在下列关系式中,y是x的二次函数的关系式是
二次函数
二次函数知识点一 二次函数的概念例,下例函数中,y 是x 的二次函数的是( )A ,22x y -=B ,xx y 12-= C ,22)2(x x y --= D ,123+-=x x y 举一反三:1、下列函数中,y 是x 的二次函数的是( ) A :2681y x =+ B ;81y x =+C :8y x =D :281y x=-+ 2、函数2()y m n x mx n =-++是二次函数的条件是( )A :m n 、为常数,且m ≠0。
B :m n 、为常数,且m ≠n .C :m n 、为常数,且n ≠0。
D :m n 、可以为任何数。
3、函数2221()m m y m m x--=+是二次函数,那么m 的值是( )A :2B :-1或3C :3D :±14、下列关系中,是二次函数关系的是( )A :当距离S 一定时,汽车行驶的时间t 与速度v 之间的关系。
B :在弹性限度时,弹簧的长度y 与所挂物体的质量x 之间的关系。
C :圆的面积S 与圆的半径r 之间的关系。
D :正方形的周长C 与边长a 之间的关系。
5、已知x 为矩形的一边长,其面积为y ,且(4),y x x =-则自变量的取值范围是( ) A :0x > B :04x << C :0≤x ≤4 D :4x >6、二次函数2y x =-中,a =______,b =______,c =______。
7、已知函数22()(1)1y m m x m x m =-+-++。
若这个函数是二次函数,求m 的取值范围。
知识点二 二次函数的一般形式例,把下列二次函数化成一般形式,并指出二次项系数、一次项系数、常数项:(1)22)1(++=x x y (2)5)1)(32(+-+=x x y (3))1(1242x x x y +-= (4))1)(1(-+=x x y举一反三:函数c bx ax y ++=2(a,b,c 是常数)问当a,b,c 满足什么条件时:(l )它是二次函数 ;(2)它是一次函数 ; (3)它是正比例函数 ;知识点三: y=ax 2 常量a 对二次函数的影响 1.函数y=ax 2(a ≠0)的图象与a 的符号有关的是( )A.顶点坐标B.开口方向C.开口大小D.对称轴 2、二次函数如右图所示,则它的关系式是________________。
苏科版九年级数学下册 第五章 二次函数 单元测试卷【含答案】
苏科版九年级数学下册第五章二次函数单元测试卷一、单选题(本大题共10题,每题3分,共30分)1.下列关系式中,属于二次函数的是()A. B. C. D.2.抛物线y=3x2向左平移4个单位,再向下平移2个单位,所得到的抛物线是()A. y=3(x﹣4)2+2B. y=3(x﹣4)2﹣2C. y=3(x+4)2﹣2D. y=3(x+4)2+23.抛物线y=x2–3x+5与坐标轴的交点个数为()A. 无交点B. 1个C. 2个D. 3个4.若是抛物线上的三个点,则、、的大小关系是()A. B. C. D.5.直线y=bx+c与抛物线y=ax2+bx+c(a>0)在同一坐标系中大致图象可能是()A. B. C. D.6.已知二次函数中,自变量x与函数y之间的部分对应值如表:x 0 1 2 3y 2 3 2在该函数的图象上有和两点,且,,与的大小关系正确的是()A. B. C. D.7.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A. 此抛物线的解析式是y=- x2+3.5B. 篮圈中心的坐标是(4,3.05)C. 此抛物线的顶点坐标是(3.5,0)D. 篮球出手时离地面的高度是2m8.二次函数图象上部分点的坐标对应值列表如下:x … 0 1 2 3 …y … -2 -3 -2 …则下列说法错误的是()A. 抛物线开口向上.B. 抛物线的对称轴为直线C. 当时,随的增大而增大D. 方程有一个根小于9.如图,二次函数的图象与轴交于两点,,其中.下列四个结论:①;②;③;④,正确的个数是()A. 1B. 2C. 3D. 410.如图,在四边形ABCD 中,AD∥BC ,∠A=45°,∠C=90°,AD=4cm ,CD=3cm 、动点M,N同时从点A出发,点M以cm/s 的速度沿AB 向终点B运动,点N以2cm/s 的速度沿折线AD-DC 向终点C运动.设点N的运动时间为ts ,△AMN 的面积为Scm²,则下列图象能大致反映S与t之间函数关系的是()A. B. C. D.二、填空题(本大题共8题每题2分,共16分)11.抛物线y=3(x-2)2+3的顶点坐标是________。
苏科版九年级下期末复习《第五章二次函数》单元试卷(有答案)-精品
期末复习:苏科版九年级数学下册第五章二次函数一、单选题(共10题;共30分)1.已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有()A. 最小值-3B. 最大值-3 C. 最小值2 D. 最大值22.将抛物线y=−(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.3.在下列函数关系式中,y是x的二次函数的是()A. xy=6 B. xy=﹣6C. x2+y=6D. y=﹣6x4.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A. y=(x+2)2+2B. y=(x-2)2-2C. y=(x-2)2+2D. y=(x+2)2-25.下列函数中,不属于二次函数的是()A. y=(x﹣2)2B. y=﹣2(x+1)(x﹣1) C. y=1﹣x﹣x2 D. y= 1x2−16.若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(3+√2,y3),则y1, y2, y3的大小关系是()A. y1>y2>y3B. y1>y3>y2 C. y2>y1>y3 D. y3>y1>y27.将抛物线y=2x2如何平移可得到抛物线y=2(x﹣4)2﹣1()A.向左平移4个单位,再向上平移1个单位B.向左平移4个单位,再向下平移1个单位C.向右平移4个单位,再向上平移1个单位D.向右平移4个单位,再向下平移1个单位8.已知二次函数y=ax2+bx+c的图象经过原点和第一、二、三象限,则()A. a>0,b>0,c>0B. a<0,b<0,c=0C. a<0,b<0,c>0 D. a>0,b>0,c=09.已知二次函数y=x2-mx+m-2的图象与x轴有()个交点.A. 1个B. 2个 C. 无交点 D. 无法确定10.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A. y=60(300+20x)B. y=(60﹣x)(300+20x)C. y=300(60﹣20x)D. y=(60﹣x)(300﹣20x)二、填空题(共10题;共30分)11.抛物线与轴只有一个公共点,则的值为________.12.一根长为100cm的铁丝围成一个矩形框,要想使铁丝框的面积最大,边长分别为________.13.已知函数y=(m−1)x m2+1+5x+3是关于x的二次函数,则m的值为________.14.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的是________(只填序号).15.将二次函数y=x2+4x﹣2配方成y=(x﹣h)2+k的形式,则y=________ .16.某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为________元.17.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=________.18.二次函数y=−x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△PAB= ________.19.写出一个开口向下,经过点(0,3)的抛物线的表达式________.20.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.三、解答题(共7题;共60分)21.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?22.如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.(1)求经过点O、A、E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.23.如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).(1)求抛物线的解析式;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.24.已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.25.在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
专题12 二次函数(解析版)
专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。
3.二次函数的解析式三种形式。
(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。
4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
(2)b ——对称轴与a 左同右异。
(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。
部编数学九年级上册22.2二次函数(基础篇)(人教版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题22.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列各式中,y 是x 的二次函数的是( )A .21y x =B .211y x x=++C .221y x =-D .y =2.线段5AB =.动点以每秒1个单位长度的速度从点出发,沿线段AB 运动至点B ,以线段AP 为边作正方形APCD ,线段PB 长为半径作圆.设点的运动时间为t ,正方形APCD 周长为y ,B e 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .正比例函数关系,二次函数关系D .反比例函数关系,二次函数关系3.某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系4.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m知识点二、二次函数的参数5.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或36.已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .07.设A(−2,y 1),B(1,y 2),C(2,y 3)是抛物线y=−x 2-2x+2上的三点,则y 1,y 2,y 3的大小关系为( )A .1y >2y >3yB . 1y >3y >2yC . 3y >2y >1yD . 3y >1y >2y 8.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .8知识点三、二次函数的解析式9.某城市居民2018年人均收入30000元,2020年人均收入达到y 元.设2018年到2020年该城市居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是( )A .y =30000(1+2x )B .y =30000+2xC .y =30000(1+x 2)D .y =30000(1+x )210.在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x=+B .24y x =-C .24y x =-D .42y x=-11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x p p=-+B .24y x p =-C .2(2)y x p =-D .2(4)y x =-+12.如图,在ABC V 中,90C Ð=°,5AC =,10BC =.动点M ,N 分别从A ,C 两点同时出发,点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动,点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t ,点M ,C 之间的距离为y ,MCN △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,正比例函数关系D .一次函数关系,二次函数关系二、填空题知识点一、二次函数的判断13.给出下列函数:①y =②()21y x x x =-+;③21y x x=+;④()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.14.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式_____________,它______(填“是”或“不是”)二次函数.15.下列函数①;②;③;④;⑤.其中是二次函数的是____________.16.把函数()()236y x x =--化成2y ax bx c =++的形式为________.知识点二、二次函数的参数17.已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.18.已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.19.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.20.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.知识点三、二次函数的解析式21.如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.22.若正方体的棱长为x ,表面积为y ,则y 与x 的关系式为________.23.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x =3时,y =18,那么当成本为72元时,边长为_______厘米.24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.26.一个二次函数234(1)21k k y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?27.已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.28.已知,如图①,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,点P 从点A 沿AB 以每秒2cm 的速度向点B 运动,点Q 从点C 以每秒1cm 的速度向点A 运动,设点P 、Q 分别从点A 、C 同时出发,运动时间为t (秒)(0<t <6),回答下列问题:(1)直接写出线段AP 、AQ 的长(含t 的代数式表示):AP =______,AQ =______;(2)设△APQ 的面积为S ,写出S 与t 的函数关系式;(3)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP C ¢,那么是否存在某一时间t ,使四边形PQP C ¢为菱形?若存在,求出此时t 的值;若不存在,说明理由.参考答案1.C【分析】根据二次函数的定义依次判断.解:A 、21y x =不是二次函数,不符合题意;B 、211y x x=++,不是二次函数,不符合题意;C 、221y x =-,是二次函数,符合题意;D 、y =故选:C .【点拨】此题考查二次函数的定义:形如2(0)y ax bx c a =++¹的函数是二次函数,解题的关键是正确掌握二次函数的构成特点.2.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可.解:依题意:AP=t ,BP =5-t ,故y =4t ,S =(5-t )2故选择:C【点拨】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键.3.D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.解:设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点拨】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.4.D【分析】根据题意,列出关系式,即可判断是否是二次函数.解:A.由题得:3y x =,不是二次函数,故此选项不符合题意;B.由题得:108y x =,不是二次函数,故此选项不符合题意;C.由题得:86y x=,不是二次函数,故此选项不符合题意;D.由题得:214y x p =,是二次函数,故此选项符合题意.故选:D .【点拨】本题考查二次函数的定义,形如2(0)y ax bx c a =++¹的形式为二次函数,掌握二次函数的定义是解题的关键.5.C【分析】根据二次函数的定义列方程计算即可;解:∵258(3)23m m y m x x -+=-+-是关于x 的二次函数,∴2582m m -+=且30m -¹,∴12m =,23m =且3m ¹,∴2m =;故选C .【点拨】本题主要考查了二次函数的定义、一元二次方程的求解,准确计算是解题的关键.6.B【分析】根据二次函数的未知数最高次数是2,最高次项系数不为零列式计算即可;解:∵|1|(1)2m y m x m -=++是y 关于x 的二次函数,∴1210m m ì-=í+¹î,解得:3m =;故选B .【点拨】本题主要考查了二次函数的定义,准确分析计算是解题的关键.7.A【分析】把点的坐标分别代入可求得123y y y ,,的值,之后比较大小便可解:因为()12,A y -,()()2312,B y C y ,,是抛物线222y x x =--+上的三点;所以:()()212222y =---×-+=2;2212121y =--×+=-;2322226y =--×+=-所以123y y y >>故答案为A 选项【点拨】本题主要考查抛物线上点坐标之间的x 或y 对应的值的大小比较,把具体的x 或y 代入求值比大小即可8.B【分析】将A 点坐标代入抛物线解析式y =x 2-x -2即可求得a 的值解:将A 点坐标x =3代入抛物线解析式y =x 2-x -2,得:a =32-3-2=4.故选B .【点拨】本题考查了给出函数解析式求点的坐标的方法,代入已知量即可求得未知量,理解二次函数的定义是解题关键.9.D【分析】2020年人均收入y = 2018年人均收入×(1+年人均收入平均增长率为x ) 2,把相关数值代入即可.解:设2018年到2020年该城市居民年人均收入平均增长率为x ,可列方程为:y =30000(1+x )2故选: D .【点拨】本题主要考查由实际问题抽象出二次函数的知识点,解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)2 =增长后的量.10.C【分析】根据剩下部分的面积=大正方形的面积-小正方形的面积得出y 与x 的函数关系式即可.解:设剩下部分的面积为y ,则:y =-x 2+4(0<x <2),故选:C .【点拨】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积得出是解题关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.解:圆的面积公式是2S r p =,原来的圆的面积=2416p p ×=,挖去的圆的面积=2x p ,∴圆环面积216y x p p =-.故选:A .【点拨】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.D【分析】先根据题意求出AM t =,2CN t =,则5CM AC AM t =-=-,即5y t =-,再由直角三角形的面积公式即可得到25S t t =-+,再根据一次函数与二次函数的定义即可判断.解:由题意得:AM t =,2CN t =,∴5CM AC AM t =-=-,即5y t=-∵∠C =90°,∴()211=25522MCN S CM CN t t t t ×=×-=-+△,即25S t t =-+,∴y 与t ,S 与t 满足的函数关系分别是一次函数和二次函数关系,故选D .【点拨】本题主要考查了一次函数和二次函数的定义,解题的关键在于能够准确根据题意求出y 与t ,S 与t 满足的函数关系式.13. ④ 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++¹逐一进行判断即可.①②③都不满足二次函数的形式,④是二次函数解:①不满足二次函数的形式,所以不是二次函数;②()21y x x x x =-+=-,是一次函数,也不满足要求;③不满足二次函数的形式,所以不是二次函数;④()21y x x x x =-=-+是二次函数所以二次函数只有④其中1,1,0a b c =-==故答案为 ④ 1- 1 0【点拨】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.14. y =12x 2-12 是解:设有x 人参加聚会,每个人需要和另外的(x -1)个人握手,所以共握手12x (x −1) 次,所以y =12x (x −1)=12x 2-12,是二次函数.故答案为y =12x 2-12,是.【点拨】本题考查了根据实际问题列二次函数关系式,解题的关键是了解握手问题中两人之间相互握手一次.15.②④解:根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.解:①y=5x-5为一次函数;②y=3x 2-1为二次函数;③y=4x 3-3x 2自变量次数为3,不是二次函数;④y=2x 2-2x+1为二次函数;⑤y=21x 函数式为分式,不是二次函数.故答案为②④.16.232012y x x =-+【分析】把函数()()236y x x =--右边相乘展开合并成2y ax bx c =++形式即可.解:()()22236=12218+332012y x x x x x x x =----=-+,则232012y x x =-+.【点拨】本题是对二次函数基础的考查,熟练把二次函数其他形式化成一般式是解决本题的关键.17.2019【分析】先将点(m ,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m ,0)代入函数解析式得,m 2-m -1=0,∴m 2-m =1,∴-3m 2+3m +2022=-3(m 2-m )+2022=-3+2022=2019.故答案为:2019.【点拨】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m ,0)代入函数解析式得到有关m 的代数式的值.18.-1【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;解:由题意得:21012m m -¹ìí+=î,解得:m =-1,故答案为:-1.【点拨】本题考查了二次函数的定义,理解二次函数的定义是解题关键.19. 4,-2 4【分析】根据二次函数的定义可得当2280m m --¹时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当2280m m --=且20m +¹时,这个函数是一次函数.解:由函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数,得m 2﹣2m ﹣8≠0.解得m ≠4,m ≠﹣2,由y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是一次函数,得228020m m m ì--=í+¹î,解得m =4,故答案为:4,﹣2;4.【点拨】本题考查了二次函数的定义求参数,熟知相关定义是解本题的关键.20.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,∵30m +¹,∴3m ¹-,∴3m =.故答案为:3.【点拨】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.21.y =-212x +48【分析】先求出212AMN S x =V ,进而即可得到答案.解:由题意得:21122AMN S AM AN x =×=V ,∴阴影部分的面积=6×8-212x ,即:y =-212x +48.故答案是:y =-212x +48.【点拨】本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.22.26y x =【分析】正方体有6个面,每一个面都是边长为x 的正方形,这6个正方形的面积和就是该正方体的表面积.解:∵正方体有6个面,每一个面都是边长为x 的正方形,∴表面积26y x =.故答案为:26y x =.【点拨】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键.23.6【分析】设y 与x 之间的函数关系式为y=kx 2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解:设y 与x 之间的函数关系式为y=kx 2,由题意,得18=9k ,解得:k=2,∴y=2x 2,当y=72时,72=2x 2,∴x=6,故答案为:6.【点拨】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.24.y =(60+2x )(40+2x )解:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).【点拨】本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.2132y x =-+和215s t t =++是二次函数【分析】根据二次函数的定义逐一判断即可.解:2132y x =-+是y 关于x 的二次函数;231252y x x =-+不是二次函数;222y x =+是一次函数,不是二次函数;215s t t =++是s 关于t 的二次函数,故2132y x =-+和215s t t =++是二次函数.【点拨】本题主要考查二次函数的定义,解题的关键是掌握其定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ¹的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.2(y ax bx c a ==++、b 、c 是常数,0)a ¹也叫做二次函数的一般形式.26.(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可.解:(1)依题意有234210k k k ì-+=í-¹î,解得:k =2,∴k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∴y 的值为14.【点拨】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.27.(1)1m =;(2)1m ¹±【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;解:(1)由题意得,1010m m ì-=í+¹î解得1m =;(2)由题意得,||10m -¹,解得1m ¹且1m ¹-.【点拨】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.28.(1)2t ,6t -;(2)2S =+;(3)存在,t =4时,四边形PQP C ¢是菱形.【分析】(1)根据∠A =60°,AB =12cm ,得出AC 的长,进而得出AP =2t ,6AQ t =-.(2)过点P 作PH ⊥AC 于H .由AP =2t ,AH =t ,得出PH ,从而求得S 与t 的函数关系式;(3)过点P 作PM ⊥AC 于M ,根据菱形的性质得PQ =PC ,则可得出,CM MQ AQ ==求得t 即可.解:(1)∵在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,∴AC =6,∴由题意知:AP =2t ,6,AQ t =-故答案为:2,6.t t -(2)如图①过点P 作PH ⊥AC 于H .∵∠C =90°,∠A =60°,AB =12cm ,∴∠B =30°,∴∠HPA =30°,∵AP =2t ,AH =t ,∴,PH ===∴()2116,22S AQ PH t ==-=+g g (3)当t =4时,四边形PQP′C 是菱形,理由如下:证明:如图②过点P 作PM ⊥AC 于M ,∵CQ =t ,由(2)可知,AM =12AP =t ,∴QC =AM ,,CM AQ \=Q 由对折可得:,,PC P C PQ P Q ¢¢==\ 当PC =PQ 时,四边形PQP C ¢是菱形,,CM MQ \=\ CM =MQ =AQ =13AC =2,4,CQ \=4.t \= 当t =4时,四边形PQP C ¢是菱形.【点拨】本题考查的是含30°的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键.。
小试刀牛
三、计算题
1、已知函数
(1)若这个函数是一次函数,求m的值;
(2)若这个函数是二次函数,则m的值应怎样?
2.某工厂第一年的利润为20(万元),第三年的利润y(万元),与平均年增长率x之间的函数关系式是___________.
四.解答题
1.在杭州市开展的美化城市活动中,某民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边AD靠墙,另三边用总长为40m的栅栏围成.若设花园的BC长为x(m),花园的面积为y(m2).求y与x之间的函数关系式,并写出自变量的取值范围;
2.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每升高1元,平均每天少销售3箱.求商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的函数关系式.(每箱的利润=售价-进价)
小试刀牛:
一、选择题
1、下列函数关系式中,是二次函数的是( )
2、在下列关系式中,y是x的二次函数的关系式是( )
二、填空题
1、若 是二次函数,则m=__________
2、若函数 是二次函数,则m的值一定是________
3、已知 是关于x的二次函数,则m的值_______.
4.已知正方形边长为3,若边长增加x,那么面积增加y,则y与x的函数关系式是_____ .
3.已知二次函数y= +bx+c(a≠0),若x=0时y=1;x=1时y=1;x=2时y=-1.求这个二次函数关系式.
第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
二次函数周测试卷
10001000年产量(吨)费用(万元)O二次函数周测题班级 姓名一、选择题(共30分)1.在下列关系式中,y 是x 的二次函数的关系式是 ( )A .2xy+x 2=1B .y 2﹣ax+2=0C .y+x 2﹣2=0D .x 2﹣y 2+4=0 2.设等边三角形的边长为x(x>0),面积为y ,则y 与x 的函数关系式是( )A .212y x =B .214y x =C .2y x =D .2y x = 3.抛物线y=x 2﹣8x+c 的顶点在x 轴上,则c 等于( )A .﹣16B .﹣4C .8D .16 4.若直线y=ax +b (a≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( )A .开口向上,对称轴是y 轴B .开口向下,对称轴平行于y 轴C .开口向上,对称轴平行于y 轴D .开口向下,对称轴是y 轴 5.如图(1),二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )A .a >0,bc >0B . a <0,bc <0C . a >O ,bc <OD . a <0,bc >06.已知抛物线y=﹣x 2+mx+n 的顶点坐标是(﹣1,﹣ 3 ), 则m 和n 的值分别是( )A .2,4B .﹣2,﹣4C .2,﹣4D .﹣2,0 7.对于函数y=﹣x 2+2x ﹣2使得y 随x 的增大而增大的x 的取值范围是 ( )A .x>﹣1B .x≥0C .x≤0D .x<﹣1 8.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)求证这个二次函数的图象关于直线2x =对称.根据现有信息,题中的二次函数不具有的性质是( )A .过点(3,0)B .顶点是(2,-2)C .在x 轴上截得的线段的长是2D .与y 轴的交点是(0,3) 9.二次函数y=2x 2+mx ﹣5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22=294,则m 的值为( )A .3B .﹣3C .3或﹣3D .以上都不对 10.对于任何的实数t ,抛物线 y=x 2 +(2﹣t) x + t 总经过一个固定的点,这个点是( )A . (1, 0)B .(﹣l , 0)C .(﹣1, 3)D . (l , 3)二、填空题(共18 分)11.抛物线y=﹣2x+x 2+7的开口向 ,对称轴是 ,顶点是 . 12.若二次函数y=mx 2﹣3x+2m ﹣m 2的图像过原点,则m 的值是 .13.如果把抛物线y=2x 2﹣1向左平移l 个单位,同时向上平移4个单位,那么得到的新的抛物线是 .14.设A 、B 、C 三点依次分别是抛物线y=x 2﹣2x ﹣5与y 轴的交点以及与x 轴的两个交点,则△ABC 的面积是 .15将二次函数y=﹣x 2+2x+3绕点(2,5)旋转180°所得的抛物线为 . 16.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:•万元)之间函数的图象是顶点在原点的抛物线的一部分(如图26﹣2所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间的函数图象是线段(如图26﹣3所示),若生产出的产品都能在当年销售完,则年产量是______吨时,所获毛利润最大(毛利润=销售额﹣费用).三、解答题(共72分)17.已知抛物线的顶点坐标为M(l ,﹣2 ),且经过点N(2,3).求此二次函数的解析式.18.已知二次函数图象经过(23)-,,对称轴1x =,抛物线与x 轴两交点距离为4,求这个二次函数的解析式?19.把抛物线y=ax 2+bx+c 向左平移2个单位,同时向下平移l 个单位后,恰好与抛物线30年产量(吨)销售单价(万元/吨)100020y=2x 2+4x+1重合.请求出a 、b 、c 的值.20.已知函数241y x x =-+ ①求函数的最小值;②设函数图象与x 轴的交点为A (x 1,0)、B (x 2,0),求2212x x +的值.21. 如图①,已知抛物线y=ax 2+bx+c 经过点A (0,3),B (3,0),C (4,3). (1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S (图②中阴影部分).21.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?22.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C 的坐标为(0,﹣),点M 是抛物线C 2:y=mx 2﹣2mx ﹣3m (m <0)的顶点. (1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.。
二次函数单元测试题及答案(用)
二次函数单元测试题及答案(用) 二次函数单元测评时间:60分钟,满分:100分一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)() A。
y = 2x + 3B。
y = x^3 + x^2 + xC。
y = x^2 - x + 1D。
y = √x2.函数y = x^2 - 2x + 3的图象的顶点坐标是()A。
(1,-4)B。
(-1,2)C。
(1,2)D。
(0,3)3.抛物线y = 2(x - 3)^2的顶点在()A。
第一象限B。
第二象限C。
x轴上D。
y轴上4.抛物线的对称轴是()A。
x = -2B。
x = 2C。
x = -4D。
x = 45.已知二次函数y = ax^2 + bx + c的图象如图所示,则下列结论中,正确的是()A。
ab。
0,c。
0B。
ab。
0,c < 0C。
ab。
0D。
ab < 0,c < 06.二次函数y = ax^2 + bx + c的图象如图所示,则点在第___象限()A。
一B。
二C。
三D。
四7.如图所示,已知二次函数y = ax^2 + bx + c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m。
4,那么AB的长是()A。
4 + mB。
mC。
2m - 8D。
8 - 2m8.若一次函数y = ax + b的图象经过第二、三、四象限,则二次函数y = ax^2 + bx的图象只可能是()9.已知抛物线的顶点为V(1,-2),过点V的切线方程为y = 2x - 4,则这条抛物线的解析式为()10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()二、填空题(每题4分,共32分)11.二次函数y = x^2 - 2x + 1的对称轴方程是______________.12.若将二次函数y = x^2 - 2x + 3配方为y = (x - h)^2 + k的形式,则y = ________.13.若抛物线y = x^2 - 2x - 3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y = x^2 + bx + c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.考点:二次函数图象性质.选B.4.考点:二次函数图象性质和解析式的求法.选D.5.考点:二次函数图象性质和解析式的求法.选B.6.考点:二次函数图象性质和解析式的求法.选D.7.考点:二次函数图象性质和解析式的求法.选C.8.考点:二次函数图象性质和解析式的求法.选A.9.考点:二次函数图象性质和解析式的求法.选B.10.考点:二次函数图象性质和解析式的求法.选D.二、填空题11.解析:根据题意,将二次函数y=ax2+bx+c带入已知条件,得到3个方程组成的线性方程组,解得a=1,b=-2,c=3,所以答案为1.12.解析:根据题意,将二次函数y=ax2+bx+c带入已知条件,得到3个方程组成的线性方程组,解得a=-1/2,b=5/2,c=1,所以答案为-1/2.13.解析:将y=x2-4x+4转化为顶点式,即y=(x-2)2,所以顶点坐标为(2,0),答案为2.14.解析:将y=2x2-8x+7转化为顶点式,即y=2(x-2)2+3,所以顶点坐标为(2,3),答案为2.三、解答题19.1)解析:根据对称性质,点A关于对称轴对称的点A′的坐标为A′(0,4).2)解析:根据已知条件,对称轴方程为x=2,所以顶点坐标为(2,k),代入已知点A或B,得到k=-4,所以二次函数解析式为y=(x-2)2-4.20.1)解析:根据已知条件,解得x14,x21,代入已知条件(x11)(x21)=-8,得到k=-3,所以二次函数解析式为y=x2-8x-7.2)解析:将二次函数沿x轴向右平移2个单位,即将解析式中的x替换为x-2,得到y=(x-2)2-8(x-2)-7,交y轴得到C(0,-11),顶点为P(2,-15),所以△POC的面积为48.21.1)解析:根据已知条件,得到二次函数过点(1,8),所以解析式为y=a(x-1)2+8,代入已知点A(-1,0),得到a=5/4,所以二次函数解析式为y=5/4(x-1)2+8.2)解析:根据已知条件,点M为顶点,所以x坐标为1,代入二次函数解析式,得到y=37/4,所以点M的坐标为(1,37/4);点C的坐标为(0,5),所以CB的斜率为-5/4,所以BC的斜率为4/5,所以△MCB的面积为5/4.22.解析:设销售单价为x元,销售量为y件,则根据已知条件,得到y=-100x+1500,所以销售收益为xy=-100x2+1500x,求导得到其最大值的x为7.5,所以销售单价为7.5元时,可以获利最大。
九年级数学期中考试试卷(精华)
O C AB 启明星初级中学2014—2015学年度第一学期期中测试试卷九年级数学(总分120分,100分钟完卷)命题范围:前四章。
命题人:张晟明一、选择题(每题3分,共30分)1)A .1个B . 2个C . 3个D . 4个 2.下面关于x 的方程中:①ax 2+x+2=0;②3(x-9)2-(x+1)2=1;③13x x+=; ④x 2-a=0(a 为任意实数); 1x =-.一元二次方程的个数是( ) A.1 B.2 C.3 D.4 3.在下列关系式中,y 是x 的二次函数的关系式是 ( ) A.8xy+x 2=1 B.y 2-ax+2=0 C.y+5x 2-2=0 D.2x 2-y 2+4=0 4.方程(x-3)2=(x-3)的根为( ) A .3 B .-4 C .4或3 D .-4或3 5.从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来 正方形的面积为( ) A .100cm 2 B .121cm 2 C .144cm 2 D .169cm 26.三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根, 则该三角形的面积是( ) A .24 B .48 C .24或.7. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.23(1)2y x =-- B. 23(1)2y x =+- C. 23(1)2y x =++ D. 23(1)2y x =-+8. ⊙O 的半径r =5 cm ,圆心到直线l 的距离OM =4 cm ,在直线l 上有一点P ,且 PM =3 cm ,则点P( ) A .在⊙O 内 B .在⊙O 上C .在⊙O 外D .可能在⊙O 上或在⊙O 内9. 如图,已知△ABC 中,AB= AC ,∠ABC=70°,点I 是△ABC 的内心, 则∠BIC 的度数为A. 40°B. 70°C. 110°D. 140°10. △ABC 在平面直角坐标系中的位置如图所示,其中A(1, 2),B(1, 1),C(3, 1),将△ABC 绕原点O 顺时针旋转90后得到△'''C B A ,则点A 旋转到点'A 所经过的路线长为( )A .π25B .π45C . π25D . 二、填空题(每题4分,共24分) 11.把一元二次方程(x -3)2=5化为一般形式为,一次项系数为__________,常数项为________.12.抛物线y=2x 2-1开口向 ,对称轴是 ,图像有最 点即函数有最 值是 。
专题02 二次函数章末重难点题型(举一反三)(原卷版)
专题02二次函数章末重难点题型【举一反三】【考点1二次函数的概念】二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y ═ax 2+bx +c (a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.【例1】(2019秋•泰兴市校级月考)下列函数关系式中,y 是x 的二次函数是()A .2y ax bx c =++B .21y x x=-C .225y x =++D .2(32)(43)12y x x x =+--【变式1-1】(2019秋•文水县期中)已知函数:①2y ax =;②23(1)2y x =-+;③22(3)2y x x =+-;④21y x x =+.其中,二次函数的个数为()A .1个B .2个C .3个D .4个【变式1-2】(2019秋•苍溪县期中)已知函数||(2)1m y m x mx =-+-,其图象是抛物线,则m 的取值是()A .2m =B .2m =-C .2m =±D .0m ≠【变式1-3】(2019秋•南康区期中)若22(2)32my m x x -=-+-是二次函数,则m 等于()A .2-B .2C .2±D .不能确定【考点2二次函数与一次函数图象】【例2】(2019秋•花都区期中)在同一直角坐标系中2y ax b =+与(0,0)y ax b a b =+≠≠图象大致为()A .B .C .D .【变式2-1】(2018秋•厦门期中)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =-+的图象可能是()A .B .C .D .【变式2-2】(2019秋•沂水县期中)在同一直角坐标系中,一次函数y ax c =+和二次函数2()y a x c =+的图象大致为()A .B .C .D .【变式2-3】(2016秋•工业园区期中)如图,一次函数y x =与二次函数2y ax bx c =++图象相交于A 、B 两点,则函数2(1)y ax b x c =+-+的图象可能是()A .B .C .D .【考点3二次函数的增减性】【例3】(2018春•利津县期末)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>【变式3-1】(2019秋•宣威市校级月考)已知二次函数21572y x x =--+,若自变量x 分别取1x ,2x ,3x ,且1230x x x <<<,则对应的函数值1y ,2y ,3y 的大小关系正确的是()A .123y y y >>B .123y y y <<C .231y y y >>D .231y y y <<【变式3-2】(2018秋•建昌县期中)已知抛物线2(0)y ax bx c a =++<过(3,0)A -,(1,0)B ,1(5,)C y -,2(2,)D y -四点,则1y 与2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .不能确定【变式3-3】(2018•南海区期中)已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x⋯0123⋯y⋯5212⋯点1(A x ,1)y 、2(B x ,2)y 在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1<y 2D .y 1≤y 2【考点4二次函数图象的平移】【例4】(2018秋•花都区期中)抛物线22y x =-经过平移得到22(1)3y x =--+,平移方法是()A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位【变式4-1】(2019•天津校级期中)已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为()A .221y x x =++B .221y x x =+-C .221y x x =-+D .221y x x =--【变式4-2】(2018秋•鼓楼区校级期中)在平面直角坐标系中,如果抛物线22y x =不动,而把x 轴、y 轴分别向下、向右平移2个单位长度,那么在新坐标系下抛物线的解析式为()A .22(2)2y x =-+B .22(2)2y x =+-C .22(2)2y x =--D .22(2)2y x =++【变式4-3】(2018秋•襄州区期中)将二次函数2y x bx c =++的图象先向左平移3个单位长度,再向上平移2个单位长度得到二次函数221y x x =-+的图象,用b ,c 的值分别是()A .14b =,8c =-B .2b =-,4c =C .8b =-,14c =D .4b =,2c =-【考点5二次函数的图象与a ,b ,c 的关系】【例5】(2018秋•渝中区校级期中)已知二次函数的图象如下所示,下列5个结论:①0abc >;②0b a c -->;③42a c b +>-;④30a c +>;⑤()(1a b m am b m +>+≠的实数),其中正确的结论有()A .①②③B .②③④C .②③⑤D .③④⑤【变式5-1】(2018秋•苍溪县期中)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b +2c <0;③m (am +b )+b ≤a ;④(a +c )2<b 2;其中正确结论的个数有()个.A .1个B .2个C .3个D .4【变式5-2】(2018秋•江岸区期中)已知二次函数2(0)y ax bx c a =++≠,过(1,1)(2y ,2)y .①若10y >时,则0a b c ++>②若a b =时,则12y y <③若10y <,20y >,且0a b +<,则0a >④若21b a =-,3c a =-,且10y >,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A .1B .2C .3D .4【变式5-3】(2019•凉山州)二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①30a b -=;②240b ac ->;③520a b c -+>;④430b c +>,其中错误结论的个数是()A .1B .2C .3D .4【考点6二次函数与一元二次方程之间的关系】【例6】(2019春•天心区校级期中)函数2y ax bx c =++的图象如图所示,那么关于一元二次方程220ax bx c ++-=的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根【变式6-1】(2019春•安吉县期中)如图,抛物线2y x mx =-+的对称轴为直线2x =,若关于x 的一元二次方程20(x mx t t +-=为实数)在13x <<的范围内有解,则t 的取值范围是()A .﹣5<t ≤4B .3<t ≤4C .﹣5<t <3D .t >﹣5【变式6-2】(2018秋•福清市期中)函数21y x x =+-中x 与y 的对应关系如下表所示,方程210x x +-=两实数根中有一个正根1x ,下列对1x 的估值正确的是()x⋯0.50.550.60.650.70.75⋯y⋯0.25-0.1475-0.04-0.07250.190.3125⋯A .10.50.55x <<B .10.550.6x <<C .10.60.65x <<D .10.650.7x <<【变式6-3】(2019秋•萧山区期中)已知关于x 的方程2()()0x m x n +--=,存在a ,b 是方程2()()0x m x n +--=的两个根,则实数m ,n ,a ,b 的大小关系可能是()A .m a b n <<<B .m a n b <<<C .a m b n <<<D .a m n b<<<【考点7二次函数解析式】【例7】经过(4,0)A ,(2,0)B -,(0,3)C 三点的抛物线解析式是.【变式7-1】若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x7-6-5-4-3-2-y27-13-3-353则二次函数的解析式为.【变式7-2】(2019秋•荣成市期中)二次函数在32x =时,有最小值14-,且函数的图象经过点(0,2),则此函数的解析式为.【变式7-3】(2013秋•潜山县校级月考)抛物线2y ax bx c =++与x 轴两个交点为(1,0)-,(3,0),其形状与抛物线22y x =相同,则抛物线解析式为.【考点8二次函数的应用—销售问题】【例8】(2018秋•鼓楼区校级期中)某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:20800y x =-+,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【变式8-1】(2019春•宿豫区期中)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x 元,每天获利y 元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【变式8-2】(2019春•安吉县期中)为建设美丽家园,某社区将辖区内的一块面积为21000m 的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为2()x m ,种草所需费用1y (元)与2()x m 的函数关系图象如图所示,栽花所需费用2y (元)与2()x m 的函数关系式为220.012030000(01000)y x x x =--+.(1)求1y (元)与2()x m 的函数关系式;(2)设这块21000m 空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求绿化总费用W 的最大值.【变式8-3】(2019秋•沂源县期末)某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:时间t (天)1351036⋯日销售量m(件)9490867624⋯未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为y 1=t +25(1≤t ≤20且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为y 2=﹣t +40(21≤t ≤40且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的表达式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?【考点9二次函数的应用—面积问题】【例9】(2018秋•开封期中)如图,用30m长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m,设矩形的宽AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【变式9-1】(2018秋•洛阳期中)为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积ym.相等.设BC的长度为xm,矩形区域ABCD的面积为2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【变式9-2】(2018秋•洪山区期中)如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,2,设BE的长为x米,改DG BE造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【变式9-3】(2018秋•鼓楼区期中)如图,一面利用墙(墙的最大可用长度为10)m ,用长为24m 的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB 的长为()x m ,面积为2()y m .(1)若y 与x 之间的函数表达式及自变量x 的取值范围;(2)若要围成的花圃的面积为245m ,则AB 的长应为多少?【考点10二次函数的应用—抛物线问题】【例10】(2019秋•南海区校级期中)如图,已知排球场的长度OD 为18米,位于球场中线处球网的高度AB 为2.4米,一队员站在点O 处发球,排球从点O 的正上方1.6米的C 点向正前方飞出,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G 建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m 的点F 处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h 的取值范围是多少?(排球压线属于没出界)【变式10-1】(2019秋•台安县期中)一位篮球运动员投篮,球沿抛物线21752y x =-+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m .(1)求球在空中运行的最大高度为多少m ?(2)如果该运动员跳投时,球出手离地面的高度为2.25m ,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【变式10-2】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式2(4)y a x h =-+,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =-时,①求h 的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.【变式10-3】(2019秋•萧山区期中)小明跳起投篮,球出手时离地面209m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m ,则乙在进攻方球员前多远才能盖帽成功?【考点11二次函数与图形面积的综合】【例11】如图,抛物线2(1)y a x =+的顶点为A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求抛物线的解析式;(2)若点(3,)C b -在该抛物线上,求ABC S ∆的值.【变式11-1】(2019•新余模拟)如图,已知二次函数图象的顶点为(1,3)-,并经过点(2,0)C .(1)求该二次函数的解析式;(2)直线3y x =与该二次函数的图象交于点B (非原点),求点B 的坐标和AOB ∆的面积;【变式11-2】(2019春•利津县期中)如图,抛物线22y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)在抛物线的对称轴上有一动点P ,求PB PC +的值最小时的点P 的坐标;(3)若点M 是直线AC 下方抛物线上一动点,求四边形ABCM 面积的最大值.【变式11-3】如图,二次函数2y ax bx =+的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为(26)x x <<,写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【考点12与二次函数有关的存在性问题】【例12】已知抛物线2(0)y x bx c c =-++>过点(1,0)C -,且与直线72y x =-只有一个交点.(1)求抛物线的解析式;(2)若直线3y x =-+与抛物线相交于两点A 、B ,则在抛物线的对称轴上是否存在点Q ,使ABQ ∆是等腰三角形?若存在,求出Q 点坐标;若不存在,说明理由.【变式12-1】(2019•齐齐哈尔一模)如图,过点(1,0)A -、(3,0)B 的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E .(1)求抛物线解析式;(2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCB POC S S ∆∆=,求此时DP 的长.【变式12-2】如图,已知抛物线23y x mx =-++与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线332y x =-+交于C 、D 两点.连接BD 、AD .(1)求m 的值.(2)抛物线上有一点P ,满足4ABP ABD S S ∆∆=,求点P 的坐标.【变式12-3】(2018•绥阳县模拟)如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)在抛物线上点B 和点D 之间是否存在一点H 使得四边形OBHC 的面积最大,若存在求出四边形OBHC 的最大面积,若不存在,请说明理由.(3)直线BD 上有一点P ,使得PE PC =时,过P 作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.。
(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(答案解析)(1)
一、选择题1.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .122.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .203.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个5.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-6.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<7.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( ) A .12y y >B .12y y <C .12y y =D .无法确定9.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .10.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤11.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .14.将二次函数y=x 2-4x+5化成=(x-h )2+k 的形式,则y= _____.15.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).16.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)17.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________. 18.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____. 19.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.20.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.三、解答题21.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?22.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元). (1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格.23.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 24.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B . (1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.25.小强根据学习函数的经验,对函数24(1)1y x =-+;图象与性质进行了探究,下面是小强的探究过程,请补充完整,并解决相关问题: (1)函数24(1)1y x =-+;的自变量x 的取值范围是______;(2)如表是y 与x 的几组对应值. x...2- m12- 0 121322523 4...y...25 45 1632165 4 165 2 1613 45n...(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质:______.(5)解决问题:如果方程2421(1)1a x =--+的实数根有2个,那么a 的取值范围是______.26.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可. 【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==,∵抛物线与x 轴只有一个交点,故顶点为(,0)m ,2()y x m ∴=-.当3x m =+时,239y ==.故答案为C . 【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.2.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.3.D解析:D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项. 【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确 故选:D . 【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.4.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.6.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.8.B解析:B 【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系. 【详解】解:∵二次函数y=x 2-4x+5的图象的对称轴是x=2, 在对称轴的右面y 随x 的增大而增大,∵点P (3,y 1)、Q (4,y 2)是二次函数y=x 2-4x+5的图象上两点, 2<3<4, ∴y 1<y 2. 故选:B . 【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键9.B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.10.B解析:B 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可; 【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.11.D解析:D【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案.【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意;故选:D .【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:( 解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+, 2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系, 则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.14.【分析】将二次函数的右边配方即可化成的形式【详解】解:故答案为:【点睛】本题考查了二次函数的解析式有三种形式关键是熟练掌握以下三种形式:(1)一般式:y=ax2+bx+c (a≠0abc 为常数);(2解析:2(2)1x -+【分析】将二次函数245y x x =-+的右边配方即可化成2()y x h k =-+的形式.【详解】解:245y x x =-+, 24445y x x =-+-+,2441y x x =-++,22()1y x =-+.故答案为:2(2)1x -+.【点睛】本题考查了二次函数的解析式有三种形式,关键是熟练掌握以下三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).15.>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.16.①③④⑤【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物 解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0,∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0, ∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.17.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .18.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键. 19.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.20.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.三、解答题21.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a , 解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-,得1492710.52y =⨯-⨯=, 把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.22.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.23.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2. 【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得: 188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.24.(1)()2122y x =-;(2)()0,2D ,(3C - 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得3x =±根据点C 的位置,取3x =∴(3C .【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.25.(1)全体实数;(2)1-,25;(3)答案见解析;(4)当1x =时,函数有最大值4等;(5)1522a <<. 【分析】(1)根据分式有意义的条件即可解决;(2)根据表格中的数据可知,此函数图象关于直线x =1对称,据此判定即可; (3)用平滑的曲线连接各点即可;(4)观察函数图象,即可得到函数的一条性质;(5)观察图象可得:当0<y <4时,方程有两个实数根,即可求出a 的取值范围.【详解】(1)∵(x−1)2+1≥1,∴自变量x 的取值范围是全体实数;故答案为:全体实数;(2)由表格中可以看出,函数关于x =1对称,∴m =−1,n =25; 故答案为:m =−1,n =25; (3)如图所示:(4)由函数图象可知:当x =1时,该函数由最大值,故答案为:当x =1时,该函数由最大值;(5)根据图象可得:0<y≤4.∵方程2421(1)1a x =--+的实数根有2个 即0<21a -<4,解得:1522a <<. 【点睛】 本题考查了函数的性质、分式方程的解的综合应用,解决此题的关键是能根据列表法、图象法观察图象,从而得到结论.26.(1)4m =,B 的坐标为()4,0;(2)14x <<.【分析】(1)将点A 的坐标代入解析式即可求得m 的值,然后令y=0,求得x 的值即为B 点的横坐标;(2)先根据A 、B 两点的坐标求出二次函数的解析式,再画出函数图像,最后直接写出解集即可.【详解】解:(1)∵y x m =-+的图象过点()1,3A , ∴31m =-+,∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0;(2)∵二次函数2y ax bx =+图象过A ,B 两点∴23=a+b 0=44a b ⎧⎨+⎩ ,解得:=-14a b ⎧⎨=⎩画出函数图像如图:由函数图像可得不等式2ax bx x m +>-+的解集为:14x <<.【点睛】本题考查了一次函数图像的性质、求二次函数的解析式及利用函数图像确定不等式的解集,掌握数形结合思想是解答本题的关键.。
初中数学二次函数基本性质1含答案
二次函数基本性质1一.选择题(共34小题)1.下列解析式中表示关于x的二次函数的是()A.y=x2B.y=2x+3C.y=﹣D.y=2x2﹣﹣1 2.下列函数是y关于x的二次函数的是()A.B.y=x+2C.y=﹣3x2D.3.下列函数属于二次函数的是()A.y=﹣3x2+1B.y=C.y=D.y=2x+5 4.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆的面积S与半径R之间的关系5.下列函数中,是二次函数的有()(1)y=3x2++1;(2)y=+5;(3)y=(x﹣3)2﹣x2;(4)y=1+x﹣;A.1个B.2个C.3个D.4个6.若y=(m+1)是二次函数,则m的值为()A.2B.﹣1C.﹣1或2D.以上都不对7.已知抛物线y=(x﹣1)2+2,下列说法错误的是()A.顶点坐标为(1,2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小8.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.当x=时,y有最小值是﹣D.在对称轴左侧y随x的增大而增大9.把抛物线y=﹣2x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式是()A.y=﹣2(x+1)2+4B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+4D.y=﹣2(x﹣1)2﹣210.在同一坐标系中,二次函数y=ax2+b与一次函数y=bx+a的图象可能是()A.B.C.D.11.抛物线y=2(x+3)2﹣4的对称轴是()A.直线y=4B.直线x=﹣3C.直线x=3D.直线y=﹣3 12.关于x的二次函数y=x2+bx+b2在b≤x≤b+3范围内,函数值有最小值21,则b的值是()A.或2B.或±2C.﹣4或D.1或﹣4或13.将抛物线y=﹣2(x﹣1)2﹣3向左平移3个单位,再向上平移2个单位,得到的抛物线是()A.y=﹣2(x﹣4)2﹣1B.y=﹣2(x+2)2﹣1C.y=﹣2(x﹣4)2﹣5D.y=﹣2(x+2)2﹣514.抛物线y=2(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)15.抛物线y=﹣3(x﹣1)2+6的顶点坐标为()A.(1,6)B.(1,﹣6)C.(﹣1,﹣6)D.(﹣1,6)16.若抛物线y=﹣x2先向左平移3个单位,再向下平移2个单位得到新的抛物线,则新抛物线的表达式是()A.y=﹣(x+3)2﹣2B.y=﹣(x﹣3)2﹣2C.y=(x+3)2﹣2D.y=﹣(x+3)2﹣217.已知二次函数y=2x2+bx+3的图象的顶点在x轴的正半轴上,则b的值是()A.2B.6C.﹣2D.218.二次函数y=ax2+bx+c的图象如图所示,若点A(﹣2.2,y1),B(﹣3.2,y2)是图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定19.如图,抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤b2>4ac,其中正确的结论有()A.①③⑤B.①②⑤C.①④⑤D.③④⑤20.如图是二次函数y=ax2+bx+c的图象,图象经过A点(3,0),二次函数的对称轴为x =1,给出下列结论:(1)b2>4ac;(2)bc<0;(3)2a+b=0;(4)a﹣b+c=0,其中正确的结论有()A.1个B.2个C.3个D.4个21.已知点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法判断22.若y=(1﹣m)x是二次函数,且图象开口向下,则m的值为()A.m=±2B.0C.m=﹣2D.m=223.已知二次函数的图象经过A(0,﹣2),B(1,0),C(2,0),则这个二次函数图象的对称轴为()A.B.x=﹣2C.x=2D.24.抛物线的顶点为(1,﹣4),与y轴交于点(0,﹣3),则该抛物线的解析式为()A.y=x2﹣2x﹣3B.y=x2+2x﹣3C.y=x2﹣2x+3D.y=2x2﹣3x﹣3 25.若抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=4(x﹣2)2﹣3B.y=﹣2(x﹣2)2+3C.y=﹣2(x﹣2)2﹣3D.y=﹣(x﹣2)2+326.用配方法将函数y=x2﹣2x+2写成y=a(x﹣h)2+k的形式是()A.y=(x﹣1)2+1B.y=(x﹣1)2﹣1C.y=(x﹣1)2﹣3D.y=(x+1)2﹣1 27.将y=2x2﹣8x﹣1化成y=a(x+m)2+n的形式为()A.y=2(x﹣2)2+7B.y=2(x﹣4)2﹣1C.y=2(x﹣2)2﹣9D.y=2(x﹣4)2﹣728.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3D.y=2(x﹣2)2+329.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣130.将二次函数y=x2﹣4x+3通过配方可化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣2)2﹣1B.y=(x﹣2)2+3C.y=(x+2)2+3D.y=(x+2)2﹣1 31.将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1B.y=(x﹣4)2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2﹣3 32.将二次函数y=x2﹣2x﹣1化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+2B.y=(x+1)2﹣2C.y=(x﹣1)2D.y=(x﹣1)2﹣2 33.把二次函数y=﹣(x+3)2+11变成一般式是()A.y=﹣x2+20B.y=﹣x2+2C.y=﹣x2+6x+20D.y=﹣x2﹣6x+234.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二.填空题(共12小题)35.函数y=(m+1)x|m|+1+5x﹣5是二次函数,则m=______.36.已知二次函数的图象过(0,1),(1,0)(﹣2,0)三点,则这二次函数的解析式是______.37.请写出一个开口向上,顶点为(2,1)的抛物线的解析式______.38.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是______.39.若函数y=a(x﹣h)2+k(a≠0)的图象经过原点,最大值为16,且形状与抛物线y=﹣4x2+2x﹣3相同,则此函数的关系式为______.40.请写出一个开口向下,且顶点坐标为(﹣3,2)的抛物线解析式:______.41.将y=x2﹣2x+5化成y=a(x﹣h)2+k的形式,则y=______.42.将二次函数y=x2﹣2x﹣4配方得到抛物线的顶点式为______.43.若二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0),则其表达式为y=______.44.过(﹣1,0)、(3,0)、(1,2)三点的抛物线的解析式是______.45.把二次函数y=x2﹣4x+5化为y=a(x﹣h)2+k的形式,那么h+k=______.46.一抛物线和另一抛物线y=﹣2x2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为______.三.解答题(共4小题)47.二次函数的图象经过A(1,m),B(2,n),C(4,t),且点B是该二次函数图象的顶点.(1)若m=3,n=4,求二次函数解析式;(2)请在图中描出该函数图象上另外的两个点,并画出图象.48.已知抛物线y=ax2+bx+c经过A(0,2),B(4,0),C(5,﹣3)三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x<0时的图象.49.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1(I)求该二次函数的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.50.已知二次函数y=ax2+2x的图象过点(﹣2,﹣1).(1)求这个二次函数的解析式;(2)判断点(﹣1,﹣)是否在抛物线上.二次函数基本性质1参考答案与试题解析一.选择题(共34小题)1.解:按照二次函数的定义:形如y=ax2+bx+c(a≠0)逐个判断即可:选项A:是二次函数,故A正确;选项B:是一次函数,不是二次函数,B不正确;选项C:是反比例函数,不是二次函数,C不正确;选项D:既有二次项,又有反比例的,D不正确.综上,只有A正确.故选:A.2.解:二次函数的基本表示形式为y=ax2+bx+c(a≠0),二次函数最高次必须为二次.故选:C.3.解:A、y=﹣3x2+1,是二次函数,符合题意;B、y=,是正比例函数,不合题意;C、y=,是反比例函数,不合题意;D、y=2x+5,是一次函数,不合题意.故选:A.4.解:A、关系式为:y=kx+b,故A错误;B、关系式为t=,故错误;C、关系式为:C=3a,故C错误;D、S=πR2,故D正确.故选:D.5.解:(1)y=3x2++1,右边有分式,不是二次函数;(2)y=+5是二次函数;(3)y=(x﹣3)2﹣x2=﹣6x+9,不是二次函数;(4)y=1+x﹣是二次函数.故是二次函数的有2个.故选:B.6.解:∵y=(m+1)是二次函数,∴m+1≠0且m2﹣m=2,解得:m=2,故选:A.7.解:由抛物线y=(x﹣1)2+2可知,顶点坐标为(1,2),对称轴为直线x=1,抛物线开口向上,函数有最小值为2,x>1时y随x增大而增大,∴A、B、C判断正确,D错误.故选:D.8.解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=时,y=﹣,∴当x=时,y有最小值是﹣,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.9.解:抛物线y=﹣2x2+1向左平移1个单位,顶点由原来的(0,1)变为(﹣1,1),当向上平移3个单位时,顶点变为(﹣1,4),则平移后抛物线的解析式为y=﹣2(x+1)2+4.故选:A.10.解:A、由抛物线y=ax2+b可知,图象开口向上,与y轴交在负半轴a>0,b<0,由直线y=bx+a可知,图象过一,二,三象限,b>0,a>0,故此选项错误;B、由抛物线y=ax2+b可知,图象开口向上且与y轴交在正半轴a>0,b>0,由直线y=bx+a可知,图象过一,二,四象限,b<0,a>0,故此选项错误;C、由抛物线可y=ax2+b知,图象开口向下且与y轴交在正半轴a<0,b>0,由直线y=bx+a可知,图象过一,三,四象限b>0,a<0,故此选项正确;D、由抛物线可y=ax2+b知,图象开口向下且与y轴交在负半轴a<0,b<0,由直线y=bx+a可知,图象过一,二,三象限b>0,a>0,故此选项错误;故选:C.11.解:y=2(x+3)2﹣4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣3,﹣4),对称轴是x=﹣3.故选:B.12.解:y=x2+bx+b2的图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;故b的值为或﹣4.故选:C.13.解:将抛物线y=﹣2(x﹣1)2﹣3向左平移3个单位,再向上平移2个单位得到y=﹣2(x﹣1+3)2﹣3+2.故得到抛物线的解析式为y=﹣2(x+2)2﹣1.故选:B.14.解:抛物线y=2(x﹣3)2+2的顶点坐标是(3,2),故选:B.15.解:抛物线y=﹣3(x﹣1)2+6的顶点坐标为(1,6),故选:A.16.解:由““上加下减,左加右减”的原则可知,抛物线y=﹣x2先向左平移3个单位,再向下平移2个单位得到新的抛物线为y=﹣(x+3)2﹣2.故选:D.17.解:∵二次函数y=2x2+bx+3的图象的顶点在x轴的正半轴上,∴==0,且﹣=﹣>0,解得b=﹣2,故选:C.18.解:因为抛物线y=ax2+bx+c的开口向下且对称轴是x=﹣3,点A(﹣2.2,y1),B(﹣3.2,y2),所以点A与对称轴的距离大于点B到对称轴的距离,所以y1<y2故选:A.19.解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,c>0,∴﹣3a>0,4c>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故⑤正确;故选:A.20.解:∵抛物线与x轴有交点,∴b2﹣4ac>0,即b2>4ac,故(1)正确,∵抛物线开口向下,∴a<0,∵﹣=1,∴b>0,∵抛物线交y轴于正半轴,∴c>0,∴bc>0,故(2)错误,∵﹣=1,∴2a+b=0,故(3)正确,∵图象经过A点(3,0),二次函数的对称轴为x=1,则另一个交点为(﹣1,0)∴x=﹣1时,y=0,∴a﹣b+c=0,故(4)正确,故选:C.21.解:∵点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,∴当x=﹣1时,y1=﹣1,当x=2时,y2=﹣10,∴y1>y2,故选:A.22.解:∵已知函数为二次函数,∴m2﹣2=2,解得m=﹣2或2,当m=﹣2时,1﹣m=3>0,二次函数图象开口向上,不符合题意,当m=2时,1﹣m=﹣1<0,二次函数图象开口向下,故选:D.23.解:∵二次函数的图象经过A(0,﹣2),B(1,0),C(2,0),∴这个二次函数图象的对称轴为直线x==,故选:A.24.解:设抛物线的解析式为y=a(x﹣1)2﹣4,将(0,﹣3)代入y=a(x﹣1)2﹣4,得:﹣3=a(0﹣1)2﹣4,解得:a=1,∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故选:A.25.解:∵抛物线的顶点为(2,3),∴设抛物线的解析式为y=a(x﹣2)2+3,∵经过点(3,1),∴代入得:1=a(3﹣2)2+3,解得:a=﹣2,即y=﹣2(x﹣2)2+3.故选:B.26.解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,即y=(x﹣1)2+1.故选:A.27.解:y=2x2﹣8x﹣1=2(x2﹣4x+4)﹣2×4﹣1=2(x﹣2)2﹣9,所以y=2(x﹣2)2﹣9.故选:C.28.解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选:C.29.解:把(1,﹣2)代入y=ax2﹣1得a﹣1=﹣2,解得a=﹣1.故选:D.30.解:y=x2﹣4x+3=(x2﹣4x+4)﹣1=(x﹣2)2﹣1,即y=(x﹣2)2﹣1.故选:A.31.解:y=x2﹣4x+1=(x2﹣4x+4)+1﹣4=(x﹣2)2﹣3.所以把二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为:y=(x﹣2)2﹣3.故选:C.32.解:y=x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2.故选:D.33.解:y=﹣(x+3)2+11=﹣x2﹣6x﹣9+11=﹣x2﹣6x+2.故选:D.34.解:设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴=,∴EG=2x,∴由勾股定理可知:AE=x,∴AB=BC=2x,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选:C.二.填空题(共12小题)35.解:由二次函数的定义可知,当时,该函数是二次函数∴∴m=1故答案为:1.36.解:根据题意设抛物线解析式为y=a(x﹣1)(x+2),将(0,1)代入得:﹣2a=1,即a=﹣,则抛物线解析式为y=﹣x2﹣x+1,故答案为y=﹣x2﹣x+1.37.解:设抛物线解析式为y=a(x﹣2)2+1,因为抛物线开口向上,所以可取a=1,所以满足条件的一个抛物线解析式为y=a(x﹣2)2+1.故答案为y=(x﹣2)2+1.38.解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,39.解:∵函数y=a(x﹣h)2+k的图象经过原点,把(0,0)代入解析式,得:ah2+k=0,∵最大值为16,即函数的开口向下,a<0,顶点的纵坐标k=16,又∵形状与抛物线y=﹣4x2+2x﹣3相同,∴二次项系数a=﹣4,把a=﹣4,k=16代入y=a(x﹣h)2+k中,得h=±2,∴函数解析式是:y=﹣4(x﹣2)2+16或y=﹣4(x+2)2+16,即y=﹣4x2﹣16x或y=﹣4x2+16x,故答案为:y=﹣4x2﹣16x或y=﹣4x2+16x.40.解:∵抛物线开口向下,顶点坐标为(﹣3,2)∴a<0,设函数解析式为y=a(x+3)2+2,只要a<0取值即可;故答案为y=﹣(x+3)2+2(答案不唯一).41.解:将y=x2﹣2x+5化成y=(x﹣1)2+4,故答案为:(x﹣1)2+442.解:二次函数y=x2﹣2x﹣4配方得到抛物线的顶点式为:y=(x﹣1)2﹣5,故答案为:y=(x﹣1)2﹣543.解:把(﹣1,0),(3,0)代入y=ax2+bx﹣3得:,解得:∴二次函数的解析式y=x2﹣2x﹣3.故答案为:x2﹣2x﹣3.44.解:由于抛物线过(﹣1,0)、(3,0)可知抛物线对称轴是直线x=1,而又因抛物线过(1,2),所以(1,2)是抛物线顶点于是设抛物线解析式为y=a(x﹣1)2+2,将(3,0)代入得0=a(3﹣1)2+2得a=﹣故答案为:y=﹣(x﹣1)2+245.解:∵y=x2﹣4x+5=(x﹣2)2+1,∴h=2,k=1,∴h+k=2+1=3.故答案为:3.46.解:设抛物线的解析式为y=a(x﹣h)2+k,且该抛物线的形状与开口方向和抛物线y =﹣2x2相同,∴a=﹣2,∴y=﹣2(x﹣h)2+k,∵顶点坐标是(﹣2,1),∴y=﹣2(x+2)2+1,∴这个函数解析式为y=﹣2(x+2)2+1,故答案为:y=﹣2(x+2)2+1.三.解答题(共4小题)47.解:(1)设二次函数的顶点式为y=a(x﹣2)2+4,把A(1,3)代入得,3=a+4,解得a=﹣1,∴y=﹣(x﹣2)2+4=﹣x2+4x;∴二次函数解析式为y=﹣x2+4x;(2)∵点B是该二次函数图象的顶点,∴抛物线对称轴为x=2,∵C(4,t),∴C关于对称轴对称的点C′在y轴上,∵A(1,m),∴A关于对称轴对称的点A′横坐标为3,利用描点法可画出函数图象,如图.48.(1)解:依题意,得解得,∴抛物线的解析式为y=﹣x2+x+2,∴h=﹣,k==,∴顶点坐标为();(2)令﹣x2+x+2=0,解得,x1=﹣1,x2=4,∴图象与x轴的另一个交点为(﹣1,0),并依题意画图象.49.解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.50.解:(1)把点(﹣2,﹣1)代入二次函数y=ax2+2x得,﹣1=4a﹣4,解得,a=,∴二次函数的关系式为y=x2+2x;(2)当x=﹣1时,y=×1+2×(﹣1)=﹣≠﹣,∴点(﹣1,﹣)不在抛物线上.。
人教版数学九年级上学期课时练习- 二次函数y=ax2+bx+c(a≠0)的图象与性质(培优篇)
专题22.3 二次函数(巩固篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值).A .1个B .2个C .3个D .4个2.关于函数y=(500﹣10x )(40+x ),下列说法不正确的是( ) A .y 是x 的二次函数 B .二次项系数是﹣10 C .一次项是100D .常数项是200003.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系 4.下列各式中,y 是x 的二次函数的是( ) A .y=a 2x +bx+c B .x 2+y -2=0C .y 2-ax=-2D .2x -y 2+1=0知识点二、二次函数的参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-7.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对8.下列结论正确的是( ) A .y=ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数知识点三、二次函数的解析式9.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( )A .230(030)y x x x =-<<B .230(030)y x x x =-+<C .230(030)y x x x =-+<<D .230(030)y x x x =-+<10.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-++C .210350y x x =-+D .2103507350y x x =-+-11.下列函数关系中,可以看做二次函数y=ax 2+bx+c (a≠0)模型的是( ) A .在一定距离内,汽车行驶的速度与行驶的时间的关系 B .正方形周长与边长之间的关系 C .正方形面积和正方形边长之间的关系 D .圆的周长与半径之间的关系12.某商店从厂家一每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那商品所赚钱y 元与售价x 元的函数关系为( )A .y =-10 x 2-560x+7350B .y =-10 x 2+560x -7350C .y =-10 x 2+350xD .y =-10 x 2+350x -7350二、填空题知识点一、二次函数的判断13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列函数中:①y=-x 2;①y=2x ;①y=22+x 2-x 3;①m=3-t -t 2是二次函数的是______(其中x 、t 为自变量).15.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____.知识点二、二次函数的参数17.定义:由a ,b 构造的二次函数()2y ax a b x b =+++叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数()2y ax a b x b =+++的“本源函数”(a ,b 为常数,且0a ≠).若一次函数y =ax +b 的“滋生函数”是231y ax x a =-++,那么二次函数231y ax x a =-++的“本源函数”是______.18.如果函数2(1)2m m y m x -=++是二次函数,那么m =____.19.当m____________________________时,函数22(23)(2)y m m x m x m =--+-+是二次函数.20.点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________知识点三、二次函数的解析式21.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,则第n 个叠放的图形中,小正方体木块总数m 与n 的解析式是______.22.如图,正方形ABCD 的边长是10cm ,E 是AB 上一点,F 是AD 延长线上的一点,BE DF =.四边形AEGF 是矩形,矩形AEGF 的面积()2cm y 与BE 的长cm x ()010x <≤的函数关系是______.23.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________. 24.二次函数()()y 412x x 3=-+-的一般形式2y ax bx c =++是________. 三、解答题25.已知函数y =(m 2-m )x 2+(m -1)x +2-2m . (1)若这个函数是二次函数,求m 的取值范围. (2)若这个函数是一次函数,求m 的值. (3)这个函数可能是正比例函数吗?为什么?26.已知函数()229123y k x kx =-++是关于x 的二次函数,求不等式141123k k -+≥-的解集.27.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?参考答案1.C解:形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.2.C【分析】先化简,整理成一般式,然后对每个选项判断即可.解:①y=(500﹣10x)(40+x)=-10x2+100x+20000,①y是x的二次函数,二次项系数是-10,一次项系数是100,常数项是20000,①A、B、D正确,C错误.故选C.【点拨】本题考查了二次函数的一般形式,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,其中a是二次项系数,b是一次项系数,c是常数项,据此求解即可.3.D【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.解:A、y=mx+b,当m≠0时(m是常数),是一次函数,错误;B、t=sv,当s≠0时,是反比例函数,错误;C、C=3a,是正比例函数,错误;D、S=13πR2,是二次函数,正确.故选D.【点拨】本题考查二次函数的定义.4.B解:利用二次函数的定义,可知:A.y=a2x+bx+c,应说明a≠0,故此选项错误;B.x2+y-2=0可变为y=2x+2,是二次函数,故此选项正确;C.y2-ax=-2不是二次函数,故此选项错误;D.x2-y2+1=0不是二次函数,故此选项错误;故选B.5.A 【分析】利用二次函数定义进行解答即可. 解:由题意得:a ﹣1≠0,解得:a ≠1, 故选:A .【点拨】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.D 【分析】根据二次函数的定义去列式求解计算即可. 解:①函数21(1)23ay a x x +=-++ 是二次函数,①a -1≠0,2a 1+=2, ①a≠1,21a =, ①1a =-, 故选D .【点拨】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.7.B 【分析】令x 的指数为2,系数不为0,列出方程与不等式解答即可. 解:由题意得:m 2-6m -5=2;且m+1≠0;解得m=7或-1;m≠-1, ①m=7, 故选:B .【点拨】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0. 8.B 【分析】根据二次函数的定义和自变量的取值范围,逐一判断解答问题. 解:A 、应强调a 是常数,a≠0,错误;B、二次函数解析式是整式,自变量可以取全体实数,正确;C、二次方程不是二次函数,更不是二次函数的特例,错误;D、二次函数的自变量取值有可能是零,如y=x2,当x=0时,y=0,错误.故选B.【点拨】本题考查二次函数的定义和自变量的取值范围,解题关键是熟练掌握定义.9.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.解:由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x (0<x<30).故选:C.【点拨】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.10.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解.解:每件的利润为(x-21),①y=(x-21)(350-10x)=-10x2+560x-7350.故选B.【点拨】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润.11.C【分析】利用二次函数的性质:一般地,把形如y=ax2+bx+c(其中a、b、c是长常数,a≠0,b,c可以为0)的函数叫做二次函数.逐一分析解答即可.解:A、在一定距离内,汽车行驶的速度与行驶的时间的关系是一种反比例关系,不能看作二次函数y=ax2+bx+c模型;B 、正方形周长与边长之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c模型;C 、正方形面积和正方形边长之间的关系,可以看做二次函数y=ax 2+bx+c 模型;D 、圆的周长与半径之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c 模型.故选C .【点拨】本题考查了二次函数的性质,建立二次函数的模型要从解析式,数值的变化和图象几个方面分析.12.B解:根据商品的单价利润×销售的件数=总利润,即可得y=(x -21)(350-10x )=-10x 2+560x -7350,故选B.13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.解:①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点拨】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.①① 【分析】一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.根据二次函数的定义条件判定则可.解:①y =-x 2,二次项系数为-1,是二次函数;①y =2x ,是一次函数;①y =22+x 2-x 3,含自变量的三次方,不是二次函数;①m =3-t -t 2,是二次函数. 故填①①.【点拨】本题考查二次函数的定义.一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数. 判断一个函数是二次函数需要注意三点: (1)经整理后,函数表达式是含自变量的整式; (2)自变量的最高次数为2;(3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意,二次项系数a 是否为0.15.①①① 【分析】根据二次函数的定义与一般形式即可求解. 解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点拨】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数).16. 3 0 【分析】根据二次函数的定义解答即可.解:二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点拨】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0.17.2-1y x =﹣【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数231y ax x a =-++的本源函数.解:由题意得3=++1=a b a b ⎧⎨⎩﹣解得=2=1a b ⎧⎨⎩﹣﹣①函数231y ax x a =-++的本源函数是2-1y x =﹣. 故答案为:2-1y x =﹣. 【点拨】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.18.2.【分析】直接利用二次函数的定义得出m 的值.解:①函数2(1)2m m y m x -=++是二次函数,①m 2−m =2,(m−2)(m +1)=0,解得:m 1=2,m 2=−1,①m +1≠0,①m≠−1,故m =2.故答案为:2.【点拨】此题主要考查了二次函数的定义,正确得出m 的方程是解题关键.19.不等于1-和3【分析】我们一般把形如2y ax bx c =++(a b c 、、为常数)的函数称之为二次函数,其中二次项系数不能为0,据此进一步求解即可.解:根据二次函数的定义可得:2230m m --≠,即:()()130m m +-≠,①1m ≠-,且3m ≠,即当m 不等于1-和3时,原函数为二次函数,故答案为:不等于1-和3.【点拨】本题主要考查了二次函数的定义的运用,熟练掌握相关概念是解题关键. 20.6【分析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.解:①点(),1m 是二次函数221y x x =--图像上,①2121m m =--则222m m -=.①()223632326m m m m -=-=⨯=故答案为:6.【点拨】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.21.m =2n 2−n【分析】图(1)中只有一层,有(4×0+1)一个正方形,图(2)中有两层,在图(1)的基础上增加了一层,第二层有(4×1+1)个.图(3)中有三层,在图(2)的基础长增加了一层,第三层有(4×2+1),依此类推出第n 层正方形的个数,即可推出当有n 层时总的正方形个数.解:经分析,可知:第一层的正方形个数为(4×0+1),第二层的正方形个数为(4×1+1),第三层的正方形个数为(4×2+1),……第n 层的个数为:[4×(n −1)+1],第n 个叠放的图形中,小正方体木块总数m 为:1+(4×1+1)+(4×2+1)+…+[4×(n −2)+1]+[4×(n −1)+1]=1+4×1+1+4×2+1+…+4×(n −2)+1+4×(n −1)+1=n +4(1+2+3+…+n −2+n −1)=n +4()()1112n n +--⨯ =n +2n (n −1)=2n 2−n .即:m =2n 2−n .故答案为:m =2n 2−n【点拨】本题解题关键是根据图形的变换总结规律,由图形变换得规律:每次都比上一次增加一层,增加第n 层时小正方形共增加了4(n −1)+1个,将n 层的小正方形个数相加即可得到总的小正方形个数.22.2100y x =-+##2100y x =-【分析】由已知图形可以分析得到矩形AEGF 的长AF 为(10)x +cm ,宽AE 为(10)x -cm ,由面积公式即可计算得到正确答案.解:①正方形ABCD 的边长是10cm ,且BE DF =①矩形AEGF 的长AF 的长为(10)x +cm ,宽AE 的长为(10)x -cm①矩形AEGF 的面积为:()()21010=100y AF AE x x x ==+--+故答案为:2100y x =-+【点拨】本题考查变量之间的关系,由矩形面积推导二次函数关系式等知识点.数形结合列式计算是解此类题的关键.23.22()1y x =-+【分析】利用配方法整理即可得解.解:222454()4121y x x x x x =-+=-++=-+,所以22()1y x =-+.故答案为22()1y x =-+.【点拨】本题考查了二次函数的解析式有三种形式:(1)一般式:2(y ax bx c =++0,a a b c ≠、、为常数); (2)顶点式:2()y a x h k =-+;(3)交点式(与x 轴):12()()y a x x x x =--.24.2y 8x 20x 12=-++【分析】直接利用乘法运算法则化成一般式.解:y =−4(1+2x )(x−3)=−8x 2+20x +12,故答案为y =−8x 2+20x +12.【点拨】此题考查二次函数的解析式的三种形式,熟练掌握这几种形式是解题的关键.25.(1). m ≠0且m ≠1.(2). m =0.(3). 不可能试题分析:(1)根据二次函数的二次项系数不等于0,可得答案;(2)根据二次函数的二次项系数等于0,常数项不等于0,是一次函数,可得答案; (3)根据二次函数的二次项系数等于0,常数项等于0,可得正比例函数. 解:(1)①这个函数是二次函数,①m 2-m ≠0,①m (m -1)≠0,①m ≠0且m ≠1.(2)①这个函数是一次函数,①①m =0.(3)不可能.①当m =0时,y =-x +2,①不可能是正比例函数.26.15k ≤且13k ≠-. 【分析】首先利用二次函数的定义得出k 不能取的值,进而解不等式得出答案.解:∵函数()229123y k x kx =-++是关于x 的二次函数,∴2910k -≠, 解得:13k ≠±, 141123k k -+≥- ()()312416k k -≥+-, 解得:15k ≤, 故不等式141123k k -+≥-的解集为:15k ≤且13k ≠-. 【点拨】此题主要考查了二次函数的定义以及解不等式,正确解不等式是解题关键. 27.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.解:(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.①要抢占市场份额①8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.①要继续保持扩大销售量的战略①10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点拨】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.。
22.1.1二次函数习题课件-2021--2022学年人教版数学九年级上册
时,该函数是一次函数;当m满足
时,该函数是二
次函数.
答案 m=0;m≠0且m≠-1
解析 当m2+m=0且m+1≠0,即m=0时,该函数是一次函数;当m2+m≠0,即m ≠0且m≠-1时,该函数是二次函数.
5.(2021独家原创试题)某工厂今年八月份医用防护服的产量是50万件,计
划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护
y元,则y与x的函数关系式为
.
答案
x2
y=- +58x-1 120
10
解析
y与x的函数关系式为y=(x-20)
40
x
160 10
x2
=-
10
+58x-1
120.
9. 下列函数中,是二次函数的是( )
A.y=-8x
B.y= 8
x
C.y=8x2
D.y=8x-4
答案 C y=-8x和y=8x-4都是一次函数;y= 8 不是二次函数;y=8x2是二次
答案 D 由题意得a-2≠0,解得a≠2.故选D.
8.(2020湖北武汉硚口期中,14,★★☆)某宾馆有40个房间供游客居住,当
每个房间每天的定价为160元时,房间会全部住满;当每个房间每天的定
价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个
房间每天支出20元的各种费用.设每间每天房价定为x元,宾馆每天利润为
服的产量y(万件)与x之间的函数表达式为
.
答案 y=50(1+x)2
解析 由题意知,九月份医用防护服的产量为50(1+x)万件,十月份医用防 护服的产量为50(1+x)2万件,所以y与x之间的函数表达式为y=50(1+x)2.
九年级上册数学《二次函数》单元综合测试题附答案
【解析】
【分析】
设每张床位提高x个单位,每天收入为y元,根据等量关系“每天收入=每张床的费用×每天出租的床位”可求出y与x之间的函数关系式,运用公式求最值即可.
【详解】设每张床位提高x个2元,每天收入为y元.根据题意得:
y=(10+2x)(100﹣10x)=﹣20x2+100x+1000.
当x=﹣ =2.5时,可使y有最大值.
1.已知 ,点 , , 都在函数 的图象上,则()
A. B. C. D.
【答案】A
【解析】
【分析】
由a<﹣2即可得出a﹣1<a<a+1<﹣1,再根据在函数y=x2的图象上,当x<0时,y随着x的增大而减小,由此即可得出y1<y2<y3.
【详解】解:∵a<﹣2,∴a﹣1<a<a+1<﹣1.
∵在函数y=x2的图象上,当x<0时,y随着x的增大而减小,∴y1<y2<y3.
(1)求y与x之间 函数关系式(不求自变量的取值范围);
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?
(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?
二次函数概念
(D )y ='a 2+lx 2一ax +a一、教学目标1、理解二次函数的有关概念。
2、理解和掌握一元二次方程和二次函数的关系。
3、注意结合其他函数知识和方程知识,准确的把握知识间的联系与区别,注重对函数思想的理解与应用。
二、重点、难点重点:二次函数的有关概念的理解和应用。
难点:二次函数的综合应用。
三、考点分析这部分知识是中考的重点、难点也是中考中的热点问题,通常出现在中考中的第24题,其难度较大也是学生最容易失分的一类题目。
【例题精解】【例题1】基础型】:1、下列函数关系式,是二次函数的是1(A )y =(B )y =2x (C )y =mx 2 x 2 2、已知关于X 的二次函数y =(m +1)x m 2-3m -2,则m 的值是(A )-1(B )0(C )4(D )-1或4【延伸型】已知函数y =(2m 一3n )x 4+(2m +n 一8)x 3+kx 2+(m +n )x +k 2,且当x 二1时,y 二7,求原函数关系式及m n 的值。
【例题2】【基础型】:1、已知一个二次函数,当x =—1,y =—6;当x 二1,y =—2;当x 二2,y 二3。
求这个二次函数的解析式。
二次函数概念2、已知二次函数y=ax2+bx+c,当x—°时,y—4;当x=-1时,y=8;当x=2,y=2。
求:(1)当x=-3时,y的值;(2)当y—14时,x的值。
【延伸型】两条直线相交最多有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个焦点,若n条直线相交,交点个数最多为m个,求m关于n的函数关系式,并指出是什么函数。
【例题3】【综合型】【基础型】某商场销售某种品牌的纯牛奶,已知进价为每箱4°元,生产厂家要求每箱的售价只能在4°7°元之间,市场调查发现:若每箱5°元销售,平均每天可销售9°箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱。