管理运筹学课后习题答案

合集下载

管理运筹学第三版课后答案

管理运筹学第三版课后答案

管理运筹学第三版课后答案【篇一:管理运筹学(第三版)课后习题答案】ss=txt>1、解:ax= 150 x= 7012目标函数最优值 103000b 1,3 使用完2,4 没用完 0,330,0,15c 50,0,200,0含义: 1 车间每增加 1 工时,总利润增加 50 元3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。

d 3 车间,因为增加的利润最大e 在 400 到正无穷的范围内变化,最优产品的组合不变f 不变因为在 [0,500]的范围内g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条j 不发生变化允许增加的百分比与允许减少的百分比之和没有超出100% k 发生变化 2、解:a 4000 10000 62000b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0约束条件 3 为大于等于,故其剩余变量为 700000 d 当 c不变时,c在 3.75 到正无穷的范围内变化,最优解不变21当 c不变时, c在负无穷到 6.4 的范围内变化,最优解不变12e 约束条件 1 的右边值在 [780000,1500000]变化,对偶价格仍为0.057(其他同理)f 不能,理由见百分之一百法则二 3 、解:a 18000 3000 102000 153000b 总投资额的松弛变量为 0基金 b 的投资额的剩余变量为 0c 总投资额每增加 1 个单位,回报额增加 0.1基金 b 的投资额每增加 1 个单位,回报额下降 0.06 d c不变时, c 在负无穷到 10 的范围内变化,其最优解不变12c不变时, c在 2 到正无穷的范围内变化,其最优解不变21e 约束条件 1 的右边值在 300000 到正无穷的范围内变化,对偶价格仍为 0.1约束条件 2 的右边值在 0 到 1200000 的范围内变化,对偶价格仍为-0.06 + = 100% 故对偶价格不变900000 900000 f4、解:a x=1x= 1.52x= 03x= 1 最优目标函数 18.548.5b 约束条件 2 和 3 对偶价格为 2 和 3.5c 选择约束条件 3,最优目标函数值 22d 在负无穷到 5.5 的范围内变化,其最优解不变,但此时最优目标函数值变化e 在 0 到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化 5、解:a 约束条件 2 的右边值增加 1 个单位,目标函数值将增加 3.622b 才有可能大于零或生产2c 根据百分之一百法则判定,最优解不变15 65d + 100 % 根据百分之一百法则二,我们不能判定? 30 ? 9.189因为111.25 15其对偶价格是否有变化第 4 章线性规划在工商管理中的应用1、解:为了用最少的原材料得到 10 台锅炉,需要混合使用 14 种下料方4286398505479691180剩余758设按 14 种方案下料的原材料的根数分别为 x1,x2,x3,x4,x5,x6,x7,x8,x9, x10,x11,x12,x13,x14,则可列出下面的数学模型: min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4 ≥ 80x2+3x5+2x6+2x7+x8+x9+x10≥ 350 x3+x6+2x8+x9+3x11+x12+x13≥ 420x4+x7+x9+2x10+x12+2x13+3x14 ≥ 10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥ 0 用管理运筹学软件我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0, x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333 最优值为 300。

《管理运筹学》第四版课后习题

《管理运筹学》第四版课后习题

《管理运筹学》第四版课后习题答案第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解3.解:(1)标准形式(2)标准形式(3)标准形式4.解: 标准形式松弛变量(0,0) 最优解为 ,x 2=3/2。

5.解:标准形式剩余变量(0, 0, 13) 最优解为 x 1=1,x2=5。

6.解:(1)最优解为 x 1=3,x 2=7。

(2(3 (4(5)最优解为 x 1=8,x 2(61,所以最优解不变。

7.解:设x ,y 分别为甲、乙两种柜的日产量,目标函数z=200x +240y , 线性约束条件:即作出可行域.解⎩⎨⎧=+=+162202y x y x 得)8,4(Q 272082404200=⨯+⨯=最大z答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积zm2. +2y , 线性约束条件: ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027315212y x y x y x y x 作出可行域,并做一组一组平行直线x +2y=t .解⎩⎨⎧=+=+12273y x y x 得)2/15,2/9(E.但E 不是可行域内的整点,在可行域的整点中,点)8,4(使z 取得最小值。

答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.9.解:设用甲种规格原料x 张,乙种规格原料y 张,所用原料的总面积是zm 2,目标函数z=3x +2y ⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+003222y x y x y x 作出可行域.作一组平等直线3x +2y=t . 解⎩⎨⎧=+=+3222y x y x 得)3/1,3/4(CC 不是整点,C 不是最优解.在可行域内的整点中,点B(1,1)使z 取得最小值. z 最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m 2.10.解:设租用大卡车x 辆,农用车y 辆,最低运费为z 元.目标函数为z=960x +360y .线性约束条件是⎪⎩⎪⎨⎧≥+≤≤≤≤1005.28200100y x y x 作出可行域,并作直线960x +360y=0. 即8x +3y=0,向上平移由⎩⎨⎧=+=1005.2810y x x 得最佳点为()10,8作直线960x +360y=0. 即8x +3y=0,向上平移至过点B(10,8)时,z=960x +360y 取到最小值.z 最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.11.解:设圆桌和衣柜的生产件数分别为x 、y ,所获利润为z ,则z=6x +10y .⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001400728002y x y x y x 作出可行域.平移6x +10y=0 ,如图⎩⎨⎧=+=+1400728002y x y x 得⎩⎨⎧==100350y x 即C(350,100).当直线6x +10y=0即3x +5y=0平移到经过点C(350,100)时,z=6x +10y 最大12.解:模型12max 500400z x x =+ 1211121223003540224401.2 1.5300,0x x x x x x x x ++≤≤≤≤≥(1)1150x =,270x =,即目标函数最优值是103 000。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

精选⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解 x =12, x = 15 1727图2-1;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解 ⎧x 1 = 0.2,函数值为3.6。

⎩x 2图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

⎨ (5)无穷多解。

⎧x = (6)有唯一解 ⎪ 1⎪ 203 ,函数值为 92 。

8 3 x = ⎪⎩ 2 33.解: (1)标准形式max f = 3x 1 + 2x 2 + 0s 1 + 0s 2 + 0s 39x 1 + 2x 2 + s 1 = 303x 1 + 2x 2 + s 2 = 13 2x 1 + 2x 2 + s 3 = 9x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f = 4x 1 + 6x 2 + 0s 1 + 0s 23x 1 - x 2 - s 1 = 6 x 1 + 2x 2 + s 2 = 10 7x 1 - 6x 2 = 4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min f = x 1' - 2x 2' + 2x 2'' + 0s 1 + 0s 2-3x 1 + 5x 2' - 5x 2'' + s 1 = 70 2x 1' - 5x 2' + 5x 2'' = 50 3x 1' + 2x 2' - 2x 2'' - s 2 = 30 x 1', x 2' , x 2'' , s 1, s 2 ≥4.解: 标准形式max z = 10x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4x 2 + s 1 = 9 5x 1 + 2x 2 + s 2 = 8 x 1, x 2 , s 1, s 2 ≥ 0≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

管理运筹学课后习题答案

管理运筹学课后习题答案

管理运筹学课后习题答案管理运筹学课后习题答案一、线性规划线性规划是管理运筹学中的一种重要方法,它通过建立数学模型,寻找最优解来解决实际问题。

下面我们来讨论一些常见的线性规划习题。

1. 一家工厂生产两种产品A和B,每单位产品A需要3小时的加工时间和2小时的装配时间,每单位产品B需要2小时的加工时间和4小时的装配时间。

工厂每天有8小时的加工时间和10小时的装配时间。

已知产品A的利润为300元,产品B的利润为400元。

如何安排生产,使得利润最大化?解答:设生产产品A的数量为x,生产产品B的数量为y。

根据题目中的条件,可以得到以下线性规划模型:目标函数:max 300x + 400y约束条件:3x + 2y ≤ 82x + 4y ≤ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即生产4个产品A和1个产品B时,利润最大化,为2000元。

2. 一家超市有两种品牌的洗衣液,品牌A和品牌B。

品牌A每瓶售价20元,每瓶利润为5元;品牌B每瓶售价25元,每瓶利润为7元。

超市每天销售洗衣液的总利润不能超过100元,并且每天至少要销售10瓶洗衣液。

如何安排销售,使得利润最大化?解答:设销售品牌A的瓶数为x,销售品牌B的瓶数为y。

根据题目中的条件,可以得到以下线性规划模型:目标函数:max 5x + 7y约束条件:20x + 25y ≤ 100x + y ≥ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即销售5瓶品牌A和5瓶品牌B时,利润最大化,为60元。

二、排队论排队论是管理运筹学中研究排队系统的一种方法,它通过数学模型和概率统计来分析和优化排队系统。

下面我们来讨论一些常见的排队论习题。

1. 一家银行有两个窗口,每个窗口的服务时间服从指数分布,平均服务时间分别为3分钟和4分钟。

顾客到达的间隔时间也服从指数分布,平均间隔时间为2分钟。

如果顾客到达时,两个窗口都有空闲,顾客会随机选择一个窗口进行服务。

《管理运筹学》课后习题答案

《管理运筹学》课后习题答案
4.解:设白天调查的有孩子的家庭的户数为x11,白天调查的无孩子的家庭的户数为x12,晚上调查的有孩子的家庭的户数为x21,晚上调查的无孩子的家庭的户数为x22,则可建立下面的数学模型:
min f=25x11+20x12+30x21+24x22
s.t.x11+x12+x21+x22 2000
x11+x12=x21+x22
约束条件2:年回报额增加1个单位,风险系数升高2.167;
约束条件3:基金B的投资额增加1个单位,风险系数不变。
(3)约束条件1的松弛变量是0,表示投资额正好为1200000;约束条件2的剩余变量是0,表示投资回报率正好是60000;约束条件3的松弛变量为700000,表示投资B基金的投资额为370000。
总成本最小为264元,能比第一问节省:320-264=56元。
3.解:设生产A、B、C三种产品的数量分别为x1,x2,x3,则可建立下面的
数学模型:
max z=10 x1+12x2+14x3
s.t. x1+1.5x2+4x3 2000
2x1+1.2x2+x3 1000
x1 200
x2 250
x3 100
3.解:
(1).式:
4.解:
标准形式:
松弛变量(0,0)
最优解为 =1,x =3/2.
5.解:
标准形式:
剩余变量(0.0.13)
最优解为x1=1,x2=5.
6.解:
(1)最优解为x1=3,x2=7.
(2)
(3)
(4)
(5)最优解为x1=8,x2=0.
(6)不变化。因为当斜率 ,最优解不变,变化后斜率为1,所以最优解不变.
(5)约束条件1的右边值在300000到正无穷的范围内变化,对偶价格仍为0.1;

管理运筹学课后习题答案

管理运筹学课后习题答案

第2章 线性规划的图解法1.解:x`A 1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B 点, 最优解:1x =712,7152=x 。

最优目标函数值:7692.解: x 2 10 1(1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。

(2) 无可行解 (3) 无界解 (4) 无可行解 (5)无穷多解(6) 有唯一解 3832021==x x ,函数值为392。

3.解:(1). 标准形式:3212100023m ax s s s x x f ++++=,,,,9221323302932121321221121≥=++=++=++s s s x x s x x s x x s x x(2). 标准形式:21210064m in s s x x f +++=,,,46710263212121221121≥=-=++=--s s x x x x s x x s x x(3). 标准形式:21''2'2'10022m in s s x x x f +++-=,,,,30223505527055321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x4.解:标准形式:212100510m ax s s x x z +++=,,,8259432121221121≥=++=++s s x x s x x s x x松弛变量(0,0) 最优解为 1x =1,x 2=3/2.标准形式:32121000811m in s s s x x f ++++=,,,,369418332021032121321221121≥=-+=-+=-+s s s x x s x x s x x s x x剩余变量(0.0.13) 最优解为 x 1=1,x 2=5.6.解:(1) 最优解为 x 1=3,x 2=7. (2) 311<<c (3) 622<<c (4)4621==x x(5) 最优解为 x 1=8,x 2=0. (6) 不变化。

管理运筹学 第三版 (韩伯棠) 高等教育出版社 课后参考答案

管理运筹学 第三版 (韩伯棠) 高等教育出版社 课后参考答案

表 4-1 各种下料方式
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 640 mm
21110000000000
1 770 mm
01003221110000
1 650 mm
00100102103210
1 440 mm
00010010120123
min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4≥80
max z = 10x1 + 5x2 + 0s1 + 0s2 3x1 + 4x2 + s1 = 9 5x1 + 2x2 + s2 = 8 x1, x2, s1, s2 ≥ 0 松弛变量(0,0)
最优解为 x1 =1,x2=3/2。
5.解:
678
标准形式
min f = 11x1 + 8x2 + 0s1 + 0s2 + 0s3
1.解: (1) x1 = 150 , x2 = 70 ;目标函数最优值 103 000。 (2)1、3 车间的加工工时数已使用完;2、4 车间的加工工时数没用完;没用完的加工工时 数为 2 车间 330 小时,4 车间 15 小时。 (3)50,0,200,0。 含义:1 车间每增加 1 工时,总利润增加 50 元;3 车间每增加 1 工时,总利润增加 200 元; 2 车间与 4 车间每增加一个工时,总利润不增加。 (4)3 车间,因为增加的利润最大。 (5)在 400 到正无穷的范围内变化,最优产品的组合不变。
(2)这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班次。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案
元;2 车间 与 4 车间 每增加一个工 时,总利 润不增加。
(4)3 车间 ,因为增加的利 润最大。
(5)在400 到正无 穷的范 围内 变化,最优产 品的 组合不 变。
(6)不变,因为在 0,500 的范 围内。
(7)所谓的上限和下限 值指当 约束条件的右 边值 在 给定范 围 内变化 时,约束条件 1 的右 边值 在 200,440 变化,对 偶价格仍 为 50(同理解释 其他 约 束条件)。
当 c1 不变时 ,c2 在 负无穷 到 6.4 的范 围内变 化,最优 解不 变。 (5)约 束条件 1 的右 边值 在 780 000,1500 000 变化,对偶价格仍 为 0.057(其他同理) 。 (6)不能,因为允 许减少的百分比与允 许 增加的百分比之和 4 2 100% ,理由
4.25 3.6
11.解: 设圆 桌和衣柜的生 产件数分 别为 x、y,所获 利润为 z,则 z=6x+10y.
0.18x 0.08x
x0 y0
0.09 y 0.28 y
72 2x y 800
56 2x 7 y 即 x0
1400 作出可行域.平移 6x+ 10y=0 ,如图
y0
2x y 800
x 350

即 C(350,100) .当直线 6x+ 10y=0 即 3x+ 5y=0 平移
x1
0.2
,函数值为 3.6。
x2 0.6
图 2-2
(2)无可行解。 (3)无界解。 (4)无可行解。
(5)无穷多解。
x1
(6)有唯一解
x2
20
3 ,函数值为 92 。
8
3
3
3.解: (1)标 准形式
max f 3x1 2x2 0s1 0s2 0s3

《管理运筹学》第三版(韩伯棠 )课后习题答案 高等教育出版社

《管理运筹学》第三版(韩伯棠 )课后习题答案  高等教育出版社
x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0, x10=0,x11=0 最优值为 320。
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
50xa + 100xb ≤ 1200000 5xa + 4xb ≥ 60000 100xb ≥ 300000 xa , xb ≥ 0 基金 a,b 分别为 4000,10000。 回报率:60000
b 模型变为: max z = 5xa + 4xb
50xa + 100xb ≤ 1200000 100xb ≥ 300000 xa , xb ≥ 0
xi ≥ 0, yi ≥ 0 i=1,2,…,11
稍微变形后,用管理运筹学软件求解可得:总成本最小为 264 元。 安排如下:y1=8( 即在此时间段安排 8 个 3 小时的班),y3=1,y5=1,y7=4,x8=6 这样能比第一问节省:320-264=56 元。
x2+x3+x4+x5+1 ≥ 3 x3+x4+x5+x6+2 ≥ 3 x4+x5+x6+x7+1 ≥ 6 x5+x6+x7+x8+2 ≥ 12 x6+x7+x8+x9+2 ≥ 12 x7+x8+x9+x10+1 ≥ 7 x8+x9+x10+x11+1 ≥ 7 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥ 0 用管理运筹学软件我们可以求得此问题的解为:
b、 这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班 次。
约束 -------
1 2 3 4 5 6 7 8 9 10 11

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

管理运筹学》-第四版课后习题答案.docx

管理运筹学》-第四版课后习题答案.docx

.《管理运筹学》第四版课后习题解析(上)第 2 章线性规划的图解法1.解:(1)可行域为 OABC。

(2)等值线为图中虚线部分。

()由图2-1可知,最优解为 B 点,最优解x=12,69。

315;最优目标函数值7x1277图 2-12.解:x10.2( 1)如图 2-2 所示,由图解法可知有唯一解,函数值为 3.6 。

x20.6图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

word 资料.( 5)无穷多解。

x2092( 6)有唯一解3,函数值为。

183x2 33.解:( 1)标准形式maxf 3 12x2010s20s3 x s9 x12x2s1303x12x2s2132 x12x2s39x1,x2, s1,s2,s3≥0( 2)标准形式min f4x16x20 s10s23x1x2s16x1 2 x2s2107 x16x24x1, x2, s1, s2≥0( 3)标准形式min f x12x22x20 s10s23x15x25x2s1702 x15x25x2503x1 2 x2 2 x2s230x1, x2, x2, s1 , s2≥ 04.解:标准形式max z10 x15x20 s10s2word 资料.3x14x2s195 x12x2s28x1, x2, s1, s2≥0word 资料.松弛变量( 0,0)最优解为 x 1 =1,x 2=3/2 。

5.解: 标准形式min f11x 18 x 20 s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4 x 19x 2s 336x 1, x 2 , s 1 , s 2 , s 3 ≥ 0剩余变量( 0, 0, 13 )最优解为 x 1=1,x 2=5。

6.解:( 1)最优解为 x 1=3,x 2=7。

( 2) 1 c 1 3 。

( 3) 2 c 26 。

( 4)x 16。

x 24。

( 5)最优解为 x 1=8,x 2=0。

《管理运筹学》课后习题参考标准答案

《管理运筹学》课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。

当无界解与没有可行解时,可能就是建模时有错。

3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解 x=12, x15 1727图2-1;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解 x 10.2,函数值为3.6。

x 2图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

⎨ (5)无穷多解。

x(6)有唯一解 120 3,函数值为 92 。

8 3x2 33.解:(1)标准形式max f3x 12x 20s 10s 20s 39x 1 2x 2 s 1 30 3x 1 2x 2 s 2 13 2x 12x 2s 39x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f4x 16x 20s 10s 23x 1x 2 s 16 x 12x 2s 210 7x 16x 2 4x 1,x 2, s 1, s 2 ≥ 0(3)标准形式min fx 12x 22x 20s 1 0s 23x 15x25x 2s 170 2x15x 25x 250 3x 12x 22x 2s 230x 1, x 2, x 2, s 1, s 2 ≥ 04.解: 标准形式max z10x 15x 20s 10s 23x 1 4x 2s915x1 2x 2 s2 8 x, x2 , s1, s2 ≥01≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

5.解: 标准形式min f11x 18x 20s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4x 19x 2s 336x 1, x 2 , s 1, s 2 , s 3 ≥ 0剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。

6.解:(1)最优解为 x 1=3,x 2=7。

《管理运筹学》第四版课后习题答案解析

《管理运筹学》第四版课后习题答案解析

范文范例 指导参考学习资料整理《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1 •解:(1) 可行域为OABC (2) 等值线为图中虚线部分。

(3) 由图2-1可知,最优解为B 点,最优解Lx = 12_,最优目标函数值_69157x1727(1) 如图2-2所示,由图解法可知有唯一解x 2 = 0.62•解: (2) 无可行解。

(3) 无界解。

(4) 无可行解。

0.2,函数值为3.6范文范例指导参考(5)无穷多解3•解: (1)标准形式max f3x i2x 20S i0S 20S 39x i 2x 2 S i 303x i 2x 2 S 2 i32x i2x 2S 39x i , X 2 , S i , S 2 , S 3 > 0(2) 标准形式(3) 标准形式4•解: 标准形式max z10 x i5X 20S i0S 2x(6)有唯一解20|,函数值为3 924x 16x 20s 10 S 23x iX 2S i6 X i2X 2S2i0 7x i6x 24X i , X 2 ,S i , S 2》02x 2 0s i O S 23x i5X 2 5X 2S i 702x i5x 25x 2503x i 2x 22x 2S 2 30s 1, s 2 > 0min fmin fx i 2x 2 X i , X 2X 2范文范例指导参考3X i4X2S195x i2X2S2X i,X2 ,S1, S2> 0学习资料整理松弛变量(0, 0) 最优解为x i =1, x 2=3/2。

5•解: 标准形式min f 11x i 8x 2O s iO S 2O S 310x i 2X 2 S i 20 3x i 3X 2 S 2 18 4x 19x 2S 3 36X i ,S1 , S2 ,S 3 > 0剩余变量(0, 0, 13 ) 最优解为x i =1,X 2=5。

管理运筹学整理答案(DOC)精选全文完整版

管理运筹学整理答案(DOC)精选全文完整版

可编辑修改精选全文完整版第二章2.5 表2-3为用单纯形法计算时某一步的表格。

已知该线性规划的目标函数为12max 53z x x =+,约束形式为≤,34,x x 为松弛变量,表中解代入目标函数后得10z =。

(1)求a ~g 的值;(2)表中给出的解是否为最优解。

解:a=2,b=0,c=0,d=1,e=4/5,f=0,g=5;表中给出的解为最优解。

2.6 表2-4中给出某求最大化线性规划问题的初始单纯形表及迭代后的表,45,x x 为松弛变量,求表中a ~l 的值及各变量下标m ~t 的值。

解:a=-3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=-5,k=3/2,l=0;变量的下标为m—4,n—5,s—1,t—62.10 下述线性规划问题:要求根据以上信息确定三种资源各自的影子价格。

2.11 某单位加工制作100套工架,每套工架需用长为2.9m 、2.1m 和1.5m 的圆钢各一根。

已知原材料长7.4m 。

问如何下料使得所用的原材料最省?解:简单分析可知,在每一根原材料上各截取一根2.9m,2.lm 和1.5m 的圆钢做成一套工架,每根原材料剩下料头0.9m ,要完成100套工架,就需要用100根原材料,共剩余90m 料头。

若采用套截方案,则可以节省原材料,下面给出了几种可能的套截方案,如表2-5所示。

实际中,为了保证完成这100套工架,使所用原材料最省,可以混合使用各种下料方案。

设按方案A,B,C,D,E 下料的原材料数分别为x 1,x 2,x 3,x 4,x 5,根据表2-5可以得到下面的线性规划模型123451243451235min 00.10.20.30.8210022100..3231000,1,2,3,4,5i z x x x x x x x x x x x s t x x x x x i =++++++=⎧⎪++=⎪⎨+++=⎪⎪≥=⎩用大M 法求解此模型的过程如表2-6所示,最优解为:x *=(0,40,30,20,0)T ,最优值为z*=16。

《管理运筹学》(第二版)课后习题参考答案(2020年7月整理).pdf

《管理运筹学》(第二版)课后习题参考答案(2020年7月整理).pdf

max Z = 2.7x1 + 3x2 + 4.5x3 + 2.5x4 + 3x5
3x1 + 4x2 + 6x3 + 2x4 + 3x5 3600
s.t.
42xx11
+ +
3x2 3x2
+ +
5x3 3x3
+ +
6x4 4x4
+ +
4x5 3x5
3950 2800
xi 0,i = 1,2,,5
通过 LINGO 软件计算得: x1 = 0, x2 = 38, x3 = 254, x4 = 0, x5 = 642, Z = 3181 .
11.某厂生产甲、乙、丙三种产品,分别经过 A,B,C 三种设备加工。已知生产
单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表 2—10 所示。
《管理运筹学》(第二版)课后习题参考答案
第 1 章 线性规划(复习思考题)
1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是 应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化 工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决 策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条 件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的 线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项 bi 0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业 来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束 的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件 AX = b,X 0 的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0后退" 地址匹Ihi ip://wvw.doc in. c om/p-34224062, html笫2章线性规划的图解法a 可行城为OABCb •聲值线为图中W 线所示。

C.IIIRH 可知.加优解为B 点,衆优M : x, = y x 2 = y , 69 〒文件匕)編辑电)查看电)版藏逻 工具① 帮址优JI 杯沥数们:b 无可行解C 无界斛 d 无可行解 e 尢穷多解20戈厂三92 f 冇唯一解 ?两数值为学833、Vha 标准形式:max / = 3® + 2r 2 + 0打 + 0s 2 + 0%max / = 一4* 一 6X 3 - 0刁-0孔v =()2冇呱一解宀―“函数值为3.6 x 2 ■ 0.63勺 _ 兀2 一 B ■ 6X] + 2X2+s2 = 107.v1 - 6A2二 4f汕』2 2 0C标准形式:max f =-・i; + 2.v s一2x; - 0片 - Qs2-a— + 5X2-5A* +斗二70 2A; -5.Vj + 5xj 二503x\ + 2x z一2r; - s2 =- 30 f 2 ,*2,®,*2 2 °4、斡标浪形式:max c = 10A(十5.v2十0、十0.T23\ + 4.V2 +耳二95x1 + 2X2 +52 = 8兀“工2・亠» 05 .餅:标ME形式:min f - 11xj + + 5 + O.v2 + O.v310A,+2X2 - 51— 20 3.V, + 3.V2-s2=18 4x1 + 9X2一内=36斗=0,y2 =0,^ = 136 >贻b 1 s q 兰 3 c2Sq S6x2 = 4e 斗G(4,8)x2 = 16 -2v12f变化。

廉斜率从-彳变为-17、解:<•*.-:max - = 500\-] + 400A-22v, V 3003$W5402—十2$s4401.Zu +1.5A2 S 300占,七2 0a A t = 150 =70即H标曲数Ai优值是1 «IXIbZ 4右剩余.分别是336 15。

均为松弛变址C50. 0 , 200, 0 额外利涓250d仕[0,500]变化,蝕优解不变。

e 4400到正无穷变化.赧优解不变。

f不变8 .朴a 模型:nin f = & j 450.v ti +100® <1200000CUXI100A;. >300000儿心20草金ab分別为>iooo・ ioooo.回报率:6b模塑变为:max--丸■+ 4斗50*+100.2200000100 心 2 300000推H血= 16000 A2 =3000故早金a投缺90力「旱金b投蜀30力。

第3章线性规划问题的计算机求解a X, -150 巾・兀II标函数赧优伍103000b 1. 3使用完 2. 4没用完0. 330, 0- 15c 50, 0. 200. 0含义:1车间每増加1工时.总利润増加50元3车间毎增加1 丁时.总利洞増加200元2、4车间每增加1工时,总利润不增加.d 3车间.因为均加的利润加大e 4 400到止无穷的范HI内变牝.赧优产品的纽合不变f不变因为在[0,500]的范帼内g所谓的上限和卜限值指当约來条件的右边位4给定范出内变化时,约束条 4 1的君边血在[20Q440]变化.对世价格仍为50(同卵解好真他約柬条件)h 100 X50=5000对偶价恪不变I能j不发生变化允许增加的市分比与允许减少的帀分比之和没冇超出100%k发生变化2、解:a 4000 10000b约朿条件1;总投资额增加1个单位,风4系数则降低QO57 约束条件2:年回报额増加1个单位.风险系數升岛2167C约束条件1的松弛变虽楚0.约束条件2的剰余变虽是0约人条件3为人「等几故虛剩余变扯为700000d半-不变时•门在375到正无穷的范M内变化.绘优解不变半U不变时.。

在负无穷到6.4的范用内变化.报优解不变e约山条件1的右边值在[780000,1500000]变化,对偶价恪仍为0.057 (其他同理)f不能•理由见乔分之一乔法则二3、外Kim3000 1 153000b0 棊金b的投淡额的剩余变屋为0C总投资额每增加1个单位.回报额増加0.1基金b的投资额每增加1个单位.回报额卜•降0.06d q不变时.:在负无穷到10的范用内变化.其呆优解不变。

不变时.G在2到正无穷的范圉内变化,口垃优解不变e 约朿条件1的乳边位A 300000到止无穷的范川内变化.对俶价格仍为0.1约爪条什2的右边值在0到1200000的范用内变化.对偶价格仍为・0・05600000 t 300000 900000 900000 4、解;b 约束条件2和3对偶价搭为2和3・5C 选择约束条件3俎优口标函数值22d 在负无穷到55的范围内变化■其最优解不变,但此时垠优目标函数值变化e 在0到圧无穷的范用内变化.兀赧优解不变.但此时绘优H 标函数值畫化 5、虬a 约朿条件2的右边他増加1个单位,H 标函数他将増加3622b E 产骷的利润提高到0.7O3W 对能人J •冬或生产 C 根据百分Z —百法则判定.赧比解不炎d 因为“殳《 +…黛 亡"00%根据白分之一百法则二我们不能判定30-9.189 111.25-15其对偶价格是否有变化第4章 线性规划在工商管理中的应用k 解:为了用最少的原材料須到10台锅炉,需要混合使用14种下料方案7•案 规补、1 2 3 4 5 6 7 2640 2 1 1 1 0 00 1770 0 1 0 0 3 22 1651 0 0 1 0 0 1 0 14400 0 0 1 0 0 1 合计 5280 4410 4291 4080 5310 5191 4980 剩氽 220 1090 1209 1420 190 aoe 520 案 規泊、8 910 11 12 13142640 0 0 0 0 0 0 0 1770 1 1 1 0 0 0 0 1651 2 1 0 3 2 1 0 14400 1 2 0 1 2 3 合计 5072 4861 4650 4953 4742 4531 4320 剩余4286398505477589691180= 100%故对偶价挤不变a x t = 85 x 2 = 1.5 x 3 = 0斗=1杲优H 标函数18.5设按14种方案下料的原材料的根数分别为X. X2*畑・S3 X7,畑陌X10. X1V M2・Q3・则可列出下面的数学模型:min /=出・"+弋3+・“+丫5七丫6+丫7+“+・丫9+・“0+"1+・"汁"3+*啊s. t. 2V1+A2+X3+J4 事80应+3巧+2$十2T7+・Y8十皿+MO M 350入3+・丫6+2丫8+玄9+3“1十乳12+・心3》420A4 + X7+X9+2D0+X12 + 2V13+3D4 A 10X2» -V3r X4・ X5. X6・-Vy XQ9 Xg. X12・・"3・曲4》0用管理运筹学轶件我们可以求得此问題的解为:X\= 40・ X2=0« A*3=0> A*4 = 0» A*5=116-667» A6=0» X7=0» -V8=0»X9=0< A-1O = O» Xn=140» -Vi2 = 0t A*13 = O» X14 = 3.333垠优值为3002、解:从上午11时到下午10时分成11个班次.设禺表示第I班次安幷的临时工的人数,则可列出下面的数学模型:min f = 16 ai+.s.gg+xs+M.gvMxg+xi叶m)s. t. xi + 1 $ 9Xi +x2+1 M 9xi +A2+.V3+2 N 9・D+々+・丫3+・*4+2 * 3A2+-V3+.V4+-V54-1 2 3 *3 斗"+玄5+兀6 + 2 I 3 X|4•耳M 6-V5+-V6+-V74-.V8+2 M 12・臼十耳8+也+曲()+1 3 7庇+旳+戈io+・Vn + 1 M 7X1I X2» X3» X4» X5> X6・ X7» X8«心0・ X11> 0用竹珅•运好学飲件我们可以求得此问通的解为!Xi=8» .V2 = 0» Xj=1» -V4= 1» -V5,=0» .Vo = 4r A?7=0» -V^=6»X^ — 0f xio=0・ xii=0 赧优值为320,a、在满足对职丁帝求的条件「在10时安捋8个I临时工・12时新安幷T 个临时工,13时舫安扌II 1个临时工,15时斩安扑4个临时工,17时新安排6个临时工可便临时工的总成本城小,b、这时付给临时工的工沟总颁为80元.一井而耍安II 20个临时丁的用次。

约束处弛/朝余变呈对偶价俗1 0 ・42 0 03 2 04 9 0・456 5 07 0 08 0 09 0 ■410 0 011 0 0根据剩余变量的数字分析可知.可以让笛时安井的8个人工作3小时.13 时安扌1的1个人工作3小时.可便得总成本史小.C、设在1h 00-12: 00这段时间内彳jx,个皿圧4小时,X个班定3小时:”个班是3小时:口他时设在12: 00-13: 00这段时间内冇勺个班址4小时,段也类似.则:山遞意可紂如下式子:11 (・1711113=1622x^1252^#-1 ES. T・ 12 9x y 4- y, + x2 + y2 +1 > 9x y + >t十x2 + y2 + x3 + y3 +1 +1 9 x1 + x2 4- y2 + x3 + y3 + x4 + j4+1+1^3 £ +心+ )1 +比+儿+也+比+ 123 勺+比+『4 + " +用+ *+片+ 1+1二3 x4+jf5 + y5 + x6 + y6 + x7 + >7+1^6 ^5 + ^ + ^ + ^7 + >7 + .18+y e + 1 +1^12 从+七事儿+丸亠” +心+儿+仃宀检x7 + ・v. + y e + x e + y9 + ・% + Fio +12 7 ^+^9+^+^10+^Q +^+^+1^ 7x^O.y, >0 i=1,2,…」1ffi微费形后,用管理运筹学软件求解可得:总成本it小为264元・安排如下* yi=8 (即在此时间段安幷8个3小时的班).V3=h ,v5=1. VT=4. A8=6这样能比第一问节省I 320264=56心3、解^设生产A> B、C三种产阳的数鱼分别为m 畑 g 则可列出下面的数学檢型:max Z=10XI +12X2+14X2s. t・.D +1・5I:2+4T3 W 20002VI +1.2V2+X3 W 1000q W 200 x2 W 250 x3 W 100Xn畑文3事0用悴珅运筹学软件我们町以求得此问世的解为:xi=200» X2=25O. A3=100报优值为6400,a>徃资源数就及市场容紫允许的条件下.牛产A 200 ft. B 250件.C 100 件.可使生产获利呆乡.b、A、B、C的市场容量的对偶价搭分别为10元,12元,14元。

相关文档
最新文档