高中物理必修二万有引力与航天知识点总结

合集下载

高中物理知识点万有引力与航天知识点总结

高中物理知识点万有引力与航天知识点总结

《高中物理万有引力与航天知识点总结》一、引言从远古时代人类对星空的仰望与好奇,到现代航天技术的飞速发展,万有引力与航天始终是人类探索宇宙的重要基石。

在高中物理中,万有引力与航天这一章节不仅涵盖了丰富的物理知识,还能激发同学们对宇宙奥秘的探索热情。

通过对这部分知识点的学习,我们可以更好地理解天体运动的规律,感受宇宙的宏大与神秘。

二、万有引力定律1. 内容万有引力定律是由牛顿发现的,其内容为:自然界中任何两个物体都相互吸引,引力的大小与这两个物体的质量的乘积成正比,与它们之间距离的平方成反比。

用公式表示为:F = Gm₁m₂/r²,其中F 是两个物体之间的引力,m₁、m₂分别是两个物体的质量,r 是两个物体之间的距离,G 是万有引力常量。

2. 万有引力常量 GG 的值是由卡文迪许通过扭秤实验测定的,其数值为 G =6.67×10⁻¹¹ N·m²/kg²。

万有引力常量的测定在物理学中具有重要意义,它使万有引力定律能够进行定量计算。

3. 适用范围万有引力定律适用于质点间的相互作用。

当两个物体间的距离远大于物体本身的大小时,物体可视为质点。

对于质量分布均匀的球体,也可以将其视为质量集中于球心的质点,此时两个球体间的万有引力可以用万有引力定律计算。

三、天体运动1. 开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

用公式表示为:a³/T² = k,其中 a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个与行星无关的常量,只与中心天体(太阳)的质量有关。

必修二物理万有引力与航天知识点总结

必修二物理万有引力与航天知识点总结

必修二物理万有引力与航天知识点总结学习物理知识不是为了背诵定义公式,更不是为了做题,物理的魅力在于是当把它运用到实际生活中去时,可以为你又快又好的解决实际问题。

下面是整理的必修二物理万有引力与航天知识点,仅供参考希望能够帮助到大家。

必修二物理万有引力与航天知识点一、知识点(一)行星的运动1地心说、日心说:内容区别、正误判断2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1万有引力定律:内容、表达式、适用范围2万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二重点考察内容、要求及方式1地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择) 3万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7经典力学的局限性:了解其局限性所在,适用范围(选择)物理学专业介绍物理学是研究物质运动最一般规律和物质基本结构的学科,它揭示物质产生、演化、转化和相互作用等方面的基本规律,涉及从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统,是自然科学的核心和工程技术的基础,并与社会学科具有很强的交叉性;本专业旨在培养掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力,能发展成为在物理学及其相关交叉学科的不同专业领域继续深造或在相应的科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。

(word完整版)高一物理必修二第六章《万有引力与航天》知识点总结,推荐文档.docx

(word完整版)高一物理必修二第六章《万有引力与航天》知识点总结,推荐文档.docx

万有引力与航天知识点总结一、人类认识天体运动的历史1、 “地心说 ”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、 “日心说 ”的内容及代表人物: 哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:v 近 v 远开普勒第三定律: K — 与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体a 地 3 = a 火 3 a 水 3 =......才可以列比例,太阳系:T 地 2 T 火 2=T 水 2三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

3F m42mmR K①r②F = 4π2K FFF ③r 2T 2T 2r 2FM FMm FG Mmr 2r 2r 22、表达式: F Gm 1m 2r 23、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2 的乘积成正比,与它们之间的距离r 的二次方成反比。

4.引力常量: G=6.67 ×10-11N/m 2/kg 2,牛顿发现万有引力定律后的 100 多年里, 卡文迪许 在实验室里用扭秤实验测出。

5、适用条件:①适用于两个质点间的万有引力大小的计算。

②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离 。

③一个均匀球体与球外一个质点的万有引力也适用,其中 r 为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时, 公式也近似的适用, 其中 r 为两物体质心间的距离。

6、推导: GmM4 2R 3GMR 2m2 RT 242T1四、万有引力定律的两个重要推1、在匀球的空腔内任意位置,点受到地壳万有引力的合力零。

2、在匀球体内部距离球心r ,点受到的万有引力就等于半径r 的球体的引力。

五、黄金代若已知星球表面的重力加速度g 和星球半径 R,忽略自的影响,星球物体的万有引力等于物体的重力,有 G Mmmg 所以 MgR2 R2G其中 GM gR2是在有关算中常用到的一个替关系,被称黄金替。

高一物理必修二第六章《万有引力与航天》知识点总结

高一物理必修二第六章《万有引力与航天》知识点总结

万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物:托勒密(欧多克斯、亚里士多德)2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:开普勒第三定律:K—与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

①②③2、表达式:3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r的二次方成反比。

4.引力常量:G=6.67×10-11N/m2/kg2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:①适用于两个质点间的万有引力大小的计算。

②对于质量分布均匀的球体,公式中的r就是它们球心之间的距离。

③一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r为两物体质心间的距离。

6、推导:四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r处,质点受到的万有引力就等于半径为r的球体的引力。

五、黄金代换若已知星球表面的重力加速度g和星球半径R,忽略自转的影响,则星球对物体的万有引力等于物体的重力,有所以其中是在有关计算中常用到的一个替换关系,被称为黄金替换。

导出:对于同一中心天体附近空间内有,即:环绕星体做圆周运动的向心加速度就是该点的重力加速度。

六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

设双星的两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M1:M2:相同的有:周期,角速度,向心力,因为,所以轨道半径之比与双星质量之比相反:线速度之比与质量比相反:七、宇宙航行:1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……3、卫星轨道:可以是圆轨道,也可以是椭圆轨道。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结万有引力是指任何两个物体之间都存在着一种相互吸引的力,这种力的大小与两个物体的质量和它们之间的距离有关。

在航天领域,对于万有引力的理解和应用至关重要。

本文将从万有引力的基本概念出发,结合航天知识点,对其进行总结和探讨。

首先,我们来看一下万有引力的公式,F=G(m1m2)/r^2。

其中,F代表物体之间的引力,G代表万有引力常量,m1和m2分别代表两个物体的质量,r代表它们之间的距离。

这个公式揭示了万有引力与质量和距离的关系,也为航天领域的计算和设计提供了重要的理论基础。

在航天领域,我们经常要面对的一个问题就是轨道计算。

万有引力的公式为我们提供了计算轨道的重要依据。

通过对引力大小的计算,我们可以确定航天器在空间中的轨道,从而实现对航天任务的精确控制和计划。

除了轨道计算,万有引力还对航天器的发射和返回轨道有着重要的影响。

在发射阶段,我们需要考虑地球的引力对航天器的影响,以确保航天器能够顺利进入预定轨道。

而在返回阶段,我们也需要精确计算出地球的引力,以保证航天器能够准确着陆或返回地面。

另外,对于天体探测任务来说,万有引力也是一个重要的考虑因素。

在执行探测任务时,我们需要精确计算出天体之间的引力,以便准确预测探测器的运动轨迹和目标天体的特征。

只有充分理解和利用万有引力,我们才能够更好地执行航天任务,实现科学探索的目标。

总的来说,万有引力作为一种普遍存在的物理现象,对航天领域有着重要的影响和应用。

通过对万有引力的深入理解,我们可以更好地规划和执行航天任务,实现对宇宙的探索和认识。

同时,万有引力也为航天技术的发展提供了重要的理论支持,促进了航天领域的不断进步和发展。

综上所述,万有引力与航天知识点的总结,对我们加深对宇宙物理学的理解,提高航天技术的水平,具有重要的意义和价值。

希望本文能够对读者有所启发,促进对万有引力与航天知识的深入学习和探讨。

让我们共同努力,探索未知的宇宙,为人类的航天事业作出更大的贡献。

完整版人教版必修二第六章:万有引力与航天简明实用笔记知识要点

完整版人教版必修二第六章:万有引力与航天简明实用笔记知识要点

一、行星的运动——开普勒三定律 (察看到的,不是实验定律)(环绕,中心天体可视为不动)1、开普勒第必定律——轨道定律(圆周模型)全部的行星环绕太阳运行的轨道都是椭圆,太阳处在椭圆的一个焦点上。

2、开普勒第二定律——面积定律(v 1r 1 v 2 r 2 )对于任意一个行星而言, 太阳和行星的连线在相等的时间内扫过相等的面积。

依据开普勒第二定律可得,行星在远日点的速率较小,在近期点的速率较大。

3、开普勒第三定律——周期定律(a 3 k )T 2全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

( a 表示椭圆的半长轴, T 代表公转周期, 同一中心天体 k 是定值 r 3GM T2k42)明显 k 是一个与行星自己没关的量,只与中心体有关 。

开普勒第三定律对全部行星都合用。

对于同一颗行星的卫星,也切合这个运动规律。

二、万有引力定律1、定律的推导。

2、定律的内容:自然界中任何两个物体都互相吸引,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

3、定律的公式: F Gm 1m 2(× 10-112/kg 2. )r 24、万有引力定律公式的合用条件:①质点间 (对于相距很远因此可以看作质点的物体)思虑:在公式中,当 r →0 时, →∞能否有意义?F②对平均的球体 ,可以看作是质量会合于球心上的质点,这是一种等效的简化办理方法。

③不是质点也不可以视为质点的 不可以直接 用公式,但可采纳 微积分 的思想间接求!5、万有引力定律说明①引力的方向 ——两质点的连线上。

②为引力常量 G ——在数值上等于两个质量都是1kg 的物体相距 1m 时的互相作用力, 其数值与单位制有关。

在 SI 制中, G = 6.67 × 10-11N · m 2/kg 2,1687 年牛顿宣布规律,而 1798 年英卡文迪许完成实验之时测定。

卡被称为称出地球质量的人 . 精度不高,可取来运算③一致单位 ——在运用万有引力定律计算时,公式中各量的单位须一致使用国际单位制。

万有引力与航天知识点归纳

万有引力与航天知识点归纳

万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。

2. 公式,其中,称为引力常量。

3. 适用条件适用于两个质点间的相互作用。

当两个物体间的距离远大于物体本身的大小时,物体可视为质点。

对于质量分布均匀的球体,为两球心间的距离。

二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。

若已知环绕天体的线速度和轨道半径,则。

若已知环绕天体的角速度和轨道半径,则。

若已知环绕天体的周期和轨道半径,则。

2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。

由,天体的体积。

当卫星绕天体表面运行时,则。

三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。

2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。

3. 卫星的角速度由可得,轨道半径越大,角速度越小。

4. 卫星的周期由可得,轨道半径越大,周期越大。

5. 地球同步卫星特点:周期,与地球自转周期相同。

轨道平面与赤道平面重合。

高度,线速度。

四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。

计算:由(为地球半径),可得。

这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。

2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。

3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。

五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。

2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。

(完整版)万有引力与航天重点知识归纳

(完整版)万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

必修二物理万有引力与航天知识点

必修二物理万有引力与航天知识点

必修二物理万有引力与航天知识点
1. 万有引力定律:任何两个物体之间存在着一个互相吸引的力,这个力与两个物体的质量成正比,与它们之间的距离的平方成反比。

2. 地球引力:地球对物体施加的引力称为地球引力,地球引力可以近似看作物体的重力,其大小由物体的质量和地球的质量以及它们之间的距离决定。

3. 行星运动:行星围绕太阳运动的轨道是椭圆形的,太阳位于椭圆的一个焦点上。

根据开普勒定律,行星与太阳之间的连线在相等的时间内扫过相等的面积。

4. 航天知识:航天是指人类在大气层外的空间进行探索和活动的行为。

航天技术包括火箭发射、卫星定位、航天飞行器的设计和制造等方面。

5. 地球自转和公转:地球自转是指地球绕自身中心轴旋转一周的运动,导致了地球的昼夜变化。

地球公转是指地球围绕太阳运动的轨道,完成一年的时间。

6. 卫星运行:人造卫星绕地球运行,可以用于通信、气象观测、科学研究等领域。

卫星的轨道有不同类型,如地球同步轨道、极地轨道等。

7. 火箭原理:火箭利用燃料的燃烧产生的庞大的排气冲击力,通过排气速度差产生反作用力,从而推动火箭向前运动。

8. 重力势能和动能:物体在重力场中具有重力势能,当物体从一个高处移动到另一个低处时,它的重力势能减小,同时动能增加。

9. 卫星通信:卫星通信利用卫星将信号从发送者传送到接收者,通过卫星的广覆盖范围和高速传输能力,实现长距离通信。

10. 空间站:空间站是人类在太空中建造的长期居住和科学研究设施。

它们提供生活、工作和研究的空间,同时也作为航天员进行航天任务的基地。

必修二万有引力与航天知识点总结完整版

必修二万有引力与航天知识点总结完整版

必修二万有引力与航天知识点总结完整版第六章万有引力与航天知识点总结一、万有引力定律:万有引力定律指出,自然界中任何两个物体都会相互吸引,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间的距离r的二次方成反比。

公式为F=G*m1*m2/r^2,其中G=6.67×10^-11 N·m^2/kg^2.适用条件有两种情况:可看成质点的两物体间,r为两个物体质心间的距离;质量分布均匀的两球体间,r为两个球体球心间的距离。

运用方面,万有引力与重力有关系,重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。

二、重力和地球的万有引力:地球对其表面物体的万有引力产生两个效果:物体随地球自转的向心力和重力。

其中,向心力很小,由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。

重力约等于万有引力,在赤道处,F=F向+mg,所以mg=F-F向=GMm/(2-Rω^2)自^2/R,因地球自转角速度很小,所以可以忽略地球自转。

地球表面的物体所受到的向心力f的大小不超过重力的0.35%,因此在计算中可以认为万有引力和重力大小相等。

但是,如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。

在地球的同一纬度处,g随物体离地面高度的增大而减小,即g'=(Gm1/(R+h)^2)。

强调的是,g=G·M/R不仅适用于地球表面,还适用于其他星球表面。

绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。

即:G·M·m/R=m·a向=mg,所以g=a向=G·M/R^2.三、人类认识天体运动的历史:人类认识天体运动的历史可以分为“地心说”和“日心说”两个阶段。

XXX(XXX、XXX)代表了“地心说”,而XXX (XXX被烧死、XXX)则代表了“XXX说”。

人教版物理必修二第六章-万有引力与航天知识总结

人教版物理必修二第六章-万有引力与航天知识总结

GgR M R MmG mg 22==第六章 万有引力与航天(1)开普勒行星运动定律适用于一切行星(卫星)绕恒星(行星)运动的情况; (2)不同行星绕太阳运动的椭圆轨道是不同的; (3;(4k 值只与中心天体有关。

引力和重力的关系1、在两极或不考虑地球自转:重力和万有引力相等2R Mm Gmg =2、赤道位置向F mg R MmG+=2 3、重力加速度与高度的关系万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比。

2.公式:122m mF G r=(G =6.67×10-11 N·m 2/kg 2)。

G 物理意义:引力常量在数值上等于两个质量都是1 kg 的质点相距1 m 时的相互吸引力。

3.适用范围:(1)质点间引力的计算;(2)质量分布均匀的球体,r 是球体球心间的距离;(3)一均匀球体与球外一个质点间的万有引力的计算,r 是球心到质点的距离; (4)两个物体间的距离远大于物体本身的大小时,r 为两物体质心间的距离。

计算天体的质量和密度1、忽略天体自转,天体表面重力和万有引力相等:2、测出卫星绕天体做匀速圆周运动的半径r 和周期T 。

2RMmG mg =2)(h R Mm Gg m +='(1)由2224πMm r G m r T=得天体的质量2324πr M GT =。

(2)若已知天体的半径R ,则天体的密度32333π=4π3M M r V GT R R ρ==。

若卫星绕中心天体表面运行,轨道半径r =R ,则有23πGT ρ=,224πRM GT =。

人造地球卫星一、卫星的动力学规律由万有引力提供向心力,222n 224πMm v r G ma m m r m r r Tω====。

二、卫星的各物理量随轨道半径变化的规律1.线速度v :由22Mm v G m r r =得v =r 越大,v 越小;r 越小,v越大。

人教版高一物理必修二第六章 万有引力与航天总结(共16张ppt)

人教版高一物理必修二第六章 万有引力与航天总结(共16张ppt)

m
解得:L 3 12 R
D正确
5
2020/5/16
15
变 变式4:(2019河北石家庄质检)太空中存在一些离其他恒星
式 很远的,由三颗星组成的三星系统,可忽略其他星体对它们
4
的引力作用。已观测到稳定的三星系统存在两种基本的构成 形式:一种是直线三星系统——三颗星始终在一条直线上;
另一种是三角形三星系统——三颗星位于等边三角形的三个
就可估算中心天体的密度。
3

例 1
典例1:(2019安徽合肥质检)已知地球和月球的
半径之比为4:1,其表面重力加速度之比为6:1,则
地球和月球的密度之比为( B )
A.2:3, B.3:2, C.4:1, D.6:1
解析: 在星球表面的物体,重力和万有引力相等, 即:
G
Mm R2
mg
解得质量为: M gR2
解 A.“嫦娥四号”没有挣脱地球的引力, : 发射速度小于第一宇宙速度;A错100km环月轨道
B.引力相同,a相同;B正确
C.100km环月轨道半径为r,
椭圆环月轨道
椭圆轨道的半长轴为a,
根据开普勒第三定律得:
r3 T12
a3 地月转移轨道 T22
由于r > a 所以 T1> T2
D.在地月转移轨道上的P点减速进入100km环月轨道,
顶点上。已知某直线三星系统A每颗星体的质量均为m,相邻
两颗星中心间的距离都为R,某三角形三星系统B的每颗星体
的质量恰好也均为m,且三星系统A外侧的两颗星做匀速圆周
运动的周期和三星系统B每颗星做匀速圆周运动的周期相等。
引力常量为G,则( )
BCD
A.三星系统A外侧两颗星运动的线速度大小为

高中物理人教版必修2第五章万有引力与航天知识点总结

高中物理人教版必修2第五章万有引力与航天知识点总结

第五章 万有引力与航天知识点总结1、开普勒行星运动三大定律① 第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

② 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

推论:近日点速度比较快,远日点速度比较慢。

③ 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

理解:(1)k 是与太阳质量有关而与行星无关的常量.(2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2=k ′,比值k ′是由行星的质量所决定的另一常量,与卫星无关. 2、万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,叫做引力常量。

(3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 3、万有引力定律的应用基本思路: 一是把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供;二是在地球表面或地面附近的物体所受的重力等于地球对物体的引力.(1)把行星(或卫星)绕中心天体看做匀速圆周运动,万有引力充当向心力(=n F F 引)G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma 向 r 增大 2Mm G r=22222n n v m v r mr mr T T GMma a rωωπ⇒=⇒=⎛⎫⇒=⎪⎝⎭⇒=32a k T =V 减小ω减小T 增大a n 减小(2)天体对其表面的物体的万有引力近似等于重力,即2MmGmg R=或2gR GM =(R 、g 分别是天体的半径、表面重力加速度),公式2gR GM =应用广泛,称“黄金代换”。

高中物理必修二知识点总结(万有引力)

高中物理必修二知识点总结(万有引力)

高中物理必修二知识点总结(万有引力)高中物理必修二学问点总结第六章万有引力与航天名目行星的运动太阳与行星间的引力万有引力定律万有引力理论的成就宇宙航行经典力学的局限性第六章万有引力与航天8.放射速度:采纳多级火箭放射卫星时,卫星脱离最终一级火箭时的速度。

运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动时的线速度。

当卫星“贴着”地面运行时,运行速度等于第一宇宙速度。

第一宇宙速度(环绕速度):7.9km/s。

卫星环绕地球飞行的最大运行速度。

地球上放射卫星的最小放射速度。

其次宇宙速度(脱离速度):11.2km/s。

使人造卫星脱离地球的引力束缚,不再绕地球运行,从地球表面放射所需的最小速度。

第三宇宙速度(逃逸速度):16.7km/s。

使人造卫星摆脱太阳引力的束缚,飞到太阳系以外的宇宙空间去,从地球表面放射所需要的最小速度。

第七章机械能守恒定律如何学好高中物理高中物理提分(方法)高中物理的的考试的难度比较大,理解起来比较难,但是想要在高考的时候取得抱负的成果需要大家重视物理考试的学习加强备考,下面我为大家供应如何学好高中物理,盼望对大家有所关心。

注意对物理教材的理解高中物理的考试其实只要是将书本上的内容能够透彻理解之后,考试难度就不会很大了,由于考试超纲的内容比较少,都是在教材的基础上进行出题的,所以大家在备考的时候肯定要注意物理教材的学习,对物理教材的学习并不只是看书这么简洁,肯定要全面的把握,理解其含义,并且将书中的物理例题自己做一遍,然后再去听老师的讲解,加深物理的备考印象,在对物理教材的学习过程中假如消失不理解的考试内容,肯定要准时找物理老师沟通,让其关心讲解,由于特殊是对理科的学习,肯定不要积压物理问题,一旦积压下来了再想跟上考试进度就特别的困难了。

要学会记物理笔记由于物理的学问点比较宽泛简单,在老师讲课的时候会为我们拓展学问点,当时我们有所把握,但是在过后的时候可能就忘了老师讲课的思路了,所以在物理学习的过程中学会记物理笔记是特别重要的事情,对物理学问点全面的诠释,通过物理笔记理清学问点之间的规律结构。

高中物理必修二第六章《万有引力与航天》知识点

高中物理必修二第六章《万有引力与航天》知识点

高中物理必修二第六章万有引力与航天一、行星的运动1、 开普勒行星运动三大定律①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

推论:近日点速度比较快,远日点速度比较慢。

③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。

推广:对围绕同一中心天体运动的行星或卫星,上式均成立。

K 取决于中心天体的质量例.有两个人造地球卫星,它们绕地球运转的轨道半径之比是1:2,则它们绕地球运转的周期之比为 。

二、万有引力定律1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。

即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。

(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。

③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。

忽略地球自转可得: 例.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为?(式中G 为万有引力恒量)(2)计算重力加速度地球表面附近(h 《R ) 方法:万有引力≈重力 地球上空距离地心r=R+h 处 方法: 在质量为M ’,半径为R ’的任意天体表面的重力加速度''g 方法:(3)计算天体的质量和密度 利用自身表面的重力加速度: 利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度)32a k T =2Mm F G r =11226.6710/G N m kg -=⨯⋅122m m F G r =2R Mm G mg =2')(h R Mm G mg +=2''''''R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2R Mm G mg =例.宇航员站在一星球表面上的某高处,以初速度V 0沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为V. 已知该星球的半径为R ,引力常量为G ,求该星球的质量M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修二万有引力与航天知识点总结
一、人类认识天体运动的历史
1、“地心说”的内容及代表人物:托勒密(欧多克斯、亚里士多德)
2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略)
二、开普勒行星运动定律的内容
开普勒第二定律:V近>V远
开普勒第三定律:
K:与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:
三、万有引力定律
1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

①②③
2、表达式:
3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r的二次方成反比。

4、引力常量:,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:
(1)适用于两个质点间的万有引力大小的计算。

(2)对于质量分布均匀的球体,公式中的r就是它们球心之间的距离。

(3)一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离。

(4)两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r为两物体质心间的距离。

6、推导:
四、万有引力定律的两个重要推论
1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r处,质点受到的万有引力就等于半径为r 的球体的引力。

五、黄金代换
若已知星球表面的重力加速度g和星球半径R,忽略自转的影响,则星球对物体的万有引力等于物体的重力,有所以。

其中是在有关计算中常用到的一个替换关系,被称为黄金替换。

导出:对于同一中心天体附近空间内有,即:
环绕星体做圆周运动的向心加速度就是该点的重力加速度。

六、双星系统
两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

设双星的两子星的质量分别为和,相距L,和的线速度分别为和,角速度分别为和,由万有引力定律和牛顿第二定律得:
相同的有:周期,角速度,向心力,因为,所以
轨道半径之比与双星质量之比相反:
线速度之比与质量比相反:
七、宇宙航行:
1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……
2、卫星轨道:可以是圆轨道,也可以是椭圆轨道。

地球对卫星的万有引力提供向心力,所以圆轨道圆心或椭圆轨道焦点是地心。

分为赤道轨道、极地轨道、一般轨道。

3、三个宇宙速度:
(1)第一宇宙速度(发射速度):7.9km/s。

最小的发射速度,最大的环绕速度。

(2)第二宇宙速度(脱离速度):11.2km/s。

物体挣脱地球引力束缚,成为绕太阳运行的小行星或飞到其他行星上去的最小发射速度。

(3)第三宇宙速度(逃逸速度):16.7km/s。

物体挣脱太阳引力束缚、飞到太阳系以外的宇宙空间去的最小发射速度。

7.9km/s<v<11.2km/s时,卫星绕地球旋转,其轨道是椭圆,地球位于一个焦点上。

11.2km/s<v<16.7 km/s时,卫星脱离地球束缚,成为太阳系的一颗小行星。

4、人造卫星的线速度、角速度、周期表达式:将不同轨道上的卫星绕地球运动都看成是匀速圆周运动,则有:
同一中心天体的环绕星体(靠万有引力提供向心力的环绕星体,必须是“飘”起来的,赤道上的物体跟同步卫星比较不可以用此结论)
R↑T↑a↓v↓ω↓
5、超重与失重:人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动。

两个过程加速度方向均向上,因为都是超重状态。

人造卫星在沿圆轨道运行时,万有引力提供向心力,所以处于完全失重状态。

八、典型卫星:
1、近地卫星:通常把高度在500千米以下的航天器轨道称为低轨道,500千米~2000千米高的轨道称为中轨道。

中、低轨道合称为近地轨道。

在高中物理中,近地卫星环绕半径R≈R地 =6400Km,
2、同步卫星:相对地面静止且与地球自转具有相同周期的卫星叫地球同步卫星,又叫通讯卫星。

特点:
(1)运行方向与地球自转方向一致(自西向东)。

(2)周期与地球自转周期相同,T=24小时。

(3)角速度等于地球自转角速度。

(4)所有卫星都在赤道正上方,轨道平面与赤道平面共面。

(5)高度固定不变,离地面高h=36000km
(6)三颗同步卫星作为通讯卫星,则可覆盖全球(两级有部分盲区)(7)地球所有同步卫星,T、ω、v、h、均相同,m可以不同。

3、扩展:
(1)变轨问题:从内往外为第Ⅰ、Ⅱ、Ⅲ轨道,左边切点为A点,右边切点为B点。

(内轨道加速到达外轨道)(同一位置,a相同)
(内轨道加速达到外轨道)(同一位置,a相同)
(离地球越近,g越大)
(离地球越近,g越大)
(2)赤道上物体与头顶同步卫星比较:
(3)对接问题:后面卫星,先减速,做向心运动,降低一定高度后,再加速,离心,同时速度减慢,与前面卫星对接。

相关文档
最新文档