因工程药物制备中,基因表达是至关重要的一步。

基因表达主要包括质粒构建、转染和蛋白表达等步骤。

2.1 质粒构建选取适当的表达质粒,将目标基因连接到表达质粒上。

选择合适的启动子和选择性抗生素标记,使得目标基因在宿主细胞中得到高效表达。

2.2 转染将构建好的表达质粒转染至宿主细胞中。

可以选择化学法、电穿孔法或者病毒载体转染等方法进行转染。

2.3 细胞培养转染成功后,将宿主细胞进行培养。

适当控制培养条件,保证细胞的生长和表达目标基因的稳定性。

2.4 蛋白表达在经过适当培养时间后,收获转染细胞,提取目标蛋白。

可以采用细胞裂解液提取的方法,利用离心等技术将目标蛋白提取出来。

3. 蛋白纯化蛋白的纯化是确保药物质量和活性的重要步骤。

蛋白纯化的主要步骤如下:3.1 细胞裂解将收获的转染细胞进行裂解,释放目标蛋白。

可以使用溶液裂解法、超声波法等方法进行细胞裂解。

生物制药 第三章 基因工程制药 基因工程药物制造实例和质量控制

生物制药 第三章 基因工程制药 基因工程药物制造实例和质量控制
µg),任何药物性质或剂量上的偏差,都可能 贻误病情甚至造成严重危害。
• 基因工程药物需要在宿主细胞中表达的 外源基因,在转录或翻译、精制、工艺 放大过程中,都有可能发生变化,所以 从原料—制备过程—产品的每一步都必 须严格控制条件和鉴定质量,确保产品 符合质量标准、安全有效。
一、原材料的质量控制
1. hIFN-ɑ2b基因的获得 • 用于克隆的人ɑ2b干扰素基因是应用PCR方法
从带有人ɑ2b干扰素基因的染色体片段获得的: 模板DNA 4ng,引物为50pmol/L,各25µL 4×dNTP 4µL,TaqDNA聚合酶2.5µL, 10×PCR反应缓冲液10µL,补水使总反应体积 为100µL。反应条件:变性温度为94 ℃,退火温 度为50℃,链延伸温度为72 ℃ 。共30个循环。
第八节 基因工程药物制造实例
一、干扰素 二、人粒细胞巨噬细胞集落刺激因子 三、人白细胞介素-2 四、美洲商陆抗病毒蛋白
干扰素(interferon,IFN)是人体细胞 分泌的一种活性蛋白质,具有广泛的抗病毒、 抗肿瘤和免疫调节活性,是人体防御系统的重 要组成部分。根据分子结构和抗原性的差异分 为α、β、γ、ω等4个类型。α型干扰素在 分为ɑ1b,ɑ2a ,ɑ2b等亚型,其区别表现在个 别氨基酸的差异上。
⑻残余抗生素活性测定 ⑼紫外光谱扫描 ⑽肽图测定 ⑾等电点测定 ⑿除菌半成品应做干扰素效价测定、无
菌试验、热原质试验。
⒉ 成品检定
⑴物理性状 ⑵鉴别试验 ⑶水分测定 ⑷无菌试验 ⑸热原试验 ⑹干扰素效价测定 ⑺安全试验 美洲商陆
第九节 基因工程药物的质量控制
• 基因工程药物与传统意义上的一般药品的生产不同, 首先它是利用活的细胞作为表达系统,所获蛋白质产 品往往相对分子质量较大,并具有复杂的结构;许多 基因工程药物还是参与人体一些生理功能精密调节所 必需的蛋白质,极微量就可产生显著效应(每剂量的用 量:白介素-12仅0.1 µg, ɑ干扰素也只有10~30

干扰素生产工艺

干扰素生产工艺

干扰素生产工艺干扰素是一种重要的抗病毒蛋白质,广泛应用于临床医学中治疗病毒感染和恶性肿瘤。

干扰素的生产工艺包括基因工程和发酵工艺两个部分。

基因工程是干扰素生产的关键步骤之一。

首先,从人体或其他动物中提取相关基因,然后将其插入到融合质粒或细胞株中。

目前常用的融合质粒是质粒pBR322,细胞株则多选用大肠杆菌(E.coli)。

将外源基因与质粒或细胞株插入时,需要加入特定的限制性内切酶进行剪切,以保证外源基因能够正确插入。

接下来,利用转化法将融合质粒或细胞株引入宿主细胞中,形成重组细胞。

重组细胞经过筛选和分离,最终能够获得具有干扰素基因的细胞株。

发酵工艺是干扰素生产的另一个重要环节。

发酵是利用微生物在合适的培养基中进行代谢活动,生产目标产物。

干扰素的生产主要利用大肠杆菌进行发酵。

首先,将重组细胞培养在含有理想培养基的发酵罐中。

理想的培养基是指含有合适的碳源、氮源、矿物质和辅助因子的培养基,能够提供微生物生长所需的养分。

培养基的pH值、温度和搅拌速度等条件也需要适当控制,以保证微生物能够有效地生长和产生干扰素。

在发酵过程中,需要定期对发酵罐中的微生物进行监测和控制。

通过检测微生物的生长情况、溶氧和酸碱度等参数,可以调整培养条件,以提高干扰素的产量和纯度。

此外,还需要对干扰素进行纯化和浓缩处理。

一般采用柱层析和超滤等技术,将发酵液中的干扰素与其他杂质物进行分离和去除,最终得到较纯的干扰素溶液。

总之,干扰素的生产工艺主要包括基因工程和发酵工艺两个部分。

基因工程通过插入外源基因将干扰素基因引入宿主细胞中,形成重组细胞。

发酵工艺则利用重组细胞在合适的培养基中进行发酵,通过监测和控制微生物的生长条件,最终得到较纯的干扰素产物。

随着生物技术的不断发展,干扰素的生产工艺也在不断优化,以提高产量和纯度,满足临床应用的需求。

重组人干扰素生产工艺

重组人干扰素生产工艺

重组人干扰素生产工艺一、简介重组人干扰素(Interferon)是一类重要的免疫调节蛋白,在生物制药领域具有广泛的应用,特别是在抗病毒、抗肿瘤和免疫调节等方面。

重组人干扰素生产工艺是指利用基因工程技术,将人体细胞中制造干扰素的基因导入细菌、真菌或动植物细胞中,并通过发酵、提取等步骤最终制备重组人干扰素的过程。

本文将介绍重组人干扰素生产工艺的关键步骤、技术原理及优化方法。

二、生产工艺步骤1.基因克隆和表达载体构建:–选择适合的重组表达宿主菌,如大肠杆菌、毕赤酵母等。

–将编码重组人干扰素的基因克隆到表达载体中,构建表达载体。

–将表达载体导入宿主菌细胞中,实现干扰素基因的表达。

2.发酵过程:–设计合适的培养基,满足宿主菌的生长和表达需求。

–进行适当的培养条件控制,如温度、pH值、氧气供给等。

–监测培养过程中的生长情况和干扰素的表达水平。

3.重组人干扰素的提取与纯化:–通过离心、超滤等方法将细菌或细胞破碎,释放干扰素。

–采用亲和层析、离子交换层析等技术进行干扰素的纯化和富集。

–进行最终的纯化步骤,得到高纯度的重组人干扰素。

三、关键技术原理•基因克隆:利用PCR扩增目的基因,将其插入适当的表达载体中。

•表达调控:通过调控启动子、转录子等元件来控制干扰素基因的表达水平。

•蛋白质纯化:利用蛋白质的生物特性,如大小、电荷等,选用不同的层析技术进行纯化。

四、工艺优化方法1.菌种优化:选择高表达、稳定的宿主菌株,优化质粒结构。

2.培养条件优化:根据宿主菌的生长情况,调整培养基成分和培养条件。

3.表达调控:利用诱导剂、转录启动子等手段调控干扰素基因的表达水平。

4.提取纯化优化:优化破碎、纯化过程,提高干扰素的产率和纯度。

五、结论重组人干扰素的生产工艺是一项复杂而重要的技术,通过不断优化工艺流程和条件,可以提高干扰素的产量和纯度,满足临床和市场需求。

未来随着基因工程技术的不断发展,重组人干扰素生产工艺将进一步精细化和高效化,为人类健康带来更大的益处。

干扰素的制备

干扰素的制备

把得到的杂交阳性克隆中的重组质粒 DNA放到一个无细胞蛋白合成体系中进行 翻译,对每一个翻译体系的产物进行抗病 毒的干扰素活性检测,经过多轮筛选获得 了产生干扰素的cDNA。 最后将干扰素cDNA克隆入大肠杆菌表 达载体中,转化大肠杆菌进行高效表达。
二、基因工程干扰素的制备
制备种子液 发酵培养 提 半成品制备 半成品检定 分装 干 成品检定 成品包装 启开种子 粗 冻
1、半成品检定
(4)纯度 纯度 电泳纯度用非还原型SDS-PAGE法,银染显色应 为单一区带,经扫描仪测定纯度应在95%以上。
( 5)相对分子量测定 )
还原型SDS-PAGE,加样量不地域微克,同时用 已知相对分子量的蛋白标准系列做对照,以迁移率为横 坐标,相对分子量的对数为纵坐标作图,计算相对分子 量。与理论值比较,误差不得高于10%。 (6)残余外源性 )残余外源性DNA含量测定 含量测定 用放射性核素或生物素探针法测定,每剂量中残 余外源性DNA应低于100pg。
(1)物理性状 物理性状
2、成品检定
冻干品白色或微黄色疏松体,加入注射水后 不得含有肉眼可见不溶物。 (2)鉴别试验 鉴别试验 应用ELISA或中和试验检定。 (3)水分测定 水分测定 用卡氏法,应低于3%。 (4)无菌试验 无菌试验 同半成品。
(5)热原质试验 热原质试验 同半成品检定。 (6)干扰素效价测定 干扰素效价测定 同半成品检定,效价不应低于标示量。 (7)安全试验 安全试验 取体重为350-400克豚鼠3只,每只腹侧皮下注 射量为成人每千克体重临床使用最大量的3倍,观察7 天,若豚鼠局部无红肿、坏死、总体重不下降,说明 成品合格。 取体重18-20克小鼠5只,每只尾静脉注射剂量按 人每千克体重临床使用最大量的3倍,观察7天,若动 物全部存活,说明成品合格。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使干扰素的临床应用成为可能Sidney Pestka
美国科学家Sidney Pestka在罗氏研究院里成功克隆出了干扰素cDNA,为 后来干扰素的工业化生产奠定了基础。
二、干扰素生产企业
上海生物制品研究所 北京三元基因工程有限公司 长春海伯尔生物技术有限责任公司 深圳科兴生物工程有限公司 哈药集团生物工程有限公司 天津华立达生物工程有限公司 沈阳三生制药有限责任公司 安徽安科生物工程(集团)股份有限公司 ……
三、干扰素药理作用
干扰素在病毒细胞表面与特殊膜受体结合发挥抗DNA和RNA作 用,包括对某些酶的诱导作用,阻止受病毒感染细胞中病毒 的复制,抑制这些细胞的繁殖。本品具有免疫调节作用,可 增强巨噬细胞的吞噬作用,增强淋巴细胞对靶细胞的特殊细 胞毒性。
基因工程药物—— 干扰素的制备
干扰素概述
中文名称: 干扰素 英文名称: interferon;IFN 定义1: 细胞因子中的一个家族,以干扰病毒复制而得名。根据产生细
胞不同可分为α干扰素、β干扰素和γ干扰素三类。 应用学科: 免疫学(一级学科);免疫系统(二级学科);免疫分子 (三级学科) 定义2: 脊椎动物受多种因素(如微生物)诱导产生的一组抗病毒蛋白质。 可影响细胞的运动和免疫过程,也可干扰多种病毒的复制而得此名。干 扰素有Ⅰ型和Ⅱ型,以及干扰素样细胞因子,Ⅰ型干扰素有7种:IFN-α、 IFN-β、IFN-ε、IFN-κ、IFN-ω、IFN-δ和IFN-τ,人类没有IFN-δ 和IFN-τ;Ⅱ型仅有IFN-γ。
干扰素独具的双重作用让科学家们兴奋不已。显然它具 备了成为攻克乙肝的利器的必要条件。但干扰素的人工 合成、工业化生产乃至最后真正为攻克疾病作出贡献, 又经历了漫长而艰辛的过程。
早期的干扰素是从人体白细胞中通过纯化技术提取的,不仅量少,且 含有很多杂质,导致作用有限。直到70年代中期,随着生物医学的发 展和基因重组技术的出现,科学家们逐渐开始尝试通过基因重组技术 合成干扰素。1978年,瑞士罗氏公司的科学家帕斯特卡(Pestka)成功 克隆了干扰素cDNA,为后来干扰素的工业化生产奠定了基础。1990年, 基因重组技术正式应用于干扰素的工业化生产,于是今天所说的“普 通干扰素”开始批量生产。但是,普通干扰素也给患者和医生带来困
药浓度波动,浓度过高时会导致较为严重的不良反应,但浓度过低又 会导致病毒重新复制和反弹;此外,一旦注射了普通干扰素,它广泛
期只有2至5小时,必须频繁注射用药,因而干扰素的临床应用受到了 很大限制。 到1990年代末2000年代之初,聚乙二醇化(PEG)技术的出现使干扰素 终于成为人类与乙肝斗争中的真正利器。2002年,罗氏研究生产的聚 乙二醇化干扰素α-2a(派罗欣)正式上市,聚乙二醇与干扰素的结合, 大大改善了干扰素的药物特性,使血药浓度变得更加稳定,同时聚乙 二醇分子支链对干扰素有效成分的保护作用,大大降低了它的抗原性,
高,副反应显著减少。
干扰素发现者Alick Isaacs
1957年,英国医生Alick Isaacs在进行流感病毒试验时,发现鸡胚中注射 灭活பைடு நூலகம்感病毒后生成了一种物质,这种物质具有“干扰”流感病毒感染的作 用,于是Isaacs将这种物质称之为“interferon”,也就是今天我们所说的 干扰素。
干扰素抗病毒作用机理的发现者Robert M.Friedman
在1966到1971年期间,美国医生Robert M.Friedman发现了干扰素对病 毒的抑制作用主要是干扰素干扰了病毒信使RNA功能,而抑制了蛋白的合成。 从此,关于干扰素抗病毒的作用机理的深入研究才被逐渐展开。
干扰素从实验室到临床的重要人物Derek C.Burke
美国病毒学专家Derek C.Burke致力于干扰素的生产流程的研究,并在 1980年实现了通过人类白细胞进行干扰素量化生产,虽然这种生产方式无法 与基因技术出现后的生物工程生产方式相比,但对干扰素从实验室成功地走 向临床却是有着非常重要的意义。
干扰素免疫调节机制的证实者Samuel Baron
美国人Samuel Baron与Isaacs的共同研究证实了干扰素在机体免疫系统对 抗病毒感染中的起着非常重要的作用,也正是他们的研究为干扰素在临床的 应用提供了更多的证据,并为干扰素抗病毒的双重作用机理奠定了基础。
干扰素(IFN)是一种广谱抗病毒剂,并不直接杀 伤或抑制病毒,而主要是通过细胞表面受体作用使 细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制; 同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞 和T淋巴细胞的活力,从而起到免疫调节作用,并 增强抗病毒能力。干扰素是一组具有多种功能的活 性蛋白质(主要是糖蛋白),是一种由单核细胞和 淋巴细胞产生的细胞因子。它们在同种细胞上具有 广谱的抗病毒、影响细胞生长,以及分化、调节免 疫功能等多种生物活性。。
干扰素发现发展历程 干扰素的生产企业 干扰素的药理作用、临床应用及不良反应 干扰素的制备路线
一、干扰素的发现发展历程
50年前,英国的病毒学家艾力克·伊萨克斯(Alick Isaacs)在流感病毒研究时发现,在鸡胚中注射灭活流 感病毒后,鸡胚细胞中生成了一种物质,这种物质可以 反过来“干扰(interfere)”流感病毒的生长,于是就 将这种物质称为干扰素(interferon)。随着研究的深入, 人们发现它是一个非常重要的细胞因子,不仅具有直接 抗病毒作用,更重要的是它还具有免疫增强作用。
应用学科: 生物化学与分子生物学(一级学科);激素与维生素(二 级学科) 定义3: 抑制病毒在细胞内增殖的一类活性蛋白质。
应用学科: 水产学(一级学科);水产生物病害及防治(二级学科) 定义4: 因最初发现某一种病毒感染的细胞能产生一种生物学活性物质
可干扰另一种病毒的感染和复制而得名。是最早发现的细胞因子。根据 干扰素产生的来源和结构不同可分为α干扰素、β干扰素和γ干扰素三 类。 应用学科: 细胞生物学(一级学科);细胞免疫(二级学科)
相关文档
最新文档