化学反应工程大纲

合集下载

《化学反应工程》教学大纲

《化学反应工程》教学大纲

《化学反应工程》教学大纲课程名称化学反应工程课程编号课程英文名称Chemical Reaction Engineering课程类型专业基础课总学时 64学时(理论50学时,实验14学时)学分 4适用专业化学工程与工艺先修要求高等数学、物理化学、化工原理、开课安排第六学期开课,周五学时一、课程基本目的《化学反应工程》是化学工程类专业继物理化学、化工原理、化工数学等课程后开设的一门主修专业课。

目的是使学生掌握化学反应工程的基本概念、原理和方法,包括反应动力学及传递过程基本原理、理想流动模型及理想反应器、停留时间分布以及混合程度对反应的影响、反应器的设计与分析方法等。

二、学习收获:通过本课程的教学,使学生掌握建立化学反应动力学模型及反应器流体传递过程模型的方法,并根据化学反应特性及反应器特性,掌握反应器的设计、选型、放大与最优化,为将来深入研究与开发化工反应过程打好基础。

四、内容提要:《化学反应工程》是研究化学反应工程问题的学科,它以化学反应及化学反应器工程问题为研究对象,将反应特性及反应器的特性结合起来研究化学反应在工业上进行有效实施的一门专业主干课程。

该课程的主要内容包括均相与非均相反应动力学基础、理想反应器模型、非理想流动的停留时间分布及混合程度对化学反应的影响、均相非理想流动的流动模型以及气固相催化反应器非均相反应器等内容。

绪论(2学时)1. 化学反应工程的任务和范畴。

2. 化学反应工程的研究方法。

3. 化学反应工程与其他学科的关系。

4. 如何学好反应工程。

要求深刻理解与熟练掌握的重点内容有:1. 化学反应工程的任务和范畴。

2. 化学反应工程的研究方法——数学模拟法。

要求一般理解与掌握的内容有:化学反应工程与其他学科的关系。

难点:数学模拟法。

第1章均相反应动力学(8学时)明确反应速度的定义及表示方法,掌握转化率、收率、选择性的概念,研究各种因素如温度、催化剂、反应物组成和压力等对反应速率、反应产物分布的影响,并确定表达这些影响因素与反应速率之间定量关系的速率方程。

化学反应工程_百度文库

化学反应工程_百度文库

第一章气-固相催化反应本征动力学概论化工生产中大多数反应是过程,气-固相催化反应是重要反应之一。

本章讨论:1,2,连续过程中化学反应速率的有关问题;气-固相催化反应的化学动力学,即本征动力学。

第一节化学计量学1-1化学计量式化学计量学是研究化学反应系统中反应物和产物组成相互关系变化的数学表达式。

化学计量式是化学计量的基础。

化学计量式表示参加反应的各组分的娄量关系,等式左边的组分为反应物,等式右边的组分为产物,化学计量式的通式为:或或一般将反应物的化学计量取负值,产物的化学计量取正值。

如果反应系统中有m 个反应,则第j个反应的化学计量式的通式为或也可用矩阵表示为......1-2 反应程度、转化率及化学膨胀因子一.反应程度对于间歇反应中的单反应进行物料衡算按化学计量关系有R上式中的ξ称为化学反应程度。

注意上述表达式中各项的正负号。

(1-7)式也可表达为:为i组分已反应的量,所以,知道反应程度即可计算出所有反应物及产物已经反应(或生成)的量。

二、转化率反应物A的反应量与其初如量之比称为A的转化率:nA0nA0nA0工业反应过程中的原料中各组分之间往往不符合化学计量关系,通常选择不过量的反应物计算转化率,这样的组分称为关键组分。

三、化学膨胀因子在恒温恒压的连续系统中发生反应对于液相反应,反应前后物料的体积流量变化不大,一般作为恒容过程。

对于气相反应,反应前后物料的体积流量变化较大。

定义每转化1mol的A时反应混合物增加或减少的量为化学膨胀因子,即:则有:由此,组分A的瞬时浓度可表示为:对于连续,则式中,大写字母表示摩尔流量,小写字母表示物质的量。

例1-1 计算下列反应的化学膨胀因子1. A+B→P+S2. A→P+S3. A+3B→2P解:1. δA=[(1+1)-(1+1)] / 1=02. δA=[(1+1)-1)] / 1=13. δA=[2-(1+3)] / 1=-21-4 多重反应的收率及选择率1,单一反应和多重反应单(一)反应:一组物定的反应物反应生成一组特定的产物。

化学反应工程复习提纲

化学反应工程复习提纲

淮海工学院化学反应工程复习参考1 绪论1.化学反应工程研究的内容P12 通常所说的三传一反指什么P13 什么是转化率关键组分的转化率与100%的关系P34 单程转化率与全程转化率的大小关系P45 收率与转化率是针对什么物质而言的,数值能否大于100%P56 收率与转化率,选择性的关系P52 反应动力学基础1.反应速率定义P152 流动系统的反应速率三种表示形式及换算方法P163 基元反应速率方程的写法与级数的分析, 基元反应与非基元反应的关系P17-184温度对三种反应速率的影响,对反应速率常数的影响,不可逆.可逆吸热与放热反应P235 复合反应的类型P26-296 δA的计算方法P317 多相催化反应的步骤P368 物理吸附与化学吸附及理想吸附的特点分析P373 釜式反应器1.等温间歇釜式反应器的计算有单一反应,平行反应及连串反应最大收率的计算P57-652 空时,空速与生产能力的关系P66-673 连续釜式反应器体积的计算P67-684 什么是正常动力学与反常动力学,连续釜式反应器串并联特点P695 釜式反应器的总收率与总选择性的变化特点P75-766 平行反应分析P767 连串反应分析P79-80 4 管式反应器1.理想反应器模型的特点,与实际反应器对应的是什么反应器P982 等温管式反应器的计算P1003 管式与釜式反应器反应体积比较结果P107-1095 停留时间分布与反应器的流动模型1.停留时间的年龄分布与寿命分布定义P1282 停留时间分布的定量描述E(t)与F(t)的定义P128-1293 停留时间分布的实验测定有几种方法及分别测定什么P130-1324 停留时间统计值有两个参数分别表示什么P1345 理想反应器停留时间分布的计算F(θ) E(θ)的计算6 多相系统中的化学反应与传递现象1.颗粒的三个密度大小比较P1592 气固催化反应过程进行的步骤P1603 外扩散对催化反应的影响分析单一反应,复合反应分析P165-1664 孔扩散的三种方式P1675 内扩散有效因子Φ的分析P1706 内外扩散有效因子分析P1767 内扩散对复合反应选择性的影响分析P1778 消除内外扩散影响的方法P178-1797 多相催化反应器的设计与分析1.固定床内空隙率大小分析P1862 多段固定床绝热反应器的类型P1943 流化床反应器中压降与流速的变化关系P211 8 多相反应器1.气液反应机理P2222 η值大小分析P224-2253 气液固反应器机理P2324 滴流床反应器的四个区域P2339 生化反应工程基础1.酶的组成与类型P2442 生化反应过程的特点P2453 酶催化反应特点P2464 酶催化反应的四种抑制机理P248-2505 影响酶催化反应速率的因素p2516 酶与细胞固定化技术P257-2587 影响固定化酶催化反应动力学的因素p2581一、单项选择题1.下列反应器可视为活塞流的反应器是()反应器A:管式B:釜式C:塔式2.对于基元反应2A+B→2C,则反应速率方程为()反应器A:r=kc A2C B B:r A=kC A C B C:r A=Kc A C B2D: r A=kC A C B C c3.在全混流反应器中,反应器的有效容积V R与进料流体的流速Q0之比为()A:空时τB:反应时间t C:停留时间t D:平均停留时间t4.化学反应速率式为-r A=K C CαA C Bβ,如果用浓度表示的速率常数为K C,用压力表示的速率常数为K P,则K C=()K P A:(RT)-(α+β)B:(RT)(α+β) C:(RT)(α-β)5.对于基元反应:2A+B→2P的反应,对A的反应总级数为()级A:1 B:3 C:2 D:06.在平行反应中,A→P,2A→Q,r P=k1C A,r Q=k2C A2,P为目的产物,k1,k2为常数,浓度对瞬时选择性S的影响是()7.完成同样的任务所需反应器体积在()时,平推流反应器与全混釜一样A:反应级数大于零B:零级反应C、反应级数小于零8.阶跃示踪法测定停留时间分布对应的曲线为()A:E(t)曲线 B:F(t)曲线 C:I(t)曲线 D:y(t)曲线9.对正常动力学,完成同样的任务,所需反应器体积最小的操作是()A:单釜 B:二釜串联 C:三釜串联 D:四釜串联O,已知k=0.01L/s.mol,则反应级数为()10.反应NaOH+HCl→NaCl+H2A:1 B:2 C:3 D:011.对于基元反应A+B→2C,则反应速率方程为()反应器A:r=kc A2C B B:r A=kC A C B C:r A=Kc A C B2D: r A=kC A C B C c12.在连续操作的全混流反应器中,反应物的平均停留时间为()A:大于空时τB:小于空时τC:等于空时τ13.完成同样的任务所需反应器体积在()时,平推流反应器与全混釜一样A:反应级数大于零B:零级反应C、反应级数小于零14. 对正常动力学,瞬时选择性S随转化率增大而降低的情况下,反应器内的目的产物最终收率最大的操作是()A:间歇釜反应器 B:连续单釜 C:二釜串联=()15.气相反应2A+B→3P+S,进料时为惰性气体,A与B的摩尔比为2:1进料,则膨胀因子δAA:-1 B:-0.5 C:0.5 D:116.反应产物的质量收率,其最大值为()A:100% B:大于100% C:小于100%117.催化剂颗粒上的反应速率大小与三个有效因子有关,分别是外扩散ηx 、内扩散η、内外扩散总有效因子η,忽略内扩散影响时,它们之间的关系是( )A:ηX >η B:ηX=η C:ηX=ηD:η=η18. 对于()的反应器,在恒容反应过程的平均停留时间、反应时间、空时是一致的。

《化学反应工程》教学大纲

《化学反应工程》教学大纲

《化学反应工程》教学大纲《化学反应工程》课程教学大纲【学时学分】 64 学时; 4学分【开课模式】必修【实验学时】 12学时【上机学时】0学时【课程类型】专业基础课【考核方式】考试【先修课程】物理化学,高等数学等【开课单位】石油化工系【课程编号】 G02019【授课对象】大专(3年制)石油化工生产技术一、本课程教学目的和任务本课程是化学工程与工艺专业的专业基础必修课,其主要任务是使学生掌握化工生产中的关键过程——化学反应过程的基本理论和知识,培养学生具体分析、计算和解决化工生产中有关化学反应过程的实际问题的能力。

1、课程对学生思想品德培养的目标要求:①通过课程讲授、复习及辅导、作业等教学环节,培养学生严谨求实的科学态度和一丝不苟的工作作风。

②通过用理论分析解决问题的过程中,培养学生辩证唯物主义的思想方法。

③通过我国反应工程发展史及现状,激发学生为化工事业献身的精神。

2、课程对学生知识与能力培养的目标要求:①培养学生从基础理论、工程观点、经济观点出发,综合处理工程问题的能力。

②培养学生能熟练进行反应器选型、设计、校核的能力。

③培养学生根据反应的特点分析反应器的问题,具有解决工业反应器的问题的能力。

④通过实验数据的收集和解析,培养学生实验设计和处理数据能力。

3、课程对学生科学思维方面的目标要求:①通过基本原理的学习,使学生掌握过程的本质,在众多影响因素中,抓住问题的主要方面,提高学生的科学思维能力。

②通过计算问题的学习,使学生掌握计算依据的基本概念、模型简化处理的方法,从而培养学生抽象的思维能力。

③通过典型反应器的学习,使学生了解应从基本原理出发来分析反应器性能、特征、应用范围及强化方法,培养学生逻辑思维能力。

二、本课程的性质、特点及基本要求本课程是在学完物理化学、化工原理、化工热力学的基础上,讲授化学反应过程的基本理论和知识,以研究工业反应器为主体,介绍反应工程的基本概念、原理和方法,以及反应器的设计、优化、开发、放大问题。

化学反应工程第三版李绍芬

化学反应工程第三版李绍芬

化学反应工程第三版李绍芬1. 简介《化学反应工程第三版李绍芬》是一本关于化学反应工程的经典教材,由李绍芬教授主编。

本书主要介绍了化学反应工程的基本概念、原理和应用,涵盖了从反应动力学到反应器设计的各个方面内容。

2. 内容概要本书共分为十个章节,内容涵盖广泛,包括了反应动力学、反应器理论与设计、传热与传质、固定床反应器等。

•第一章介绍了化学反应工程的基本概念和主要内容,为后续章节的学习打下基础。

•第二章详细介绍了反应动力学的理论与实践,包括反应速率方程、反应级数、反应速率常数等概念。

•第三章探讨了反应器的类型和基本原理,包括批式反应器、连续式反应器、半批式反应器等。

•第四章介绍了反应器的设计原则和方法,包括选择反应器类型、确定反应器尺寸等。

•第五章讲解了传热和传质在反应工程中的重要性,介绍了由传热与传质引起的影响和计算方法。

•第六章介绍了固体颗粒的基本性质和反应器,包括固定床反应器的设计和操作。

•…本书结合了理论和实践,并通过大量的实例和案例讲解,使读者能够更好地理解和应用化学反应工程的知识。

3. 特点与亮点《化学反应工程第三版李绍芬》的特点与亮点主要体现在以下几个方面:•综合性和系统性:本书囊括了化学反应工程的各个方面内容,从基本概念到实际应用都有所涉及,能够满足读者全面学习的需求。

•理论与实践结合:本书不仅介绍了反应工程的理论知识,还通过大量实例和案例进行讲解,帮助读者将理论应用到实际中。

•说明详细、语言简洁:本书的说明详细且语言简洁,能够让读者更容易理解和掌握知识。

•更新与全面:本书是第三版教材,对于最新的研究成果和进展进行了更新,并且涵盖了化学反应工程的全面内容。

4. 适用对象《化学反应工程第三版李绍芬》适用于化学工程、化学专业的本科生和研究生,以及从事相关工作或研究的专业人士。

无论是从事科研、工程设计还是教学的相关人士,都可以通过阅读本书来提高自己的理论水平和实践能力。

5. 总结《化学反应工程第三版李绍芬》是一本全面系统介绍化学反应工程的经典教材,其内容涵盖了化学反应工程的各个方面,可以帮助读者更好地理解和应用化学反应工程的知识。

《化学反应工程》课程教学大纲

《化学反应工程》课程教学大纲

《化学反应工程》课程教学大纲制定人:王远强教学团队审核人:门勇开课学院审核人:饶品华课程名称:化学反应工程/Chemical Reaction Engineering课程代码:040311适用层次(本/专科):本科学时:48学分:3 讲课学时:48 上机/实验等学时:0 考核方式:考试先修课程:化工原理,化工热力学,物理化学适用专业:化学工程与工艺、制药工程等教材:张濂、许志美、袁向前,《化学反应工程原理》(第二版),华东理工大学出版社,2007 主要参考书:1、陈甘棠等,《化学反应工程》(第三版),化学工业出版社,20112、朱炳辰等,《化学反应工程》(第五版),化学工业出版社,20123、李绍芬等,《反应工程》(第二版),化学工业出版社,20084、Ronald W. Missen, Charles A. Mims, Bradley A. Saville. Chemical ReactionEngineering and Kinetics. Jon Wiley & Sons, Inc. 1999一、本课程在课程体系中的定位“化学反应工程”是以无机化工、有机化工、煤化工和石油化工生产过程中的化学加工过程为背景,按化学反应与动量、热量、质量传递相互作用的共性归纳综合的宏观反应过程;是将化学反应原理与反应设备相结合的一门学科;本课程是该专业的主干专业基础课,属于必修课,跟学生的学位挂钩。

二、教学目标1.培养学生用自然科学的原理考察、解释和处理工程实践问题;2.使学生掌握化学反应工程学科的理论体系、研究方法,了解学科前沿;3.应用理论推演和实验研究工业反应过程的规律而建立数学模拟结合工程实践的经验应用于工程设计和放大。

三、教学效果通过本课程的学习,学生可具备:1.从全局的角度,思考问题、解决问题的意识;2. 熟悉反应工程基本内容的能力;3.熟练运用“三传一反”基本方程式,求解理想反应器模型的能力;4.能注重研究内容,抓住研究思路,掌握共性规律的能力;5. 运用工程分析方法,解决工程问题的能力。

反应工程课程设计大纲

反应工程课程设计大纲

反应工程课程设计大纲一、课程介绍本课程是针对化学工程专业的学生设计的一门必修课程,旨在帮助学生掌握反应工程的基本原理、方法和技术。

通过学习本课程,学生将了解反应工程的基本概念、反应动力学、反应器设计、反应工程的应用等内容,为将来的工作和研究打下坚实的基础。

二、课程目标1. 理解反应工程的基本概念和原理;2. 掌握反应动力学的基本知识;3. 学会进行反应器的设计和优化;4. 熟悉反应工程在化工生产中的应用;5. 培养学生的团队合作能力和创新精神。

三、课程大纲1. 反应工程的基本概念1.1 反应工程的定义和发展历程1.2 反应工程在化工领域的重要性1.3 反应工程与其他工程学科的关系2. 反应动力学2.1 反应速率和反应级数2.2 反应速率常数和活化能2.3 反应动力学方程的推导和应用2.4 反应动力学实验方法3. 反应器的设计3.1 理想反应器的性能和特点3.2 简单反应器的设计和计算3.3 复杂反应器的设计和优化3.4 反应器的操作和控制4. 反应工程的应用4.1 反应工程在化工生产中的应用案例4.2 反应工程在环境保护和新能源领域的应用4.3 反应工程的发展趋势和前景四、教学方法本课程采用理论教学和实践教学相结合的教学方法。

课堂教学以讲授为主,结合案例分析和讨论,引导学生深入理解和应用所学知识。

实验教学将设计多个与反应工程相关的实验项目,让学生动手操作,加深对课程内容的理解。

五、课程评价学生的学习成绩将根据平时表现、期中考试、实验报告和期末考试等多个方面综合评价。

学生应按时完成课程作业和实验报告,积极参与课堂讨论,课程结束后进行闭卷考试,考核学生对课程内容的掌握程度和应用能力。

六、课程参考书目1. 《反应工程学》2. 《反应工程原理与设计》3. 《化学工程反应工程导论》4. 《反应工程应用案例分析》通过学习本课程,学生将对反应工程的基本理论和应用有深入的了解,为将来的学习和工作打下坚实的基础。

《化学反应工程》教学大纲

《化学反应工程》教学大纲

《化学反应工程》教学大纲课程编号:01100730 课程性质:必修课程名称:化学反应工程学时/ 学分:48/3英文名称:Chemical Reaction Engineering 考核方式:闭卷笔试选用教材:《化学反应工程》朱炳辰化学工业出版社《化学反应工程原理》张濂等华东理工大学出版社大纲执笔人:许志美先修课程:物理化学、化工原理、高等数学大纲审核人:适用专业:化学工程与工艺及相近专业一、教学基本目标化学反应工程是以工业规模的化学反应过程为研究对象,研究过程速率及其变化规律,宏观动力学因素对化学反应过程的影响,以实现工业反应过程开发、设计、放大和操作的优化。

学习本门课程,学生应牢固地掌握化学反应工程中最基本的原理和计算方法,运用科学思维方法,增强提出问题、分析问题和解决问题的能力。

课程教学将突出阐述反应工程理论思维方法,重点讨论影响反应结果的工程因素(如返混、混合、热稳定性和参数灵敏性等),并以开发实例进行分析,培养学生应用反应工程方法论解决实际问题的能力。

二、教学基本内容1.绪论学习了解反应工程的研究对象,研究目的和研究方法。

2.化学反应动力学掌握化学反应速率的不同表示方式及相互关系。

掌握转化率、收率与选择性的概念。

掌握反应速率的温度效应和活化能的意义,反应速率的浓度效应和级数的意义。

3理想化学反应器与典型化学反应的基本特征理解简单反应、可逆反应、平行反应和串联反应的动力学特征,掌握复杂反应系统反应组分的速率、选择性和收率的计算方法。

掌握等温间歇反应器的基本方程,及反应时间、反应器体积的计算方法。

4理想管式反应器掌握管式平推流反应器的基本方程,理解平推流反应器的停留时间、空时和空速的概念及其应用。

5.连续流动釜式反应器深入理解全混流模型的意义。

掌握定态下全混流反应器的基本方程,以及定态下串联或并联操作的全混流反应器的计算。

根据化学反应的不同类型能正确地选择反应器的组合方式、加料方式、原料浓度及操作温度。

化学反应工程教学大纲

化学反应工程教学大纲

081301-化学工程与工艺请提交表3.8中列出的所有课程的教学大纲。

如果近四个学年度有调整的请一并提交调整前及调整后的大纲,调整多次的,需提交每个版本。

教学大纲以一个pdf文件上传。

17版人才培养方案中的专业主干课程《化学反应工程》教学大纲(化学工程与工艺专业精细化工方向适用)学时:40 学分:2.5 课程编号:1706090一、本课程的性质和任务课程性质:化学反应工程是化学工程与工艺本科专业的核心主干专业课程,具有多学科交叉的特点,以反应过程为主要研究对象,研究过程速率及其变化规律、传递规律及其对化学反应的影响,以达到反应器的设计、开发和放大以及操作优化的目的。

其内容涉及化学反应动力学、反应器传递特性、反应器类型结构、操作分析及反应器设计,具有高度综合性、广泛基础性和自身独特性。

课程任务:一是培养学生将数学、物理化学、化工热力学等学科知识用之于化学反应工程课程的综合能力;二是使学生掌握化学反应工程的基本概念、原理和方法,包括反应动力学、流动模型及理想反应器、停留时间分布、反应器的设计与分析等;三是使学生初步具备改进和强化现有反应技术和设备,提高其分析问题和解决问题的能力。

二、本课程的基本内容(一)绪论1. 化学反应工程的研究对象和目的2. 化学反应工程的研究内容3. 化学反应工程研究方法(二)化学反应动力学1. 化学反应速率的工程表示2. 均相反应动力学3. 气固相催化反应本征动力学(三)理想间歇反应器1. 反应器设计基本方程2. 理想间歇反应器中的简单反应3. 理想间歇反应器中的均相可逆反应4. 理想间歇反应器中的均相平行反应5. 理想间歇反应器中的均相串联反应(四)理想流动管式反应器1. 理想流动管式反应器的特点2. 理想流动管式反应器基本方程式3. 空时、空速和停留时间4. 反应前后分子数变化的气相反应(五)连续流动釜式反应器1. 连续流动釜式反应器的基本设计方程2. 连续流动釜式反应器中的均相反应3. 连续流动釜式反应器中的浓度分布与返混4. 返混的原因与限制返混的措施(六)反应过程中的混合现象及其对反应的影响1. 混合现象的分类2. 停留时间分布及其性质3. 微观混合及其对反应结果的影响4. 非理想流动模型5. 非理想流动反应器的计算(七)化学反应过程的优化1. 概述2. 影响反应场所浓度的工程因素3. 简单反应过程反应器型式的比较4. 自催化反应过程的优化5. 可逆反应过程的优化6. 平行反应过程的优化7. 串联反应过程优化8. 复合反应过程的温度条件(八)气固催化反应过程的传递现象1. 气固催化反应过程的研究方法2. 等温条件下的催化剂颗粒外部传质过程3. 等温条件下的催化剂颗粒内部传质过程4. 等温条件下的总效率因子5. 非等温条件下的催化剂颗粒外部传质过程6. 非等温条件下的催化剂颗粒内部传质过程7. 固体催化剂的工程设计(九)气固相固定床反应器1. 固定床催化反应器的类型与装填特性2. 固定床中的热传递和质量传递3. 气固催化反应表观速率方程式4. 固定床催化反应器的设计模型三、本课程的基本要求(一)绪论1. 掌握学习化学反应工程课程的目的2. 了解化学反应工程的发展、任务和范畴3. 掌握化学反应工程的分类及其操作方法4. 了解化学反应工程的研究方法重点:工业化学反应的分类,化学反应器的操作方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学反应工程大纲
《化学反应工程》教学大纲
一、课程基本信息
课程名称:化学反应工程
课程类型:专业课
总学时: 68
适用专业:煤化工技术
先修课程:基础化学化工原理
二、课程的性质与任务
化学反应工程是化学工程学科的一个分支,以工业反应过程为主要研究对象,研究过程速率及其变化规律、传递规律及其化学反应的影响,以达到反应器的开发、设计和放大以及优化操作的目的。

化学反应工程课程是煤化工类的一门专业课程,是在学生学完基础化学和化工原理等课程之后的一门必修的主干课程。

三、课程教学基本要求
通过本门课程的学习,学生应比较牢固地掌握化学反应工程最基本的原理和计算方法,能够理论联系实际,增长提出问题、分析问题和解决问题的能力。

四、理论教学内容和基本要求
1.均相反应动力学
掌握化学反应速率的不同表示方式及其相互关系。

理解反应进度的意义。

掌握转化率、收率和选择性的概念及其在反应器设计计算中的应用。

理解温度和浓度对反应速率的影响。

掌握速率议程的变换与应用。

理解可逆反应、平行反应及连串反应的动力学特征。

掌握复合反应系统反应组分的转化速率或生成速率的计算方法。

了解多相催化作用和固体催化剂,理解气体在固体催化剂表面上的吸附及吸附等温线,掌握定态近似及速率控制概念,学会推导多相催化反应速率方程的方法。

理解用实验确定反应速率方程的方法,及用实验数据对动力学参数
估值。

2.反应器内的流体流动
理解流动系统停留时间分布的意义及其数学表达式。

掌握停留时间分布的实验测定方法。

理解和会用全混流反应器和活塞流反应器的停留时间分布的表达式,理解反应器偏离理想流动的原因。

掌握返混的概念。

理解多釜串联模型、轴向扩散模型和离析流模型的物理含义和数学模型建立的基本思路,能根据反应器停留时间分布的实验测定数据,确定模型参数。

理解等温非理想反应器进行简单反应时最终转化率的计算方法。

了解流体的微观混合与宏观混合,及其对流动反应器转化率的影响。

3. 均相理想反应器
了解反应器的基本类型。

理解反应器的操作方式,定态操作与非定态操作。

理解反应器守恒方程的建立方法。

了解反应器工业放大方法。

理解多相催化反应过程的步骤和判断速率控制步骤。

了解流体与催化剂颗粒外表面间的传质和传热对多相催化反应速率及选择性的影响。

了解外扩散有效因子的概念。

理解气体在多孔颗粒中的扩散类型及有效系数的概念。

掌握等温多孔催化剂上气相反应扩散微分方程的建立和求解方法。

掌握内扩散有效因子的概念及一级反应内扩散有效因子的计算。

了解非一级反应内扩散有效因子的估算方法。

了解外扩散有效因子的概念。

4. 间歇反应器
掌握等温间歇反应器反应时间的计算方法,及由操作时间确定反应体积的方法。

理解变温间歇反应器反应时间的计算。

了解反应器工业放大方法。

5. 非均相反应动力学
深入理解全混流模型和活塞流(平推流)模型的意义,牢固掌握其在流动反应器设计计算中的应用。

理解流动反应器反应体积、空时
和空速的概念及其应用。

掌握定态下全混流反应器反应体积及反应物颁布的计算方法,以及定态下串联或并联操作的全混流反应器的计算。

根据化学反应的不同类型能正确地选择全混流反应器的连接方式,加料方式,原料浓度及操作温度。

掌握全混流反应器热量衡算式的建立及应用。

了解全混流反应器的多定态特性,着火点和熄火点。

掌握等温活塞流反应器热量衡算式的建立及应用。

能根据化学反应的特点选择活塞流反应器的最佳操作温度条件,掌握绝热和非绝热活塞反应器的反应体积及反应产物分布的计算方法。

能根据化学反应的类型选定活塞流反应器的加方式、原料浓度及温度。

了解循环反应器的特征和计算方法。

6. 非均相反应器
理解固定床自由化反应器的主要类型及其结构特点。

掌握固定床压力降的计算方法。

了解固定床的轴向与径向传热和传质。

掌握固定床催化反应器拟均相活塞流模型方程的建立和应用。

理解考虑内扩散影响时的计算方法。

掌握绝热式固定床催化反应器催化剂用量的计算方法。

了解多段绝热式固定床催化反应的优化原则。

掌握换热式固定床催化反应器床层轴向温度的变化规律及其影响因素和利用热点的位置变动判断反应器操作工况。

了解换热式固定床催化反应器的设计优化问题,参数敏感性问题以及飞温和失控现象。

了解自热式固定床催化反应器的操作工况。

了解液化床催化反应器的主要结构及操作,两相理论的概念及床层中气泡行为。

了解实验室反应器的主要类型及其特点。

五、有关教学环节的要求
本课程要求学完基础化学、化工原理后进行。

建议使用闭卷的考核方法。

六、学时分配建议
章节主要内容
各教学环节学时分配作业
题量

注讲













第一章绪论6第二章均相反应动力学12
第三章反应器内的流体流

14
第四章均相理想流动反应

12
第五章非均相反应动力学12
第六章非均相反应器12
合计68
七、建议教材及主要教学参考书
刘军化学反应工程. 北京:化学工业出版社,2000年。

相关文档
最新文档