高考复习文科函数与导数知识点总结

合集下载

导数文科高三知识点总结

导数文科高三知识点总结

导数文科高三知识点总结一、导数的概念及几何意义1. 导数的定义导数是函数在某一点的变化率,也可以理解为函数图像在某一点的切线斜率。

若函数y=f(x)在x=a处的导数存在,则称函数在x=a处可导,导数记作f'(a),即f'(a)=lim{h→0}[f(a+h)-f(a)]/h。

2. 导数的几何意义导数的几何意义即为函数图像在某一点的切线斜率,可以用于求解函数图像在某一点的切线方程,从而得出函数图像在该点的局部变化情况。

3. 导数的符号表示在通常情况下,导数的符号表示为f'(a),表示函数y=f(x)在x=a处的导数。

也可以用dy/dx表示函数y=f(x)的导数。

二、导数的计算方法1. 导数的计算公式(1)常数函数的导数若f(x)=c(c为常数),则f'(x)=0。

(2)幂函数的导数若f(x)=x^n(n为常数),则f'(x)=nx^(n-1)。

(3)指数函数的导数若f(x)=a^x(a>0且a≠1),则f'(x)=a^x·lna。

(4)对数函数的导数若f(x)=loga(x)(a>0且a≠1),则f'(x)=1/(x·lna)。

(5)三角函数的导数若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx;若f(x)=tanx,则f'(x)=sec^2 x。

2. 复合函数的导数复合函数的导数计算可以根据链式法则进行,即若y=f(g(x)),则y'=(f'(g(x))·g'(x)。

3. 隐函数的导数若方程F(x,y)=0定义了函数y=f(x),则通过对方程两边求导,并利用隐函数求导公式可以求出y关于x的导数dy/dx。

4. 参数方程的导数若x=x(t)、y=y(t)定义了参数曲线C,可以通过对x(t)和y(t)分别求导来求出参数曲线的切线斜率,从而得出参数曲线的切线方程。

(word完整版)高中文科数学复习-函数与导数知识点,推荐文档

(word完整版)高中文科数学复习-函数与导数知识点,推荐文档

一函数与导数一.函数定义——知识点归纳1函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A2两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f3映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集4映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一二.函数解析式——知识点归纳1函数的三种表示法(1)解析法:把两个变量的函数关系用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系2求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组 (5)应用题求函数解析式常用方法有待定系数法等题型讲解(1)已知3311()f x x xx +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x解:(1)∵3331111()()3()f x x x x xx x x+=+=+-+, ∴3()3f x x x =-(2x ≥或2x ≤-)(2)令21t x +=(1t >), 则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-(3)设()(0)f x ax b a =+≠,则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-5217ax b a x =++=+,∴2a =,7b =,∴()27f x x =+(4)12()()3f x f x x+= ①,把①中的x 换成1x ,得132()()f f x x x+= ②, ①2⨯-②得33()6f x x x =-,∴1()2f x x x=-注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法三.定义域和值域——知识点归纳1求函数解析式的题型有:同上2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,应考虑使实际问题有意义; (3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出3求函数值域的各种方法函数的值域可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥}; 当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=四.单调性——知识点归纳1函数单调性的定义:2 证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈( ⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 3 求单调区间的方法:定义法、导数法、图象法4复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数; ②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集5一些有用的结论:①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x b ax y 在,,b ba a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减 五.奇偶性——知识点归纳1函数的奇偶性的定义;2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; 3()f x 为偶函数()(||)f x f x ⇔=4若奇函数()f x 的定义域包含0,则(0)0f =5判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;6牢记奇偶函数的图象特征,有助于判断函数的奇偶性;7判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 8设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)= ±f(x) f(-x) +f(x)=0;2讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性5若存在常数T ,使得f(x+T)=f(x)对f(x)定义域内任意x 恒成立,则称T 为函数f(x)的周期,(5)函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f(x)叫做周期函数,T 叫做这个函数的一个周期六.反函数——知识点归纳1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2定义域、值域:反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3单调性、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称4求反函数的一般方法:(1)由()y f x =解出1()x fy -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域七.二次函数——知识点归纳1二次函数的图象及性质:二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,2二次函数的解析式的三种形式:用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()((顶点式)3 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0)(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f4 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响1讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②2讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置5二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根一、关于二次函数 6.韦达定理:方程02=++c bx ax (0≠a )的二实根为1x 、2x ,则240b ac ∆=-≥且⎪⎩⎪⎨⎧=-=+a cx x a b x x 2121①两个正根,则需满足⎪⎩⎪⎨⎧>>+≥∆0002121x x x x ,②两个负根,则需满足1212000x x x x ∆≥⎧⎪+<⎨⎪>⎩,③一正根和一负根,则需满足⎩⎨⎧<>∆021x x ⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞U八.指数对数函数——知识点归纳1根式的运算性质:①当n 为任意正整数时,(n a )n =a②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a⑶根式的基本性质:n m npmp a a =,(a ≥0) 2分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+ 3 )10(≠>=a a a y x且的图象和性质a>1 0<a<1图象1oyx1oy x性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R 上是增函数 (4)在R 上是减函数4指数式与对数式的互化:log ba a N Nb =⇔=5重要公式: 01log =a ,1log =a a 对数恒等式N aNa =log6对数的运算法则如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+log log log aa a MM N N=- log log n m a a mM M n =7对数换底公式:aNN m m a log log log =( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)8两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a② b mnb a na m log log =( a, b > 0且均不为1) 9对数函数的性质:a>1 0<a<1图 象1oyx1oyx性 质定义域:(0,+∞) 值域:R 过点(1,0),即当1=x 时,0=y)1,0(∈x 时 0<y),1(+∞∈x 时 0>y)1,0(∈x 时 0>y),1(+∞∈x 时0<y在(0,+∞)上是增函数在(0,+∞)上是减函数10同底的指数函数xy a =与对数函数log a y x =互为反函数11指数方程和对数方程主要有以下几种类型:(1) a f(x)=b ⇔f(x)=log a b, log a f(x)=b ⇔f(x)=a b ; (定义法)(2) a f(x)=a g(x)⇔f(x)=g(x), log a f(x)=log a g(x)⇔f(x)=g(x)>0(转化法)(3) a f(x)=b g(x)⇔f(x)log m a=g(x)log m b (取对数法)(4) l og a f(x)=log b g(x)⇔log a f(x)=log a g(x)/log a b(换底法)九.函数图象变换——知识点归纳1作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2三种图象变换:平移变换、对称变换和伸缩变换等等;3识图:分布范围、变化趋势、对称性、周期性等等方面4平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到① y=f(x)h 左移→y=f(x+h); ② y=f(x) h右移→y=f(x -h); ③y=f(x) h 上移→y=f(x)+h; ④y=f(x) h下移→y=f(x)-h5对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可(2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y fx -=的图像可以将函数()y f x =的图像关于直线y x =对称得到①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x)ax =→直线y=f(2a -x); ④y=f(x)xy =→直线y=f -1(x); ⑤y=f(x) 原点→y= -f(-x)6翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到y=f(x)cb aoyxy=|f(x)|cb aoyxy=f(|x|)cb aoyx7伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到 ①y=f(x)ω⨯→x y=f(ωx);② y=f(x)ω⨯→y y=ωf(x)十.导数知识点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x y ,故x y x ∆∆→∆0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin x x -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos x x --= II. x x 1)(ln '= e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:x x 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式. ③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.。

高考文科导数考点汇总定稿版

高考文科导数考点汇总定稿版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

高中文科数学公式及知识点总结大全

高中文科数学公式及知识点总结大全

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性1设那么上是增函数;上是减函数.2设函数在某个区间内可导,若,则为增函数;若,则为减函数.2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.*二次函数: (1)顶点坐标为;(2)焦点的坐标为4、几种常见函数的导数①;②; ③;④;⑤;⑥; ⑦;⑧5、导数的运算法则(1)(2)(3).6、会用导数求单调区间、极值、最值7、求函数的极值的方法是:解方程.当时:1 如果在附近的左侧,右侧,那么是极大值;2 如果在附近的左侧,右侧,那么是极小值.指数函数、对数函数分数指数幂1(,且).2(,且).根式的性质(1)当为奇数时,;当为偶数时,.有理指数幂的运算性质12 3.注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: .对数的换底公式 : ,且,,且, .对数恒等式:,且, .推论 ,且, .常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式,.9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。

,,.,,.,,.,,.口诀:函数名称不变,符号看象限.,.,.口诀:正弦与余弦互换,符号看象限.10、和角与差角公式 ;;.11、二倍角公式 ...公式变形:12、函数的图象变换①的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.②数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.13. 正弦函数、余弦函数和正切函数的图象与性质:图象定义域值域最值当时,;当时,. 当时,;当时,. 既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数. 在上是增函数;在上是减函数. 在上是增函数.对称性对称中心对称轴对称中心对称轴对称中心无对称轴14、辅助角公式其中15.正弦定理?:(R为外接圆的半径).16.余弦定理;;.17.面积定理(1)(分别表示a、b、c边上的高).(2).18、三角形内角和定理在△ABC中,有.19、与的数量积或内积20、平面向量的坐标运算1设A,B,则.2设,,则.3设,则21、两向量的夹角公式设,,且,则,.22、向量的平行与垂直设,,且*平面向量的坐标运算1设,,则+.2设,,则- 3设A,B,则.4设,则.5设,,则?.三、数列23、数列的通项公式与前n项的和的关系数列的前n项的和为.24、等差数列的通项公式;25、等差数列其前n项和公式为.26、等比数列的通项公式;27、等比数列前n项的和公式为或四、不等式28、。

高三文科数学导数知识点

高三文科数学导数知识点

高三文科数学导数知识点导数是高中数学中一个非常重要的概念,它在不同的数学分支中都有广泛的应用。

在高三文科数学中,导数是不可或缺的一部分。

本文将为您详细介绍高三文科数学中的导数知识点。

一、导数的定义与基本性质导数的定义:设函数f(x)在点x0的某一邻域内有定义,若极限lim┬(Δx→0)⁡〖(f(x_0+Δx)-f(x0))/Δx 〗存在,则称此极限为函数f(x)在点x0处的导数,记为f'(x0)。

导数的基本性质包括加法、减法、数乘、乘法和复合等性质,其中最重要的是乘法和复合的性质。

具体的性质表述如下:1. 加法性质:(u(x)+v(x))'=u'(x)+v'(x)2. 减法性质:(u(x)-v(x))'=u'(x)-v'(x)3. 数乘性质:(cu(x))'=cu'(x) (c为常数)4. 乘法性质:(u(x)v(x))'=u'(x)v(x)+u(x)v'(x)5. 复合性质:(u(v(x)))'=u'(v(x))v'(x)二、计算导数的方法在高三文科数学中,常用的计算导数的方法有函数导数的四则运算法则、基本初等函数的导数、反函数的导数、复合函数的导数以及隐函数的导数等。

以下是这些方法的具体介绍:1. 函数导数的四则运算法则:根据导数的定义及其基本性质,可以得到函数导数的加减乘除法则,即通过对函数进行加减乘除的运算,可以得到对应的导数。

2. 基本初等函数的导数:基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

这些函数都有对应的导数公式,可以通过直接应用公式计算导数。

3. 反函数的导数:若函数y=f(x)在某区间内可导且在该区间上存在反函数x=g(y),则可以利用反函数的求导公式计算反函数的导数。

4. 复合函数的导数:如果函数y=f(u)和u=g(x)在一定条件下都可导,则可以利用复合函数的求导公式计算复合函数的导数。

导数文科高三知识点汇总

导数文科高三知识点汇总

导数文科高三知识点汇总导数是高中数学中的重要概念,对于文科高三学生来说,熟练掌握导数的相关知识点,不仅可以为数学考试打下坚实的基础,还能在其他学科中发挥重要作用。

本文将对导数的相关知识点进行汇总整理,帮助文科高三学生系统地学习和应用导数。

一、导数的定义及基本概念(字数增加,不要求出现小标题)导数是函数在某一点上的变化率,是对函数的局部变化进行描述的工具。

设函数y=f(x),如果函数在点x处的导数存在,那么该导数表示函数在x处的切线斜率,并用f'(x)表示。

导数的基本概念包括导数的定义、导数的几何意义、导数的物理意义和导数的代数运算法则。

导数的定义是通过极限的概念来给出的,即f'(x)=limΔx→0[f(x+Δx)-f(x)]/Δx。

导数的几何意义是函数在某一点的斜率,可以表示函数曲线在该点的切线的斜率。

导数的物理意义是变化率,例如,速度可以看作是位移对时间的导数。

导数的代数运算法则包括常数因子、和差、乘法、除法以及复合函数等运算法则。

二、导数的计算方法(字数增加,不要求出现小标题)导数的计算方法可以根据函数的具体形式来进行推导和应用。

常见的导数计算方法包括基本初等函数的导数、幂函数的导数、指数函数的导数、对数函数的导数、三角函数和反三角函数的导数、复合函数的导数等。

基本初等函数的导数是指常数函数、恒等函数、多项式函数、有理函数、开方函数等的导数,这些函数都有对应的导数表达式。

幂函数的导数可以通过对数函数求导得到,指数函数的导数是指a^x的导数一定是a^xlna,其中a为底数,lna为自然对数。

对数函数的导数可以通过指数函数求导得到,三角函数和反三角函数的导数可以通过基本关系式和导数的定义进行推导。

复合函数的导数可以通过链式法则进行计算。

三、导数的应用(字数增加,不要求出现小标题)导数作为数学中的一项重要工具,具有广泛的应用场景。

在文科高三学习中,导数的应用不仅仅局限于数学学科,在其他学科中也能够发挥重要作用。

文科高考数学导数知识点

文科高考数学导数知识点

文科高考数学导数知识点导数是高中数学中重要的知识点之一,它是微积分的基础。

掌握导数的概念和运算规则,对于理解数学的发展和应用具有重要意义。

本文将对文科高考中与导数相关的知识点进行探讨和总结。

一、导数的定义与计算导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。

对于一个函数f(x),其在点x处的导数可以用极限的概念表示为:f'(x) = lim(h→0)(f(x+h) - f(x))/h其中h为接近于0的一个无限小的实数。

在计算导数时,常用的求导法则包括常数法则、幂法则、和差法则、积法则和商法则等。

这些法则在导数的计算中提供了方便的方法,使我们能够快速准确地求得函数的导数。

二、导数的几何意义导数的几何意义体现在函数曲线上的切线斜率上。

函数曲线在某一点上的切线斜率等于该点的导数值。

这意味着导数可以告诉我们函数在某一点上是上升还是下降,以及上升或下降的速率。

利用导数的几何意义可以解决很多与函数变化率相关的问题,例如求极大值和极小值点、确定函数在某个区间上的单调性以及判定函数的凸凹性等。

三、导数的应用导数不仅仅是一种数学工具,它还在实际问题的建模和求解中具有广泛的应用。

例如,在经济学中,导数可以用来解决边际成本、边际效益和最优决策等问题;在物理学中,导数可以用来描述物体的运动状态、速度和加速度等;在生物学中,导数可以用来研究物种的增长和衰退规律等。

导数在各个领域的应用都展示了它的重要性和实用性。

四、导数与其他数学概念的联系导数与其他数学概念之间存在着紧密的联系,它们相互依存、相互推进,共同构成了数学学科的核心。

在微积分中,导数与积分是密切相关的。

导数可以通过积分来求解,而积分则可以通过导数来解释和解决问题。

导数与函数的极限、连续性以及泰勒级数展开等概念也有紧密的关联。

掌握导数的知识,有助于我们更好地理解和运用这些数学概念。

五、导数在解决实际问题中的应用举例最后,我们通过举例来说明导数在解决实际问题中的应用。

(完整版)高考文科导数考点汇总

(完整版)高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的看法,导数的几何意义,几种常有函数的导数;两个函数的和、 差、基本导数公式, 利用导数研究函数的单调性和极值, 函数的最大值和最小值。

导数看法与运算知识清单 1.导数的看法函数 y=f(x), 若是自变量 x 在 x 0处有增量x,那么函数 y 相应地有增量y=f (x 0+ x)-(f x 0 ),yy f ( x 0x) f ( x 0 ) 比值x叫做函数 y=f (x )在 x 0 到 x 0+x之间的平均变化率,即x=x。

y若是当x 0 时,x 有极限,我们就说函数y=f(x) 在点 x 0 处可导,并把这个极限叫做 f ( x )在点 x 0 处的导数,记作x xf ’( x 0 )或 y ’|0 。

ylim f ( x 0x)f ( x 0 )limx即 f ( x 0 ) = x 0 x = x 0。

说明:yy( 1)函数 f ( x )在点 x 0 处可导,是指 x 0 时,x 有极限。

若是x 不存在极限,就说函数在点 x 0 处不可以导,或说无导数。

( 2)x是自变量 x 在 x 0处的改变量,x时,而y是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点 x 0 处的导数的步骤(可由学生来归纳):( 1)求函数的增量y=f ( x 0+ x)- f ( x 0 );y f (x 0x) f ( x 0 )( 2)求平均变化率x =x ;limyx 。

( 3)取极限,得导数 0 x 0f ’(x)=2.导数的几何意义函数 y=f ( x )在点 x 0 处的导数的几何意义是曲线 y=f ( x )在点 p (x 0 ,f (x 0 ))处的切线的斜率。

也就是说,曲线y=f ( x )在点 p ( x 0 , f ( x 0 ))处的切线的斜率是 f ’( x 0)。

相应地,切线 方程为 y - y 0 =f/ ( x 0 )( x - x 0 )。

高考文科导数考点汇总

高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C'=②()1;n nx nx-'=③(sin)cosx x'=; ④(cos)sinx x'=-;⑤();x xe e'=⑥()lnx xa a a'=; ⑦()1ln xx'=; ⑧()1l g loga ao x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(.)'''vuvu±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uvvuuv+=若C为常数,则'''''0)(CuCuCuuCCu=+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu=法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛vu‘=2''vuvvu-(v≠0)。

高考导数文科知识点

高考导数文科知识点

高考导数文科知识点导数是高中数学中的重要概念,也是文科生在高考中常遇到的知识点之一。

掌握导数的基本概念、计算方法以及应用是文科生成功应对高考数学考试的关键。

下面将为大家介绍高考导数文科知识点。

一、导数的基本概念导数是函数在某一点的瞬时变化率,也可以理解为函数图像上某一点处的切线斜率。

记函数f(x)的导数为f'(x),它表示函数在x处的导数值。

二、导数的计算方法1. 基本导数公式常函数:f(x) = c,其中c为常数,则其导数为0,即f'(x) = 0。

幂函数:f(x) = x^n,其中n为自然数,则其导数为f'(x) = nx^(n-1)。

指数函数:f(x) = a^x,其中a为大于0且不等于1的常数,则其导数为f'(x) = a^x * ln(a)。

对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数,则其导数为f'(x) = 1 / (x * ln(a))。

三角函数:f(x) = sin(x),f(x) = cos(x),f(x) = tan(x)等三角函数的导数可以通过求导法则得到。

2. 导数的基本运算法则常数乘法法则:[cf(x)]' = cf'(x),其中c为常数。

和差法则:[f(x) ± g(x)]' = f'(x) ± g'(x)。

积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。

商法则:[f(x)/g(x)]' = (f'(x)g(x) - f(x)g'(x)) / g^2(x),其中分母g(x)不等于0。

三、导数的应用1. 切线方程给定函数f(x),求其在点(x0, f(x0))处的切线方程。

切线方程的斜率即为函数在该点的导数值,切线方程可以确定切线的斜率和截距。

2. 函数的单调性与极值通过导数的正负来判断函数的单调性。

导数文科高三知识点总结

导数文科高三知识点总结

导数文科高三知识点总结导数是高三文科学生必须掌握的重要数学概念。

它在微积分中具有广泛的应用,涉及到诸多与变化相关的问题。

下面是对导数相关知识点的总结。

1. 导数的定义导数可以理解为函数在某一点的瞬时变化率。

设函数y=f(x),则函数在点x处的导数定义如下:f'(x) = lim[(f(x+△x) - f(x))/△x] (△x → 0)2. 导函数与导数在导数的定义中,如果函数f(x)在区间内任意一点都有导数,那么这个函数就称为可导函数。

可导函数的导数又称为导函数,记作f'(x)。

3. 基本导数法则对于一些常见的函数,我们可以利用基本导数法则来求导数,以简化计算。

以下是一些常用的基本导数法则:a. 常数函数导数为0:(k)' = 0b. 幂函数导数:(x^n)' = nx^(n-1)c. 三角函数导数:- sinx 的导数为 cosx:(sinx)' = cosx- cosx 的导数为 -sinx:(cosx)' = -sinx- tanx 的导数为 sec^2x:(tanx)' = sec^2xd. 指数函数和对数函数导数:- e^x 的导数为 e^x:(e^x)' = e^x- ln|x| 的导数为 1/x:(ln|x|)' = 1/x4. 导数的四则运算(求导法则)导数运算符满足几个基本的四则运算法则:a. 常数乘以函数:(k·f(x))' = k·f'(x)b. 多项式函数的导数:(c1x^n1 + c2x^n2 + ... + cnx^nn)' = c1·n1x^(n1-1) + c2·n2x^(n2-1) + ... + cn·nnx^(nn-1)c. 函数加减法:(f(x) ± g(x))' = f'(x) ± g'(x)d. 函数乘法:- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2e. 复合函数:(f(g(x)))' = f'(g(x))·g'(x)5. 高阶导数高阶导数是指通过多次求导得到的导数。

函数与导数知识点总结高考必备)

函数与导数知识点总结高考必备)

函数与导数知识点总结高考必备)一、函数的概念与性质1.函数:函数是一种将一个数域的数值和另一个数域的数值结合起来的关系。

记作y=f(x),其中y是函数值,x是自变量。

2.定义域和值域:函数的定义域是自变量x的取值范围,值域是函数所有可能的函数值的集合。

3.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果对于函数f(x),有f(-x)=-f(x),则函数是奇函数。

4.单调性:函数在定义域上的取值随着自变量的增大而增大,或随着自变量的减小而减小,则函数是单调递增的;函数在定义域上的取值随着自变量的增大而减小,或随着自变量的减小而增大,则函数是单调递减的。

二、导数的定义与性质1.导数的定义:函数y=f(x)在点x处的导数记作f'(x),定义为当自变量x的增量趋近于0时,函数值的增量与自变量增量的比值的极限。

2.导数的几何意义:导数表示函数曲线在该点处的切线斜率。

切线斜率越大,函数曲线越陡峭;切线斜率越小,函数曲线越平缓。

3.导函数:函数的导数也被称为导函数。

函数f(x)的导函数记作f'(x),如果导数存在。

4.导数的四则运算:(常数乘以函数)导数等于常数乘以函数的导数;(两个函数的和)导数等于两个函数的导数之和;(两个函数的差)导数等于两个函数的导数之差。

5.高阶导数:函数的导数的导数叫做高阶导数。

高阶导数也可以通过导数的定义来求解。

6.导数与函数图像的性质:函数在特定点处可导,则在该点处函数图像的切线与曲线相切;函数在特定点处导数不存在,则在该点处函数图像可能有尖点、垂直切线或间断点。

三、导数的求法1.基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数可以通过一些公式来求解。

2.利用导数的四则运算:通过导数的四则运算性质,可以求得由基本初等函数组成的复合函数的导数。

3.链式法则:如果y=f(g(x))是由两个函数复合而成的复合函数,则其导数可以通过链式法则求解:f(g(x))'=f'(g(x))*g'(x)。

高考复习文科导数基础知识点总结

高考复习文科导数基础知识点总结

高考复习文科导数知识点总结考纲要求知识点:1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3.导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 5.导数与单调性(1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数;(2)对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件; (3)利用导数判断函数单调性的步骤:①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。

高考文科导数知识点总结

高考文科导数知识点总结

高考文科导数知识点总结高考是每个学生都渴望成功的重要考试,其中文科类科目的一项重点是数学。

在数学中,导数是一个关键的知识点。

本文将对高考文科中与导数相关的知识点进行总结和归纳,以帮助学生更好地掌握和应用导数。

一、导数的定义与求法导数是函数与自变量之间的变化率关系。

在数学中,我们通常使用极限的概念来定义一个函数的导数。

对于一个函数f(x),它的导数可以表示为f'(x)或df/dx。

求函数的导数可以使用以下几种方法:1. 函数基本求导法则:常数法则、幂法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等;2. 利用导数定义进行求导:利用导数的定义进行求导是一种基础的方法,根据导数定义计算极限得到准确的导数值;3. 复合函数求导法则:根据复合函数的求导法则可以求得复合函数的导数。

二、导数在函数图像中的应用导数在研究函数图像中有着重要的应用。

下面列举了一些常见的应用:1. 切线和法线:导数有助于确定函数图像上某点的切线和法线,切线的斜率等于该点的导数值,法线的斜率为导函数的负倒数;2. 函数的增减与极值:导数为正说明函数单调递增,导数为负说明函数单调递减,导数为零的点可能是函数的极值点;3. 函数的凹凸性与拐点:利用导数的二阶导数可以判断函数图像的凹凸性,凹函数和凸函数在导数的正负变化处有转折点,即拐点。

三、导数在变化率问题中的应用导数在变化率问题中也有着广泛的应用,比如速度、密度等问题。

以下是几个常见的应用场景:1. 平均变化率与瞬时变化率:平均变化率是指在两个点之间的变化率,瞬时变化率是指在某一点的瞬时速度;2. 边际变化与边际效益:导数还可以用来表示某一变量的边际变化,比如边际利润、边际成本等;3. 最优化问题:通过求解导数为零的点可以得到函数的最值点,这在最优化问题中十分常见。

四、常见的导数公式在高考文科中,以下是一些常见的导数公式,学生们可以熟练掌握和应用:1. 常数函数的导数为零;2. 幂函数的导数公式:(x^n)' = n*x^(n-1),其中n为常数;3. 指数函数的导数公式:(e^x)' = e^x;4. 对数函数的导数公式:(log_a(x))' = 1/(x * ln(a)),其中a为底数;5. 三角函数的导数公式:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x);6. 反三角函数的导数公式:(arcsin(x))' = 1/sqrt(1-x^2),(arccos(x))' = -1/sqrt(1-x^2),(arctan(x))' = 1/(1+x^2)。

高中文科导数知识点汇总

高中文科导数知识点汇总

高中文科导数知识点汇总高中文科导数知识点汇总高中文科中,导数是数学分析中的重要概念之一。

导数可以帮助我们研究函数的变化情况以及求解函数的极值等问题。

下面是一些高中文科中常见的导数知识点的汇总:1. 定义:导数可以被视为函数在某一点处的变化率。

如果函数f(x)在点x=a处导数存在,则导数的定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)。

其中,lim表示极限。

2. 导数记号:函数的导数可以用不同的符号表示。

除了上面提到的f'(a),还可以用dy/dx、f(x)、y′等来表示。

3. 导函数:如果一个函数在定义域上的每个点都存在导数,那么我们可以得到一个新的函数,称为原函数的导函数。

导函数的表示可以是f'(x)或者y'。

4. 在数值上求导:对于函数f(x),如果我们要求它在某点x=a 处的导数,可以通过计算函数在该点附近的斜率来近似求得。

具体方法有使用差商和利用求极限。

差商的计算方式为:(f(a+h)-f(a))/h,其中h→0。

5. 导数的几何意义:函数在某一点的导数可以表示函数在该点处的切线的斜率。

切线的斜率是函数在该点的局部增长率的表示。

6. 导数的运算法则:导数满足一些有用的运算法则,这些法则可以帮助我们简化求导的过程。

常见的导数运算法则包括:常数法则、幂函数法则、和差法则、乘积法则、商法则、复合函数法则等。

7. 高阶导数:除了一阶导数,我们还可以计算高阶导数。

高阶导数表示导函数求导的结果。

例如,f''(x)表示函数f(x)的二阶导数。

8. 反函数和导数:如果一个函数f(x)在某一区间上是可递增或可递减的,并且在该区间上的导数不为零,那么它的反函数f^(-1)(x)在相应区间上也有导数,并且具有以下关系式:(f^(-1))'(y)=1/f'(x),其中y=f(x)。

9. 隐函数和导数:隐函数是指不能直接用y=f(x)的形式表示的函数,而是以xy的关系表示的函数。

word完整版高考文科导数考点汇总推荐文档

word完整版高考文科导数考点汇总推荐文档

高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值, 函数的最大值和最小值。

导数概念与运算知识清单 1 .导数的概念函数y=f(x),如果自变量x 在X 。

处有增量 X,那么函数y 相应地有增量y=f (x 0+ X ) —f(x 0),yy f(x 。

x) f(x 。

)比值 x 叫做函数y=f f x )在x 0到x 0+ x 之间的平均变化率,即x =x。

_y如果当 x 0时,x 有极限,我们就说函数 y=f(x)在点X 。

处可导,并把这个极限叫做f ( x )在点x 0处的导数,记作f '(x 0 )或y'x/。

y f(x 。

x) f(x 。

) lim lim即 f (x 0) = X 0 X = x 0 x说明:(1) 函数f (X )在点X 0处可导,是指 X 数在点X 0处不可导,或说无导数。

(2)X是自变量X 在X 0处的改变量,X由导数的定义可知,求函数 y=f (X )在点X 0处的导数的步骤(可由学生来归纳): (1)求函数的增量 y=f (x 0+ x )- f (x 0 );y f(x °x) f(x °)(2) 求平均变化率 x =x;.. ylim —(3) 取极限,得导数f ' (X )= x 0 x 。

2 •导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜 率。

也就是说,曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜率是 f' (x 0)。

相应地,切线y y0时, X 有极限。

如果 x 不存在极限,就说函0时,而 y 是函数值的改变量,可以是零。

方程为y—y0=f/ (x0) (x-x0)。

4 •两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和 (或差), 即:(U V ) u v.法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个III函数乘以第二个函数的导数,即:(uv ) uv uv .若C 为常数,则(Cu ) Cu Cu 0 Cu Cu .即常数与函数的积的导数等于常数乘以函数II的导数:(Cu ) Cu .法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除U u'v uv'2以分母的平方: v‘ =v( v 0)。

高三文科导数知识点总结

高三文科导数知识点总结

高三文科导数知识点总结一、导数的概念和求导法则导数是微积分中的重要概念,它描述了函数在某一点上的变化率。

在高三文科中,导数是不可或缺的重要知识点。

1. 导数的定义:函数f(x)在x=a点的导数记作f'(a),表示函数在x=a点的变化率。

导数可以表示为极限的形式:f'(a) = lim (h→0) (f(a+h)-f(a))/h2. 导数的几何意义:导数可以理解为函数图像在某一点处的切线斜率。

当导数为正时,函数在该点上升;当导数为负时,函数在该点下降;当导数为零时,函数存在极值点。

3. 常见的导数法则:- 常数导数法则:常数的导数为零。

例如,f(x) = a,其中a为常数,则f'(x) = 0。

- 幂函数导数法则:幂函数的导数为其指数乘以系数。

例如,f(x) = ax^n,其中a和n为常数,则f'(x) = anx^(n-1)。

- 求和、差和乘积的导数法则:求和、差和乘积函数的导数可以从各个项分别求导后再相加、相减、相乘得到。

- 链式法则:对于复合函数,可以通过链式法则来求导。

链式法则的基本形式为:若y = f(g(x)),则y' = f'(g(x)) * g'(x)。

二、导数的应用导数不仅仅是一个数学概念,也有许多实际应用。

在高三文科中,导数的应用主要包括函数的最值、曲线的凹凸性和函数的图像。

1. 函数的最值:通过求导数,可以判断函数的最值点。

当函数的导数为零时,函数可能存在极大值或极小值。

通过求导数和判断导数的符号,可以找到函数的最值点。

2. 曲线的凹凸性:函数的导数还可以判断曲线的凹凸性。

当函数的二阶导数大于零时,函数是凹的;当函数的二阶导数小于零时,函数是凸的。

3. 函数的图像:通过函数的导数,可以对函数的图像进行分析。

函数图像在导数为正的区间上升,在导数为负的区间下降。

函数的极值点对应导数为零的点。

三、常见的导数函数在高三文科中,涉及到许多常见的函数的导数,这些函数在解题过程中常见且重要。

导数和函数的知识点总结

导数和函数的知识点总结

导数和函数的知识点总结一、导数的定义和性质1. 导数的定义函数的导数是函数在某一点上的变化率,它描述了函数在该点的斜率。

设函数y=f(x),如果函数在点x处的导数存在,那么我们可以用f'(x)或者dy/dx来表示函数在点x处的导数,它的定义式为:f'(x) = lim (h->0) ( f(x+h) - f(x) ) / h其中,h表示自变量的微小增量。

导数的定义可以直观理解为对应点处的切线斜率,是函数随着自变量的微小变化而变化的速率。

2. 导数的性质导数的性质包括线性性、导数的四则运算、复合函数求导、反函数求导等。

这些性质为我们在计算导数时提供了便利,并且也为我们理解函数的变化规律提供了重要依据。

3. 隐函数求导有些函数并不是显式地表达为y=f(x)的形式,而是以隐式形式出现,这时就需要用到隐函数求导的方法。

隐函数求导的关键在于利用导数的定义和隐函数的关系式,通过一系列的推导和变换,最终得到隐函数的导数。

4. 高阶导数如果一个函数的导数f'(x)再次可导,那么可以考虑它的二阶导数f''(x),同理还可以考虑其更高阶的导数。

高阶导数描述了函数高阶的变化规律,它在分析函数的曲率、凹凸性等方面有着重要的应用。

二、函数的概念和性质1. 函数的定义函数是一种特殊的关系,它描述了自变量和因变量之间的对应关系。

如果对于每一个自变量x,函数都有唯一确定的因变量y与之对应,那么这个关系就是一个函数。

函数的定义可以表达为y=f(x),其中x为自变量,y为因变量,f(x)为函数的值。

2. 函数的性质函数的性质包括奇偶性、周期性、单调性、凹凸性、极值点、拐点等。

这些性质描述了函数的特征以及函数在自变量的变化下的规律和规则。

3. 常见函数的图像及性质常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,它们都有着特定的图像和性质。

了解这些函数的图像及性质,对于理解函数的变化规律有着重要的意义。

高考文科数学导数专题复习

高考文科数学导数专题复习

高考文科数学导数专题复习第1讲 变化率与导数、导数的计算知 识 梳 理1.导数的概念1函数y =fx 在x =x 0处的导数f ′x 0或y ′|x =x 0,即f ′x 0=0lim x ∆→错误!. 2函数fx 的导函数f ′x =0lim x ∆→错误!为fx 的导函数. 2.导数的几何意义函数y =fx 在点x 0处的导数的几何意义,就是曲线y =fx 在点Px 0,fx 0处的切线的斜率,过点P 的切线方程为y -y 0=f ′x 0x -x 0.3.基本初等函数的导数公式4.导数的运算法则若f ′x ,g ′x 存在,则有:考点一 导数的计算例1 求下列函数的导数:1y =e x ln x ;2y =x 错误!;解 1y ′=e x ′ln x +e x ln x ′=e x ln x +e x 错误!=错误!e x .2因为y =x 3+1+错误!, 所以y ′=x 3′+1′+错误!′=3x 2-错误!.训练1 1 已知函数fx 的导函数为f ′x ,且满足fx =2x ·f ′1+ln x ,则f ′1等于A.-eB.-1解析由fx=2xf′1+ln x,得f′x=2f′1+错误!,∴f′1=2f′1+1,则f′1=-1.答案B22015·天津卷已知函数fx=ax ln x,x∈0,+∞,其中a为实数,f′x为fx的导函数.若f′1=3,则a的值为________.2f′x=a错误!=a1+ln x.由于f′1=a1+ln 1=a,又f′1=3,所以a=3.答案23考点二导数的几何意义命题角度一求切线方程例22016·全国Ⅲ卷已知fx为偶函数,当x≤0时,fx=e-x-1-x,则曲线y=fx在点1,2处的切线方程是________.解析1设x>0,则-x<0,f-x=e x-1+x.又fx为偶函数,fx=f-x=e x-1+x,所以当x>0时,fx=e x-1+x.因此,当x>0时,f′x=e x-1+1,f′1=e0+1=2.则曲线y=fx在点1,2处的切线的斜率为f′1=2,所以切线方程为y-2=2x-1,即2x-y=0.答案2x-y=0训练22017·威海质检已知函数fx=x ln x,若直线l过点0,-1,并且与曲线y=fx相切,则直线l的方程为+y-1=0 -y-1=0 +y+1=0 -y+1=02∵点0,-1不在曲线fx=x ln x上,∴设切点为x0,y0.又∵f′x=1+ln x,∴错误!解得x=1,y0=0.∴切点为1,0,∴f′1=1+ln 1=1.∴直线l的方程为y=x-1,即x-y-1=00.答案B命题角度二求切点坐标例32017·西安调研设曲线y=e x在点0,1处的切线与曲线y=错误!x>0上点P处的切线垂直,则P的坐标为________.解析由y′=e x,知曲线y=e x在点0,1处的切线斜率k1=e0=1.设Pm,n,又y=错误!x>0的导数y′=-错误!,曲线y=错误!x>0在点P处的切线斜率k2=-错误!.依题意k1k2=-1,所以m=1,从而n=1.则点P的坐标为1,1.答案1,1训练3若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.解析1由题意得y′=ln x+x·错误!=1+ln x,直线2x-y+1=0的斜率为2.设Pm,n,则1+ln m=2,解得m=e,所以n=eln e=e,即点P的坐标为e,e. 答案1e,e命题角度三求与切线有关的参数值或范围例42015·全国Ⅱ卷已知曲线y=x+ln x在点1,1处的切线与曲线y=ax2+a+2x+1相切,则a=________.解析由y=x+ln x,得y′=1+错误!,得曲线在点1,1处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2x-1,即y=2x-1.又该切线与y=ax2+a+2x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8训练41.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′x=2在0,+∞上有解,而f′x=错误!+a,即错误!+a在0,+∞上有解,a=2-错误!,因为a>0,所以2-错误!<2,所以a的取值范围是-∞,2.答案 2-∞,22.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P 到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-错误!=1,解得x=1或x=-错误!舍去,故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为1,1,点1,1到直线y=x-2的距离等于错误!,∴点P到直线y=x-2的最小距离为错误!.答案D第2讲导数在研究函数中的应用知识梳理函数的单调性与导数的关系函数y=fx在某个区间内可导,则:1若f′x>0,则fx在这个区间内单调递增;2若f′x<0,则fx在这个区间内单调递减;3若f′x=0,则fx在这个区间内是常数函数.考点一利用导数研究函数的单调性例1设fx=e x ax2+x+1a>0,试讨论fx的单调性.解f′x=e x ax2+x+1+e x2ax+1=e x ax2+2a+1x+2=e x ax+1x+2=a e x错误!x+2①当a=错误!时,f′x=错误!e x x+22≥0恒成立,∴函数fx在R上单调递增;②当0<a<错误!时,有错误!>2,令f′x=a e x错误!x+2>0,有x>-2或x<-错误!,令f′x=a e x错误!x+2<0,有-错误!<x<-2,∴函数fx在错误!和-2,+∞上单调递增,在错误!上单调递减;③当a>错误!时,有错误!<2,令f′x=a e x错误!x+2>0时,有x>-错误!或x<-2,令f′x=a e x错误!x+2<0时,有-2<x<-错误!,∴函数fx在-∞,-2和错误!上单调递增;在错误!上单调递减.训练12016·四川卷节选设函数fx=ax2-a-ln x,gx=错误!-错误!,其中a∈R,e=…为自然对数的底数.1讨论fx的单调性;2证明:当x>1时,gx>0.1解由题意得f′x=2ax-错误!=错误!x>0.当a≤0时,f′x<0,fx在0,+∞内单调递减.当a>0时,由f′x=0有x=错误!,当x∈错误!时,f′x<0,fx单调递减;当x∈错误!时,f′x>0,fx单调递增.2证明令sx=e x-1-x,则s′x=e x-1-1.当x>1时,s′x>0,所以e x-1>x,从而gx=错误!-错误!>0.考点二求函数的单调区间例22015·重庆卷改编已知函数fx=ax3+x2a∈R在x=-错误!处取得极值.1确定a的值;2若gx=fx e x,求函数gx的单调减区间.解1对fx求导得f′x=3ax2+2x,因为fx在x=-错误!处取得极值,所以f′错误!=0,即3a·错误!+2·错误!=错误!-错误!=0,解得a=错误!.2由1得gx=错误!e x故g′x=错误!e x+错误!e x=错误!e x=错误!xx+1x+4e x.令g′x<0,得xx+1x+4<0.解之得-1<x<0或x<-4.所以gx的单调减区间为-1,0,-∞,-4.训练2 已知函数fx=错误!+错误!-ln x-错误!,其中a∈R,且曲线y=fx在点1,f1处的切线垂直于直线y=错误!x.1求a的值;2求函数fx的单调区间.解1对fx求导得f′x=错误!-错误!-错误!,由fx在点1,f1处的切线垂直于直线y =错误!x知f′1=-错误!-a=-2,解得a=错误!.2由1知fx=错误!+错误!-ln x -错误!,x>0.则f′x=错误!.令f′x=0,解得x=-1或x=5.但-10,+∞,舍去.当x∈0,5时,f′x<0;当x∈5,+∞时,f′x>0.∴fx的增区间为5,+∞,减区间为0,5.考点三已知函数的单调性求参数例32017·西安模拟已知函数fx=ln x,gx=错误!ax2+2xa≠0.1若函数hx=fx-gx存在单调递减区间,求a的取值范围;2若函数hx=fx-gx在1,4上单调递减,求a的取值范围.解1hx=ln x-错误!ax2-2x,x>0.∴h′x=错误!-ax-2.若函数hx在0,+∞上存在单调减区间,则当x>0时,错误!-ax-2<0有解,即a>错误!-错误!有解.设Gx=错误!-错误!,所以只要a>Gx min.又Gx=错误!错误!-1,所以Gx min=-1.所以a>-1.即实数a的取值范围是-1,+∞.2由hx在1,4上单调递减,∴当x∈1,4时,h′x=错误!-ax-2≤0恒成立,则a≥错误!-错误!恒成立,所以a≥Gx max.又Gx=错误!错误!-1,x∈1,4因为x∈1,4,所以错误!∈错误!,所以Gx max=-错误!此时x=4,所以a≥-错误!.当a=-错误!时,h′x=错误!+错误!x-2=错误!=错误!,∵x∈1,4,∴h′x=错误!≤0,当且仅当x=4时等号成立.∴hx在1,4上为减函数.故实数a的取值范围是错误!.训练3已知函数fx=x3-ax-1.1若fx在R上为增函数,求实数a的取值范围;2若函数fx的单调减区间为-1,1,求a的值.解1因为fx在R上是增函数,所以f′x=3x2-a≥0在R上恒成立,即a≤3x2对x∈R恒成立.因为3x2≥0,所以只需a≤0.又因为a=0时,f′x=3x2≥0,当且仅当x=0时取等号.∴fx=x3-1在R上是增函数.所以实数a的取值范围是-∞,0.2f′x=3x2-a.当a≤0时,f′x≥0,fx在-∞,+∞上为增函数,所以a≤0不合题意.当a>0时,令3x2-a<0,得-错误!<x<错误!,∴fx的单调递减区间为错误!,依题意,错误!=1,即a=3.第3讲导数与函数的极值、最值知识梳理1.函数的极值与导数的关系1函数的极小值与极小值点:若函数fx在点x=a处的函数值fa比它在点x=a附近其他点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数的极小值点,fa叫做函数的极小值.2函数的极大值与极大值点:若函数fx在点x=b处的函数值fb比它在点x=b附近其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数的极大值点,fb叫做函数的极大值.2.函数的最值与导数的关系1函数fx在a,b上有最值的条件:如果在区间a,b上函数y=fx的图象是一条连续不断的曲线,那么它必有最大值和最小值.2求y=fx在a,b上的最大小值的步骤考点一用导数研究函数的极值命题角度一根据函数图象判断极值例1设函数fx在R上可导,其导函数为f′x,且函数y=1-xf′x的图象如图所示,则下列结论中一定成立的是A.函数fx有极大值f2和极小值f1B.函数fx有极大值f-2和极小值f1C.函数fx有极大值f2和极小值f-2D.函数fx有极大值f-2和极小值f2解析由题图可知,当x<-2时,1-x>3,此时f′x>0;当-2<x<1时,0<1-x<3,此时f′x<0;当1<x<2时,-1<1-x<0,此时f′x<0;当x>2时,1-x<-1,此时f′x>0,由此可以得到函数fx在x=-2处取得极大值,在x=2处取得极小值.答案D命题角度二求函数的极值例2求函数fx=x-a ln xa∈R的极值.解由f′x=1-错误!=错误!,x>0知:1当a≤0时,f′x>0,函数fx为0,+∞上的增函数,函数fx无极值;2当a>0时,令f′x=0,解得x=a.又当x∈0,a时,f′x<0;当x∈a,+∞,f′x>0,从而函数fx在x=a处取得极小值,且极小值为fa=a-a ln a,无极大值.综上,当a≤0时,函数fx无极值;当a>0时,函数fx在x=a处取得极小值a-a ln a,无极大值.命题角度三已知极值求参数例3已知关于x的函数fx=-错误!x3+bx2+cx+bc在x=1处有极值-错误!,试求b,c 的值.解∵f′x=-x2+2bx+c,由fx在x=1处有极值-错误!,可得错误!解得错误!或错误!若b=1,c=-1,则f′x=-x2+2x-1=-x-12≤0,fx没有极值.若b=-1,c=3,则f′x =-x2-2x+3=-x+3x-1.当x变化时,fx与f′x的变化情况如下表:∴当x=1时,fx有极大值-错误!,满足题意.故b=-1,c=3为所求.训练1设函数fx=ax3-2x2+x+ca>0.1当a=1,且函数图象过0,1时,求函数的极小值;2若fx在R上无极值点,求a的取值范围.解由题意得f′x=3ax2-4x+1.1函数图象过0,1时,有f0=c=1.当a=1时,f′x=3x2-4x+1.令f′x>0,解得x<错误!或x>1;令f′x<0,解得错误!<x<1.所以函数在错误!和1,+∞上单调递增;在错误!上单调递减.故函数fx的极小值是f1=13-2×12+1+1=1. 2若fx在R上无极值点,则fx在R上是单调函数,故f′x≥0或f′x≤0恒成立.当a=0时,f′x=-4x+1,显然不满足条件;当a≠0时,f′x≥0或f′1≤0恒成立的充要条件是Δ=-42-4×3a×1≤0,即16-12a≤0,解得a≥错误!.综上,a的取值范围是错误!.考点二利用导数求函数的最值例4 2017·郑州模拟已知函数fx=x-k e x.1求fx的单调区间;2求fx在区间0,1上的最小值.解1由fx=x-k e x,得f′x=x-k+1e x,令f′x=0,得x=k-1.当x变化时,fx与f′x的变化情况如下表:所以,fx的单调递减区间是-∞,k-1;单调递增区间是k-1,+∞.2当k-1≤0,即k≤1时,函数fx在0,1上单调递增,所以fx在区间0,1上的最小值为f0=-k,当0<k-1<1,即1<k<2时,由1知fx在0,k-1上单调递减,在k-1,1上单调递增,所以fx在区间0,1上的最小值为fk-1=-e k-1.当k-1≥1,即k≥2时,函数fx在0,1上单调递减,所以fx在区间0,1上的最小值为f1=1-k e.综上可知,当k≤1时,fx min=-k;当1<k<2时,fx min=-e k-1;当k≥2时,fx min=1-k e.训练2设函数fx=a ln x-bx2x>0,若函数fx在x=1处与直线y=-错误!相切,1求实数a,b的值;2求函数fx在错误!上的最大值.解1由fx=a ln x-bx2,得f′x=错误!-2bxx>0.∵函数fx在x=1处与直线y=-错误!相切.∴错误!解得错误!2由1知fx=ln x-错误!x2,则f′x=错误!-x=错误!,当错误!≤x≤e时,令f′x>0,得错误!<x<1,令f′x<0,得1<x<e,∴fx在错误!上单调递增,在1,e上单调递减,∴fx max=f1=-错误!.考点三函数极值与最值的综合问题例5已知函数fx=错误!a>0的导函数y=f′x的两个零点为-3和0.1求fx的单调区间;2若fx的极小值为-e3,求fx在区间-5,+∞上的最大值.解1f′x=错误!=错误!.令gx=-ax2+2a-bx+b-c,由于e x>0.令f′x=0,则gx=-ax2+2a-bx+b-c=0,∴-3和0是y=gx的零点,且f′x与gx的符号相同.又因为a>0,所以-3<x<0时,gx>0,即f′x>0,当x<-3或x>0时,gx<0,即f′x<0,所以fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.2由1知,x=-3是fx的极小值点,所以有错误!解得a=1,b=5,c=5,所以fx=错误!.因为fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.所以f0=5为函数fx的极大值,故fx在区间-5,+∞上的最大值取f-5和f0中的最大者,又f-5=错误!=5e5>5=f0,所数fx在区间-5,+∞上的最大值是5e5.训练3 2017·衡水中学月考已知函数fx=ax-1-ln xa∈R.1讨论函数fx在定义域内的极值点的个数;2若函数fx在x=1处取得极值,x∈0,+∞,fx≥bx-2恒成立,求实数b的最大值.解1fx的定义域为0,+∞,f′x=a-错误!=错误!.当a≤0时,f′x≤0在0,+∞上恒成立,函数fx在0,+∞上单调递减.∴fx在0,+∞上没有极值点.当a>0时,由f′x<0,得0<x<错误!;由f′x>0,得x>错误!,∴fx在错误!上递减,在错误!上递增,即fx在x=错误!处有极小值.综上,当a≤0时,fx在0,+∞上没有极值点;当a>0时,fx在0,+∞上有一个极值点.2∵函数fx在x=1处取得极值,∴f′1=a-1=0,则a=1,从而fx=x-1-ln x.因此fx≥bx-21+错误!-错误!≥b,令gx=1+错误!-错误!,则g′x=错误!,令g′x=0,得x=e2,则gx在0,e2上递减,在e2,+∞上递增,∴gx min=g e2=1-错误!,即b≤1-错误!.故实数b的最大值是1-错误!.第4讲导数与函数的综合应用考点一利用导数研究函数的性质例12015·全国Ⅱ卷已知函数fx=ln x+a1-x.1讨论fx的单调性;2当fx有最大值,且最大值大于2a-2时,求a的取值范围.解1fx的定义域为0,+∞,f′x=错误!-a.若a≤0,则f′x>0,所以fx在0,+∞上单调递增.若a>0,则当x∈错误!时,f′x>0;当x∈错误!时,f′x<0.所以fx在错误!上单调递增,在错误!上单调递减.2由1知,当a≤0,fx在0,+∞上无最大值;当a>0时,fx在x=错误!取得最大值,最大值为f 错误!=ln错误!+a错误!=-ln a+a-1.因此f 错误!>2a-2等价于ln a+a-1<0.令ga=ln a+a-1,则ga在0,+∞上单调递增,g1=0.于是,当0<a<1时,ga<0;当a>1时,ga>0.因此,a的取值范围是0,1.训练1设fx=-错误!x3+错误!x2+2ax.1若fx在错误!上存在单调递增区间,求a的取值范围;2当0<a<2时,fx在1,4上的最小值为-错误!,求fx在该区间上的最大值.解1由f′x=-x2+x+2a=-错误!错误!+错误!+2a,当x∈错误!时,f′x的最大值为f′错误!=错误!+2a;令错误!+2a>0,得a>-错误!.所以,当a>-错误!时,fx在错误!上存在单调递增区间.2已知0<a<2,fx在1,4上取到最小值-错误!,而f′x=-x2+x+2a的图象开口向下,且对称轴x=错误!,∴f′1=-1+1+2a=2a>0,f′4=-16+4+2a=2a-12<0,则必有一点x0∈1,4,使得f′x0=0,此时函数fx在1,x0上单调递增,在x0,4上单调递减,f1=-错误!+错误!+2a=错误!+2a>0,∴f4=-错误!×64+错误!×16+8a=-错误!+8a=-错误!a=1.此时,由f′x0=-x错误!+x0+2=0x0=2或-1舍去,所以函数fx max=f2=错误!.考点二利用导数研究函数的零点或方程的根例2 2015·北京卷设函数fx=错误!-k ln x,k>0.1求fx的单调区间和极值;2证明:若fx存在零点,则fx在区间1,错误!上仅有一个零点. 1解由fx=错误!-k ln xk>0,得x>0且f′x=x-错误!=错误!.由f′x=0,解得x=错误!负值舍去.fx与f′x在区间0,+∞上的情况如下:所以fx的单调递减区间是0,错误!,单调递增区间是错误!,+∞.fx在x=错误!处取得极小值f错误!=错误!.2证明由1知,fx在区间0,+∞上的最小值为f错误!=错误!.因为fx存在零点,所以错误!≤0,从而k≥e.当k=e时,fx在区间1,错误!上单调递减,且f错误!=0,所以x=错误!是fx 在区间1,错误!上的唯一零点.当k>e时,fx在区间0,错误!上单调递减,且f1=错误!>0,f错误!=错误!<0,所以fx在区间1,错误!上仅有一个零点.综上可知,若fx存在零点,则fx在区间1,错误!上仅有一个零点.训练22016·北京卷节选设函数fx=x3+ax2+bx+c.1求曲线y=fx在点0,f0处的切线方程;2设a=b=4,若函数fx有三个不同零点,求c的取值范围.解1由fx=x3+ax2+bx+c,得f′x=3x2+2ax+b.因为f0=c,f′0=b,所以曲线y=fx 在点0,f0处的切线方程为y=bx+c.2当a=b=4时,fx=x3+4x2+4x+c,所以f′x=3x2+8x+4.令f′x=0,得3x2+8x+4=0,解得x=-2或x=-错误!.当x变化时,fx与f′x的变化情况如下:所以,当c>0且c-错误!<0,存在x1∈-4,-2,x2∈错误!,x3∈错误!,使得fx1=fx2=fx3=0.由fx的单调性知,当且仅当c∈错误!时,函数fx=x3+4x2+4x+c有三个不同零点.考点三导数在不等式中的应用命题角度一不等式恒成立问题例32017·合肥模拟已知fx=x ln x,gx=x3+ax2-x+2.1如果函数gx的单调递减区间为错误!,求函数gx的解析式;2对任意x∈0,+∞,2fx≤g′x+2恒成立,求实数a的取值范围.解1g′x=3x2+2ax-1,由题意3x2+2ax-1<0的解集是错误!,即3x2+2ax-1=0的两根分别是-错误!,1.将x=1或-错误!代入方程3x2+2ax-1=0,得a=-1.所以gx=x3-x2-x +2.2由题意2x ln x≤3x2+2ax-1+2在x∈0,+∞上恒成立,可得a≥ln x-错误!x-错误!,设hx=ln x-错误!x-错误!,则h′x=错误!-错误!+错误!=-错误!,令h′x=0,得x=1或-错误!舍,当0<x<1时,h′x>0,当x>1时,h′x<0,所以当x=1时,hx取得最大值,hx max=-2,所以a≥-2,所以a的取值范围是-2,+∞.训练3已知函数fx=x2-ln x-ax,a∈R.1当a=1时,求fx的最小值;2若fx>x,求a的取值范围.解1当a=1时,fx=x2-ln x-x,f′x=错误!.当x∈0,1时,f′x<0;当x∈1,+∞时,f′x>0.所以fx的最小值为f1=0.2由fx>x,得fx-x=x2-ln x-a+1x>0.由于x>0,所以fx>x等价于x-错误!>a+1.令gx =x-错误!,则g′x=错误!.当x∈0,1时,g′x<0;当x∈1,+∞时,g′x>0.故gx有最小值g1=1.故a+1<1,a<0,即a的取值范围是-∞,0.命题角度二证明不等式例42017·昆明一中月考已知函数fx=ln x-错误!.1求函数fx的单调递增区间;2证明:当x>1时,fx<x-1.1解f′x=错误!-x+1=错误!,x∈0,+∞.由f′x>0得错误!解得0<x<错误!.故fx的单调递增区间是错误!.2证明令Fx=fx-x-1,x∈0,+∞.则有F′x=错误!.当x∈1,+∞时,F′x<0,所以Fx在1,+∞上单调递减,故当x>1时,Fx<F1=0,即当x>1时,fx<x-1.故当x>1时,fx<x-1.训练4 2017·泰安模拟已知函数fx=ln x.1求函数Fx=错误!+错误!的最大值;2证明:错误!+错误!<x-fx;1解Fx=错误!+错误!=错误!+错误!,F′x=错误!,当F′x>0时,0<x<e;当F′x<0时,x>e,故Fx在0,e上是增函数,在e,+∞上是减函数,故Fx max=F e=错误!+错误!.2证明令hx=x-fx=x-ln x,则h′x=1-错误!=错误!,当h′x<0时,0<x<1;当h′x>0时,x>1,故hx在0,1上是减函数,在1+∞上是增函数,故hx min=h1=1.又Fx max=错误!+错误!<1,故Fx<hx,即错误!+错误!<x-fx.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数知识点复习测试卷(文)一、映射与函数 1、映射 f :A →B 概念(1)A 中元素必须都有________且唯一;(2)B 中元素不一定都有原象,且原象不一定唯一。

2、函数 f :A →B 是特殊的映射(1)、特殊在定义域 A 和值域 B 都是非空数集。

函数 y=f(x)是“y 是x 的函数”这句话的数学表示,其中 x是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直y 轴的直线公共点可能没有,也可能是任意个。

(即一个x 只能对应一个y ,但一个y 可以对应多个x 。

)(2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.二、函数的单调性在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。

当x 1<x 2时,都有________,那么,就称函数f (x )在区间A 上是增加的,当x 1<x 2时,都有________,那么,就称函数f (x )在区间A 上是减少的判断方法如下:1、作差(商)法(定义法)2、导数法3、复合函数单调性判别方法(同增异减) 函数的最值函数y =f (x )的定义域为D ,(1)存在x 0∈D ,使得f (x 0)=M ;(2)对于任意x ∈D ,都有________. M 为最大值 (3)存在x 0∈D ,使得f (x 0)=M ;(4)对于任意x ∈D ,都有________. M 为最小值 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.三.函数的奇偶性⑴偶函数:)()(x f x f =-设(b a ,)为偶函数上一点,则________也是图象上一点.偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足________,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . ⑵奇函数:)()(x f x f -=-设(b a ,)为奇函数上一点,则________也是图象上一点.奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足________,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f 周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有________,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中________的正数,那么这个最小正数就叫做f (x )的最小正周期.※(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)函数周期性的三个常用结论:①若f (x +a )=-f (x ),则T =2a ,②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).※(1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.四.二次函数 幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0).②顶点式:f (x )=________________③零点式:f (x )=________________ (2)二次函数的图像和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图像定义域 (-∞,+∞) (-∞,+∞)值域________⎝⎛⎦⎤-∞,4ac -b 24a单调性在________________上单调递减; 在_______________上单调递增在________________上单调递增; 在________________上单调递减对称性函数的图像关于x =-b2a对称2.幂函数(1)定义:形如_______(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的性质①幂函数在_______上都有定义;②幂函数的图像过定点_______;③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调_______; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调_______.※(1)二次函数最值问题解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .(3)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(4)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.五.函数的变换①()()y f x y f x =⇒=-:将函数()y f x =的图象关于y 轴对称得到的新的图像就是()y f x =-的图像;⇒②()()y f x y f x =⇒=-:将函数()y f x =的图象关于x 轴对称得到的新的图像就是()y f x =-的图像;⇒③()|()|y f x y f x =⇒=:将函数()y f x =的图象在x 轴下方的部分对称到x 轴的上方,连同函数()y f x =的图象在x 轴上方的部分得到的新的图像就是|()|y f x =的图像;⇒④()(||)y f x y f x =⇒=:将函数()y f x =的图象在y 轴左侧的部分去掉,函数()y f x =的图象在y 轴右侧的部分对称到y 轴的左侧,连同函数()y f x =的图象在y 轴右侧的部分得到的新的图像就是(||)y f x =的图像.⇒注:(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a 是函数f(x)的对称轴; (2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=2ba +是f(x)的对称轴. ※(1)利用函数的图像研究函数的性质对于已知或易画出其在给定区间上图像的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图像研究,但一定要注意性质与图像特征的对应关系.(2)利用函数的图像可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图像交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图像位于g (x )图像下方的点的横坐标的集合,体现了数形结合思想.六、指数函数与对数函数的图像和性质一.指数函数(一) 指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(二)指数函数及其性质1、指数函数的概念:一般地,函数______________________ 叫做指数函数,其中x 是自变量,函数的定义域为R .注:指数函数的底数的取值范围______________________. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是___________或___________; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ※指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.二、对数函数 (一)对数1.对数的概念:一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中___________叫作对数的底数,___________叫作真数.说明:○1 注意底数的限制0>a ,且1≠a ; ○2x N a x=;○3 注意对数的书写格式.N a log 两个重要对数:○1 常用对数:以10为底的对数___________;○2 自然对数:以无理数 71828.2=e 为底的对数的对数___________. 指数式与对数式的互化 幂值 真数b对数 (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N ______________________; ○2 =NMa log ___________; ①a log a N =_____;②log a a N =_____(a >0且a ≠1).○3 n a M log =___________ )(R n ∈. 注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ; 0>b ).利用换底公式推导下面的结论(1)b mnb a n a mlog log =;(2)a b b a log 1log =.(三)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注:○1 对数函数的定义与指数函数类似,都是形 式定义,注意辨别。

相关文档
最新文档