高速切削加工技术

合集下载

高速切削加工实验报告

高速切削加工实验报告

高速切削加工实验报告1. 引言高速切削加工是一种先进的制造技术,通过提高切削速度和优化刀具材料与结构,可以加快加工速度、提高加工效率和加工精度。

本实验旨在通过对铝合金进行高速切削加工,探究加工参数对加工效果的影响,为实际加工提供依据。

2. 实验方法2.1 材料准备选取工业常用的6061铝合金作为实验材料,该材料具有良好的机械性能和加工性能。

2.2 实验设备* 高速切削机床:使用一台高速切削机床进行实验,该设备能够实现高速切削并准确控制加工参数。

* 刀具:选用合适的高速切削刀具,具备良好的切削性能和刚性。

* 冷却液:使用专用的冷却液,避免材料在高速切削过程中引起过热。

* 测量仪器:使用数控测量仪器对实验结果进行测量和记录,保证数据的准确性。

2.3 实验步骤1. 将铝合金工件固定在高速切削机床上,并确认其位置和稳定性。

2. 选择合适的切削刀具,并调整好刀具安装参数。

3. 设置高速切削加工参数,如切削速度、进给速度、切削深度等。

4. 启动高速切削机床,进行加工。

5. 实时记录切削过程中的数据,如工件表面温度、切削力、切削动力等。

6. 完成加工后,对工件进行后续处理,如去毛刺、抛光等。

7. 使用数控测量仪器对工件进行尺寸测量,并记录测量结果。

3. 实验结果3.1 加工参数对加工效果的影响在实验中,我们选取了不同的切削速度、进给速度和切削深度进行加工,并记录了加工过程中的数据和加工效果。

图1 展示了不同切削速度下的加工效果。

可以观察到,随着切削速度的增加,加工效率明显提高,同时工件表面质量也有所改善。

然而,当切削速度达到一定范围时,过高的切削速度会导致材料过热和刀具磨损的加剧,从而降低切削质量。

图2 展示了不同进给速度下的加工效果。

可以发现,在一定范围内,增加进给速度可以提高加工效率,但过高的进给速度会导致切屑堆积、刀具磨损和精度下降。

图3 展示了不同切削深度下的加工效果。

可以看到,增加切削深度可以在一定程度上提高加工效率,但同时也会增加材料的变形和切削力,从而降低加工质量。

《高速切削加工》课件

《高速切削加工》课件

3
高速切削加工技术的新发展
高速切削加工技术的新发展是智能化、高效化、多功能化等方向的发展。
总结
1 高速切削加工的重要性
在现代先进制造业中,高速切削加工已成为最先进的加工工艺之一。
2 发展前景
高速切削加工将朝着更高精度、更稳定、更智能的方向发展。
刀具
高速切削加工用的刀具有硬质合金刀具和普通高速钢刀具。
2
夹具
用于夹紧加工件,保证加工件的位置和尺寸的准确度。
3
加工中心机床
高速切削加工的核心设备,一般配备自动换刀库,可实现多种工序的加工。
高速切削加工的原理
四角切削
四角切削是刀具在加工过程 中所受力的主要方向,也是 影响刀具切削稳定的主要因 素。
பைடு நூலகம்
机械制造
高速车削、高速铣削、高速钻削 等机械制造领域。
电子信息
如手机、笔记本电脑金属外壳、 DVD机零部件、各类光学仪器等。
高速切削加工的挑战与未来
1
超细加工
针对非金属的加工,要求精度更高,应考虑空气轴承、颤动反馈控制、非触变形 传感控制等。
2
超硬材料加工
超硬材料的加工,如石墨、硬质合金、陶瓷等,已成为高速切削加工的一个重要 领域。
精密加工
精密高速切削加工广泛应用 于航空航天、汽车、电子和 精密机械制造等领域,如模 具、光学部件、超声波探头 和燃烧室等零部件。
表面质量
高速切削加工能够获得极高 的表面质量,如挤出铝合金 管、铜合金输入输出端子, 铜轴套、石英晶体等产品的 光洁度达到镜面级。
高速切削加工的应用
航空航天
航空航天零部件,如高压涡轮叶 片、大型钛合金零件等。
加工效率高
高速切削加工速度快,可以完成 较长时间处理不完的工作。

刀具高速切削加工技术特点

刀具高速切削加工技术特点

刀具高速切削加工技术特点
高速切削加工技术中的“高速”是一个相对概念,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度并不相同。

通常把切削速度比常规高出5~10倍甚至以上的切削加工叫作高速切削或超高速切削。

以德国达姆施塔特工业大学H.Schulz教授提出的铣削速度范围比较具有代表性:铝合金1000~7000m/min,铸铁800~3000m/min,钢500~2000m/min,钛合金100~1000m/min,镍基合金50~500m/min。

传统硬质合金类刀具加工铝合金壳体切削速度一般在150~300m/min之间,而聚晶石(PCD)类刀具的切削速度能达到2000m/min以上,实现高速切削。

高速切削加工时,高切削速度在材料剪切区短时释放大量热能。

因此,随着切削速度的增加,切削的剪切区、切屑压缩区和变形区内材料的单位切削力反而下降。

总切削力和必需的切削功率同样下降。

高速切削工艺典型的小切削深度结合高进给速度和高主轴转速,将降低切削刃切入工件的时间,或称接触时间。

刀具监控系统在高速切削加工过程中还应该考虑的一个问题是刀柄与机床主轴锥孔的连接方式,常用的锥柄有BT、HSK、CAT及CAPITO等多种形式,但是在高速切削时HSK因其的双面接触过定位结构可以保证刀尖很高的跳动要求,,特别适合高转速工况。

第 1 页共 1 页。

浅谈高速切削加工技术的发展

浅谈高速切削加工技术的发展
成本降低 。 五 六

前 , 于 高 速 切 削 加 工 中 心 其 主 轴 最 高 转 速 一 般 都 大 于 10 0/ 适 0 0r m n 有 高 达 6 0 0/ n 10 0 rmn 为 普 通 机 床 1 i, 0 0 rmi- 0 0 0/ i, 0倍 左 右 ;
0科技 — — —



塑 坐
浅谈高速切削加工技术 的发展
口 蔡 素 桔

要 : 高速 切 削技 术 是 近 十 几 年 来迅 速 崛起 的 一项 先 进 制 造 技 术 , 已成 为现 代 制造 业 的 重要 组 成 部 分 。 高 速切 削 的特 点 和 机 从
理 入 手 , 析 这 项 高新技 术 发展 状 况 和 目前 的应 用 。 分 关键 词 : 高速 切 削 : 床 ; 具 机 刀
高速切削强调的是高的速度 , 要有高的主轴转速 , 速切削 中 即 高 的 高 速 不是 一 个 技 术 指 标 , 而应 是 一个 经济 指 标 。 速 切 削 时 由 高
于 切 削 速度 的 大 幅 度 提 高 , 定 了 高 速 切 削 具 有 以下 特 点 : 是 决 一
性 能 良好 的机 床 是 实 现 高 速 切 削 前 提 和 关 键 ,而 具 有 高 精 度 高 速 主 轴 和控 制精 度 高 高 速 进 给 系 统 ,则 是 高 速 切 削 机 床 技
主 电动 机 功 率 1 k 5 w罐 0 W, k 以满足高速车削 、 高速铣削之要求 。 控制

高 速 切 削 的 机 理
在 高 速 切 削 过 程 中 , 于 切 削 速 度 足 够 快 , 应 变 硬 化 来 不 由 使 及 发生 , 变形 只发 生小范 围内会 使切削力小 于传统速 度的切 削力 。高 速 切 屑 变 形 机 理 在 很 大程 度上 与 热 量 有 关 ,随 着 切 削 速 度 的增 加, 切屑 流受 到 的阻 力 减 小 , 而使 切 屑 变薄 、 削 力 减小 。 从 切 高 速 切 削 机 理 主要 包 括 高 速 切 削 中 切 削 力 、切 削 热 变 化 规 律 . 具 磨 损 的规 律 . 屑 的 成 型 机 理 以 及 这 些 规 律 和 机 理 对 加 刀 切 工 的影 响 。 目前 对 铝 合 金 的 高 速 切 削 机 理 的 研 究 与 应 用 比较 成 功 ,但 对 黑 金 属 和难 加 工 材 料 的 高 速 切 削 机 理 的研 究 与应 用 尚 处 于不 断探 索之 中 ,应 用 也 是 在 不 成 熟 的 理 论 指 导 下进 行 。 另 外 , 速 切 削 机 理 的研 究 与 应 用 已进 入钻 铰 、 丝 等 的切 削方 式 高 攻 中 , 还 处 于 探 索 阶段 。随 着 科 学 技 术 的 发 展 , 高 速 切 削 的 切 但 对 削 力 、 削热 、 屑 成 型 、 具 磨 损 、 具 寿 命 、 工 的 精 度 和 表 切 切 刀 刀 加

先进制造工艺--高速切削技术

先进制造工艺--高速切削技术

第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。

高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。

例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。

高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。

60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。

高速切削最早在飞机制造业和模具制造l受到很大的重视。

为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。

但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。

高速切削是克服这方面问题的最好解决方案。

汽车工业中,模具制造是产品更新换代的关键。

新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。

所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。

图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。

《高速切削加工》课件

《高速切削加工》课件

03 高速切削加工的关键技术
高速切削加工的刀具技术
刀具材料
01
高速切削加工需要使用高硬度、高耐磨性的刀具材料,如硬质
合金、陶瓷和金刚石等。
刀具涂层技术
02
涂层技术能够提高刀具表面的硬度和耐磨性,降低摩擦系数,
提高切削效率。
刀具几何形状
03
高速切削加工需要采用特殊的刀具几何形状,如小前角、大后
角和短刀刃等,以减小切削力、切削热和刀具磨损。
在高速切削加工中,降低能耗、减少废弃 物排放和提高资源利用效率成为重要的发 展趋势,符合可持续发展的要求。
高速切削加工面临的挑战与对策
高温与热变形
高速切削加工过程中产生的高温可能导致 刀具磨损、工件热变形等问题,需采用新 型刀具材料、强化冷却技术等手段解决。
振动与稳定性
高速切削加工过程中的振动可能影响加工 精度和表面质量,应优化机床结构、提高 刚性和阻尼性能。
模具型腔加工
高速切削加工技术在模具制造业 中广泛应用于模具型腔的加工, 如注塑模、压铸模等,能够快速 准确地完成复杂型面的加工。
模具钢材料加工
高速切削加工技术能够高效地加 工各种模具钢材料,如H13、 SKD61等,提高加工效率,减少 热量的产生和材料的变形。
高速切削加工在航空航天制造业的应用
航空发动机制造
高速切削加工的工艺参数
1 2 3
切削速度
提高切削速度可以提高加工效率,但同时也需要 选择合适的刀具和材料,以避免刀具磨损和工件 热变形。
进给速度
进给速度的提高可以增加材料去除率,但过高的 进给速度可能导致刀具磨损和工件表面质量下降 。
切削深度
适当的切削深度可以提高加工效率,但过大的切 削深度可能导致刀具磨损和工件表面质量下降。

高速切削加工技术ppt课件.pptx

高速切削加工技术ppt课件.pptx

我国高速切削加工技术最早应用于轿车工业,二十世纪八十年 代后期,相继从德国、美国、法国、日本等国引进了多条具有先进 水平的轿车数控自动化生产线,如从德国引进的具有九十年代中期 水平的一汽大众捷达轿车和上海大众桑塔纳轿车自动生产线,其中 大量应用了高速切削加工技术。生产线所用刀具材料以超硬刀具为 主,依靠进口。
近年来,我国航天、航空、汽轮机、模具等制造行业引进了 大量加工中心和数控镗铣床,都不同程度地开始推广应用高速切 削加工技术,其中模具行业应用较多。
例如上海某模具厂,高速铣削高精度铝合金模具型腔,半精 铣采用主轴转速18000rpm,切削深度2mm,进给速度5m/min; 精铣采用20000rpm,切削深度0.2mm,进给速度8m/min,加工 周期为6h,质量完全满足客户要求。
➢ 高速切削已成为当今制造业中一项快速发展 的新技术,在工业发达国家,高速切削正成 为一种新的切削加工理念。
➢ 人们逐渐认识到高速切削是提高加工效率的 关键技术。
高速切削的特点
➢ 随切削速度提高,单位时间内材料切除率增加,切削加工时间减 少,切削效率提高3~5倍。加工成本可降低20%-40%。
➢ 在高速切削加工范围,随切削速度提高,切削力可减少30%以上, 减少工件变形。对大型框架件、刚性差的薄壁件和薄壁槽形零件 的高精度高效加工,高速铣削是目前最有效的加工方法。
高速切削的加工工艺方法
目前高速切削工艺主要在车削和铣削,各类高速切削机床 的发展将使高速切削工艺范围进一步扩大,从粗加工到精加工 ,从车削、铣削到镗削、钻削、拉削、铰削、攻丝、磨削等。
随着市场竞争的进一步加剧,世界各国的制造业都将更加积 极地应用高速切削技术完成高效高精度生产。
高速切削加工在国内的研究与应用

先进制造技术 第2章 高速切削技术2-1

先进制造技术 第2章 高速切削技术2-1



萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成

高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。

切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。

一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)

萨洛蒙(Salomon)曲线
1600
切削温度/℃

1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃

高速切削加工技术

高速切削加工技术

高速切削的适用性
高速切削的适用性
高速加工作为一种新的技术,其优点是显而易见的,它给传统的金属切削理论带来了一种革命性的变化。那 么,它是不是放之四海而皆准呢?显然不行。即便是在金属切削机床水平先进的瑞士、德国、日本、美国,对于这 一崭新技术的研究也还处在不断的摸索研究当中。实际上,人们对高速切削的经验还很少,还有许多问题有待于 解决:比如高速机床的动态、热态特性;刀具材料、几何角度和耐用度问题,机床与刀具间的接口技术(刀具的 动平衡、扭矩传输)、冷却润滑液的选择、CAD/CAM 的程序后置处理问题、高速加工时刀具轨迹的优化问题等等。
(1)CAM系统应具有很高的计算编程速度
高速加工中采用非常小的切给量与切深,故高速加工的NC程序比对传统数控加工程序要大得多,因而要求计 算速度要快,要方便节约刀具轨迹编辑,优化编程的时间。
(2)全程自动防过切处理能力及自动刀柄干涉检查能力
高速加工以传统加工近10倍的切削速度进行加工,一旦发生过切对机床、产品和刀具将产生灾难性的后果, 所以要求其CAM系统必须具有全程自动防过切处理的能力。高速加工的重要特征之一就是能够使用较小直径的刀 具,加工模具的细节结构。系统能够自动提示最短夹持刀具长度,并自动进行刀具干涉检查。
如此看来,主轴转速为10~r/min这样的高速切削在实际应用时仍受到一些限制: (1)主轴转速10~r/min时,刀具必须采用 HSK 的刀柄,外加动平衡,刀具的长度不能超过120mm,直径不 能超过16mm,且必须采用进口刀具。这样,在进行深的型腔加工时便受到限制。 (2)机床装备转速为10~r/min的电主轴时,其扭矩极小,通常只有十几个N·m,最高转速时只有5~6N·m。 这样的高速切削,一般可用来进行石墨、铝合金、淬火材料的精加工等。 (3)MIKRON公司针对这些情况开发了一些主轴最高转速为r/min、r/min、r/min和r/min的机床,尽力提高 进给量(~mm/min),以保证机床既能进行粗加工,又能进行精加工,既省时效率又高。

高速加工技术及应用

高速加工技术及应用

高速加工技术及应用高速加工技术是一种在短时间内迅速、高效地完成工件加工的技术。

它是现代制造业发展的重要一环,广泛应用于航空航天、汽车、船舶、电子、模具等领域。

高速加工技术的特点有以下几点:1.高速切削:高速加工技术采用高速旋转的切削工具,使得切削速度大大提高,一般可以达到切削速度的数倍甚至十数倍,从而大大缩短了加工时间。

2.小切削量:高速加工技术多采用微小切削量的方式进行切削,这样可以降低加工对机床、刀具和工件的热影响,提高加工精度。

3.高精度和高表面质量:高速加工技术能够实现很高的加工精度和表面质量,通常可以达到几个微米的加工精度和很低的表面粗糙度。

4.刀具寿命长:高速加工技术采用高硬度和高耐磨性的刀具材料,使得刀具使用寿命大大延长,降低了换刀频率和加工成本。

高速加工技术在以下方面有广泛的应用:1.航空航天领域:在航空航天领域,高速加工技术能够加工各种复杂曲面和薄壁结构件,如发动机叶片、航空航天零件等,提高了零件的精度和表面质量。

2.汽车领域:高速加工技术在汽车制造中主要用于零部件的加工,如发动机缸体、座椅滑块等,能够提高加工效率和产品质量。

3.船舶领域:高速加工技术在船舶制造中主要用于船体结构和轴承加工,如船体钢板切割、轴承的外圈和内圈加工等,提高了加工速度和质量。

4.电子领域:高速加工技术在电子领域主要用于半导体器件的切割和加工,如芯片切割、光纤连接器加工等,提高了加工精度和产品性能。

5.模具领域:高速加工技术在模具制造中主要用于模具的精细加工,如模具的深孔加工、细小结构的加工等,提高了模具的加工精度和寿命。

高速加工技术的发展对于提高制造业的竞争力和产品质量具有重要意义。

随着材料科学和机械加工技术的不断发展,高速加工技术将在更多领域得到应用,并不断推动制造业的发展。

高速切削加工

高速切削加工

高速切削机理

高速切削技术的应用和发展是以高速切削机理为理论基础的。通过对高速加 工中切屑形成机理、切削力、切削热、刀具磨损、表面质量等技术的研究, 也为开发高速机床、高速加工刀具提供了理论指导。 高速切削机理的研究主要有以下几个方面: 1、高速切削过程和切削成形机理的研究对高速切削加工中切屑成形机理、 切削过程的动态模型、基本切削参数等反映切削过程原理的研究,采用科学 实验和计算机模拟仿真两种方法。 2、高速加工基本规律的研究对高速切削加工中的切削力、切削温度、刀具 磨损、刀具耐用度和加工质量等现象及加工参数对这些现象的影响规律进行 研究,提出反映其内在联系的数学模型。 3、各种材料的高速切削机理研究由于不同材料在高速切削中表现出不同的 特性,所以,要研究各种工程材料在高速切削下的切削机理,包括轻金属材 料、钢和铁、复合材料、难加工合金材料等。通过系统的实验研究和分析, 建立高速切削数据库,以便指导生产。 4、高速切削虚拟技术研究在实验研究的基础上,利用虚拟现实和防真技术, 虚拟高速加工过程中刀具和工件相对运动的作用过程,对切屑形成过程进行 动态防真,显示加工过程中的热流、相变、温度及应力分布等,预测被加工 工件的加工质量,研究切削速度、进给量、刀具和材料以及其他切削参数具 2.1涂层刀具 涂层在刀具基体上涂复硬质耐磨金属化合物薄膜以达到提高刀具表面的硬 度和耐磨性的目的。 2.2金属陶瓷刀具 金属陶瓷主要包括高耐磨性能的TiC基硬质合金(TiC+Ni或Mo)、高韧性的 TiC基硬质合金( TiC+TaC+WC)、强韧的TiN基硬质合金和高强韧性的TiCN基 硬质合金(TiCN+NbC)等。 2.3陶瓷刀具 陶瓷刀具可在υc=200m/min~1000m/min范围内切削软钢、淬硬钢和铸铁 υc=200m/min 1000m/min 等材料。 2.4CBN刀具 CBN刀具是高速精加工或半精加工淬硬钢、冷硬铸铁和高温合金等的理想 对具材料,可以实现“以车代磨”。 2.5PCD刀具 PCD刀具可实现有色金属、非金属耐磨材料的高速加工。 • 2.6性能优异的高速钢和硬质合金复杂刀具 用高性能钴高速钢、粉末冶金高速钢和硬质合金制造的齿轮刀具,可用于 齿轮的高速切削。

高速切削加工技术介绍

高速切削加工技术介绍

美国于 1960 年前后开始进行超高速切削试验。试验将刀具装在加农炮里,从滑台上射向工件;或将工件当作子弹射向固定的刀具。 1977 年美国在一台带有高频电主轴的加工中心上进行了高速切削试验,其主轴转速可以在 180 ~ 18000r / min 范围内无级变速,工作台的最大进给速度为 7 . 6m / min。
1979 年美国防卫技术研究总署( DARPA )发起了一项“先进加工研究计划”,研究切削速度比塑性波还要快的超高速切削,为快速切除金属材料提供科学依据。
在德国, 1984 年国家研究技术部组织了以 Darmstadt 工业大学的生产工程与机床研究所 PTW )为首,包括 41 家公司参加的两项联合研究计划,全面而系统地研究了超高速切削机瓜刀具、控制系统以及相关的工艺技术,分别对各种工件材料(钢、铸铁、特殊合金、铝合金、铝镶铸造合金、铜合金和纤维增强塑料等)的超高速切削性能进行了深入的研究与试验,取得了切削热的绝大部分被切屑带走国际公认的高水平研究成果,并在德国工厂广泛应用,获得了好的经济效益。日本于 20 世纪 60 年代就着手超高速切削机理的研究。日本学者发现在超高速切削时,工件基本保持冷态,其切屑要比常规切屑热得多。日本工业界 35善于吸取各国的研究成果并及时应用到新产品开发中去,尤其在高速切削机床的研究和开发方面后来居上,现已跃居世界领先地位。进人 20 世纪 90 年代以来,以松浦( Matsuora )、牧野 ( Makino )、马扎克( Mazak )和新泻铁( Niigata )等公司为代表的一批机床制造厂,陆续向市场推出不少超高速加工中心和数控铣床,日本厂商现已成为世界上超高速机床的主要提供者.
2 高速切削刀具
刀具是实现高速加工的关键技术之一。生产实践证明,阻碍切削速度提高的关键因素是刀具能否承受越来越高的切削温度在萨洛蒙高速切理研究和高速切削试验的不断深人,证明高速切削的最关键技术之一就是所用的刀具。舒尔兹教授在第一届德国 ― 法国高速切削年会( 1997 年)上做的报告中指出:目前,在高速加工技术中有两个基本的研究发展目标,一个是高速引起的刀具寿命问题,另一个是具有高精度的高速机床.

高速加工技术

高速加工技术

手机外壳的加工
电脑键盘的制造
平板电脑外壳的铣削
电子元器件的微细加 工
06
高速加工技术的发展趋势和未来展望
高速加工技术的发展趋势
更高的切削速度:随着新材料和新工艺的不断发展高速加工技术将进一步提高切削速度提高加 工效率。
智能化和自动化:随着人工智能和机器学习技术的不断发展高速加工技术将更加智能化和自动 化实现加工过程的自动监控和优化。
高速加工技术采 用小切削力可以 减小工件变形和 振动提高加工精
度。
高速加工技术可 以快速切除工件 材料缩短加工时
间降低成本。
高速加工技术采 用先进的控制系 统和刀具能够实 现高精度的轨迹 控制和补偿功能 进一步增强加工 过程的灵活性。
04
高速加工的关键技术
高速切削技术
定义:高速切削 是一种在极高转 速下进行的切削 加工方法具有高 进给速度和高切 削速度的特点。
05
高速加工技术的应用案例
航空航天领域的应用案例
高速加工技术在航空航天领域的应用提高了零件的加工精度和效率。 在航空发动机制造中高速加工技术能够快速去除材料提高生产效率。 高速加工技术在航天器制造中得到广泛应用如卫星天线、太阳能电池板等。 高速加工技术能够满足航空航天领域对高精度、高质量、高效率的加工要求。
高精度加工技术
高速切削技术:通过高转速的刀具实现高效切削提高加工精度和表面质量。
超精密切削技术:采用超硬材料和纳米级切削参数实现超精密切削提高加工精度和表面光 洁度。
快速点磨削技术:通过高速旋转的磨头对工件进行快速点磨削实现高效高精度加工。
激光辅助加工技术:利用激光的高能量密度特性对工件进行快速、高精度的加工。
通过高速加工 技术可以实现 快速原型制造 和快速模具制 造缩短了产品 开发周期降低 了开发成本。

高速切削加工技术

高速切削加工技术

在通用机械制造业中,高速切 削加工技术广泛应用于机床、 泵阀、压缩机和液压传动装置 等产品的制造。
05
高速切削加工技术的发 展趋势与挑战
高效稳定的高速切削技术
高效稳定的高速切削技术是未来发展 的关键,需要不断提高切削速度和加 工效率,同时保持加工过程的稳定性 和可靠性。
高效稳定的切削技术还需要不断优化 切削参数和刀具设计,以适应不同材 料和加工需求的挑战。
高速切削工艺技术
切削参数选择
根据不同的加工材料和切削条件, 选择合适的切削速度、进给速度 和切削深度等参数,以实现高效
切削和高质量加工。
切削液使用
合理选用切削液,如乳化液、极 压切削油等,以提高切削效率和 工件表面质量,同时减少刀具磨
损和热量产生。
加工路径规划
采用合理的加工路径和顺序,以 减少空行程和换刀次数,提高加
高效稳定的切削技术需要解决切削过 程中的振动和热变形问题,提高加工 精度和表面质量。
高性能刀具材料的研发
高性能刀具材料是实现高速切削 的关键因素之一,需要具备高硬 度、高强度、高耐磨性和良好的
抗热震性等特点。
研发新型高性能刀具材料,如超 硬材料、陶瓷材料等,能够提高 切削速度和加工效率,同时减少
刀具磨损和破损。
改善加工质量
01
高速切削加工技术能够减少切削 力,降低切削热,从而减小了工 件的热变形和残余应力,提高了 加工精度和表面质量。
02
由于切削力减小,工件不易产生 振动,减少了振纹和表面粗糙度 ,进一步提高了加工质量。
降低加工成本
高速切削加工技术能够显著提高加工效率,缩短了加工周期,从而降低了单件成 本。
高速切削加工技术
目 录
• 高速切削加工技术概述 • 高速切削加工技术的优势 • 高速切削加工的关键技术 • 高速切削加工的实践应用 • 高速切削加工技术的发展趋势与挑战 • 高速切削加工技术的未来展望

高速切削加工技术

高速切削加工技术

高速切削加工高速切削加工(high-speed cutting, HSC)是先进制造技术的一个重要组成部分,其主要优点是可实现加工的高效率和高品质。

近年来高速切削加工技术在世界主要经济发达国家(如德、英、美、意、日等)发展迅猛,这些国家生产的高速切削加工机床及辅、配、软、硬件几乎每年都以一个新台阶的速度更新换代,目前所能达到的性能指标已是令人瞠目。

Micron、Jobs、Haas、Fpt、Dmg等世界著名机床公司近年来大力发展的快速更换主轴头技术使同一台机床能适应多种负载和速度要求(即所谓粗精加工同机“一次过”),在工件的定位、安装、传输等环节可节约大量的非加工时间。

机床主轴的高速旋转以及进给速度、加速度的相应提高,一方面可直接缩短加工时间,另一方面还因高速切削具有激振频率特别高、工作平稳、振动小的优势而有利于提高加工表面质量,即高速切削加工可作为模具和结构零件的最终加工,通过“以切代磨”或“以切代放电”来提高加工效率和加工质量(即勿需进行费时低效的后续磨削工序、模具电极电火花加工);工件还可先淬火后切削,直接将硬度高达65HRC的材料高速切削加工至最终尺寸。

高速切削加工的实现除需高速机床外还需配备适宜高速切削的刀具。

根据2002年广东省国际模具高速加工技术研讨会上Micron、Jobs、肯纳飞硕等公司的特邀报告,近年来德国SGS、日本三菱(神钢)及住友、瑞士山特维克、美国肯纳飞硕等国外著名刀具公司都先后推出了各自的高速切削刀具,不仅有高速切削普通结构钢的刀具,还有能直接高速切削淬硬钢的陶瓷刀具等超硬刀具,尤其是涂层刀具异军突起,在淬硬钢的半精加工和精加工中发挥着巨大作用。

近年来我国(尤其华南地区)制造业发展迅速,模具和汽车、摩托车制造业发达,拥有高速切削机床的企业不断增多。

然而,与高速切削机床和刀具技术的快速发展相比,这些企业在高速切削工艺、检测及应用软件等方面的技术还比较落后,与硬件不能配套,致使不少厂家进口的先进设备根本没有发挥其应有作用。

高速切削加工技术的概念

高速切削加工技术的概念

高速切削加工技术的概念高速切削加工技术是一种在机械加工中使用高速旋转刀具来去除材料的工艺。

它可以提高加工效率、减少加工成本,提高切削质量,并延长刀具寿命。

在高速切削加工技术中,切削速度通常比传统切削速度高出几倍,达到可达到切削极限的速度。

高速切削加工技术的基本原理是通过尽可能高的转速来提高切削速度,以减小切削过程中的切削时间。

高速切削加工技术的发展需要满足以下几个条件:高速切削的刀具材料需要具备良好的硬度、热稳定性和刚性;高速切削需要使用高速转子以提供所需的切削速度;高速切削需要使用高速切削液以冷却和润滑刀具和切削床面。

高速切削加工技术的优点主要体现在以下几个方面:1. 高加工效率:高速切削加工可以提高切削速度,减少切削时间,从而提高加工效率。

与传统切削相比,高速切削可以将加工时间减少50%以上。

2. 高表面质量:高速切削加工可以减小切削过程中的机床振动和切削力,从而获得更高的表面质量。

切削过程中,高速转子产生的离心力可以抑制刀具的振动,提高切削表面的光洁度。

3. 刀具寿命长:高速切削加工可以减小切削温度,减小切削热对刀具的影响,从而延长刀具的使用寿命。

高速切削可以在减小切削温度的同时提高切削速度,从而有效地降低刀具的受热面积,减小刀具的磨损。

4. 减少加工成本:高速切削加工可以提高加工效率,减少切削时间,从而减少加工成本。

高速切削还可以减小切削力和切削温度,减少切削液的消耗,降低切削液的成本。

高速切削加工技术的应用范围广泛,包括航空航天、汽车制造、模具制造、电子制造等领域。

例如,在航空航天制造中,高速切削可以快速精确地加工复杂的零部件;在汽车制造中,高速切削可以提高发动机零部件的加工效率和精度;在模具制造中,高速切削可以提高模具的加工效率和精度;在电子制造中,高速切削可以提高电路板的加工效率和精度。

总之,高速切削加工技术是现代制造业的一个重要发展方向。

通过提高切削速度,高速切削加工可以提高加工效率、减少加工成本,并提高切削表面的质量。

高速切削(HSC)技术

高速切削(HSC)技术

一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。

切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。

实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。

二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。

到目前为止,其原理仍未被现代科学研究所证实。

但这一原理的成功应该不只局限于此。

高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。

这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。

事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。

所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。

高速加工技术93.pptx

高速加工技术93.pptx

静压轴承工作原理
第47页/共99页
静压轴承对轴颈圆度误差的均化作用
第48页/共99页
静压轴系特点
轴承间隙内介质压强由外部供给,忽略主轴旋转时的动 压效应,承载能力不受主轴转速的影响,实现任何转速 下液/气体摩擦,具有设计所需的承载能力;适应性好, 寿命长
主轴浮起后是纯液/气体摩擦,起动摩擦阻力小,主轴 旋转后轴线偏移量比轴颈轴套的加工误差小得多
高速加工在汽车工业中的应用
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔 高速钻孔 表面和内侧倒棱
专用机床
高速加工中心
5轴×4工序 = 20轴(3万件/月)
1台1轴1工序(3万件/月)
刚性(零件、孔数、孔径、孔 型固定不变)
柔性(零件、孔数、孔径 、孔型可变)
汽车轮毂螺栓孔高第速24页加/共工99页实例(日产公司)
和工件受力均小。切削速度高,吃刀量很小, 剪切变形区窄,变形系数ξ减小,切削力降低 大概30%-90% • 刀具和工件受热影响小。切削产生的热量大部 分被高速流出的切屑所带走,故工件和刀具热 变形小,有效地提高了加工精度 • 刀具寿命长(高速切削刀具)。刀具受力小, 受热影响小,破损的机率很小,磨损慢
后径向传感器 轴向传感器 磁浮第轴53承页/高共9速9页主轴
磁悬浮轴承电主轴
高频电动机
磁悬浮轴承
松刀用液压装置
HSK-E刀柄
磁悬浮轴承
水套冷却
瑞士IBGA公司的磁悬浮电主轴
第54页/共99页
磁浮轴承电主轴特点
➢主轴由两个径向和两个轴向磁浮轴承支承,磁 浮轴承定子与转子间空隙约0.1mm。
第8页/共99页
德国 ROEDERS,42000rpm,适 合如手机模具加工

高速加工技术

高速加工技术

高速加工技术一.起源1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。

切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。

实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。

通过长期的研究,从上世纪90年代中期起,高速加工进入实用化阶段。

用户可以享受高速加工的高效率,高精度和成本优势。

德国OPS-INGERSOLL公司是目前世界上最好的高速加工中心制造商之一。

二.高速加工的定义高速加工是指转速在30,000RPM以上,实际加工切削进给保持8-12m/min的恒定进给。

我们从定义中看出,高速加工的一个关键要素是高速恒定进给。

由于高速加工时,转速上万转,特别在加工高硬度材料时,瞬间产生大量热量,所以必须保持高速进给,使产生的85%以上的热量被铁屑带走。

但在模具加工过程中,硬度通常在HRC50以上,且为复杂的曲面或拐角,所以高速机床必须做到在加工曲面或拐角时仍能高速进给。

另外实际加工中,刀具都有一个最佳切削参数,如能保持恒定进给,对刀具寿命,切削精度和加工表面质量都有提高。

由此看出,高速加工不仅是高速主轴,而且也是机床伺服系统的综合。

事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能C NC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速加工的切削速度范围 高速加工切削速度范围因不同的工件材料而异 高速加工切削速度范围随加工方法不同也有所不同 车削: 700-7000 m/min 铣削: 300-6000 m/min 钻削: 200-1100 m/min 磨削: 50-300 m/s
塑料 铝合金 铜 铸铁 钢 钛合金 镍合金 10 100 1000 切削速度V(m/min) 10000
广东工业大学研究了高速主轴系统和快速进给系统
东北大学研究了高速磨削技术
成都工具研究所研究了高速切削刀具的发展和产业化等 尽管我国高速切削加工技术的研究还有待于全面深入,但 通过我国科技工作者的艰苦努力,高速切削加工和高速切 削机床的基础理论研究取得了令人鼓舞的成就,对促进我 国高速切削加工技术的发展起到了重大作用。
高速与超高速切削速度范围
自从 Salomon 提出高速切削的概念以来,高速切削技
术的发展经历了高速切削理论的探索、应用探索、初 步应用和较成熟应用等四个阶段。
现已在生产中得到了一定的推广应用。特别是20世纪
80年代以来,各工业发达国家投入了大量的人力和物 力,研究开发了高速切削设备及相关技术,20世纪90 年代以来发展更迅速。美、德、法等国处于领先地位 ,英、日、瑞士等国亦追踪而上
削加工淬硬后的模具可减少甚至取代放电加工和磨削加工
,满足加工质量的要求,加快产品开发周期,大大降低制 造成本。
高速加工的应用
航空00-180cm3/min 。镍合金、钛合金加工,切削速度达
200-1000 m/min
汽车工业:采用高速数控机床和高速加工中心组成高速柔性生产 线,实现多品种、中小批量的高效生产。 模具制造:高速铣削代替传统的电火花成形加工,效率提高3-5倍 仪器仪表:精密光学零件加工。
度的提高而升高,但切削速度提高到一定值后,切削温
度不但不升高反会降低,且该切削速度值与工件材料的
种类有关。对每一种工件材料都存在一个速度范围,在
该速度范围内,由于切削温度过高,刀具材料无法承受
,即切削加工不可能进行,称该区为“死谷”。
1600
切削温度/℃

1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃

高速切削加工时,切屑以很高的速度排出,切削热大部分被切屑
带走,切削速度提高愈大,带走的热量愈多,传给工件的热量大
幅度减少,工件整体温升较低,工件的热变形相对较小。因此, 有利于减少加工零件的内应力和热变形,提高加工精度,适合于 热敏感材料的加工。
高速切削的特点
转速的提高,使切削系统的工作频率远离机床的低阶固有 频率,加工中鳞刺、积屑瘤、加工硬化、残余应力等也受 到抑制。因此,高速切削加工可大大降低加工表面粗糙度 ,加工表面质量可提高1~2等级。 高速切削可加工硬度HRC45~65的淬硬钢铁件,如高速切
刀具材料、工件材料和切削方式而异,目前,高速切
削的高速范围国内外专家尚无共识。
虽然由于实验条件的限制,当时无法付诸实践,但
这个思想给后人一个非常重要的启示,即如能越过 这个“死谷”,在高速区工作,有可能用现有刀具
材料进行高速切削,切削温度与常规切削基本相同
,从而可大幅度提高生产效率。
高速加工各种材料的切削速度范围为:
我国高速切削刀具材料已有很大的发展,特别是陶瓷刀具,而
且初步具备了开发高速切削刀具的能力
但金刚石、立方氮化硼、TiC(N)基硬质合金(金属陶瓷)、涂层刀
具和超细晶粒硬质合金刀具的性能、品种与国外差距很大。
高速切削刀具制造技术也相对落后,还没有形成自己特色的高
速切削刀具制造体系。
几乎所有国际知名的工具厂商都在国内设立了或独资或合
高速钻孔
表面和内侧倒棱
高速加工中心 1台1轴1工序(3万件/月) 柔性(零件、孔数、孔径、孔型可变)
汽车轮毂螺栓孔高速加工实例(日产公司)
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修 a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修 b)高速模具加工的过程
高速切削加工研究体系及关键技术
加工表面完整性 刀具寿命 切削热 切削力 切屑形成机理 CAD/CAM NC编程 加工参数 工艺优化 数据库 稳定性 安全防护 高速主轴 进给机构 CNC控制 工 艺 切削 理论 高速切削 加工技术 监控与测 试技术 机床 刀具材料 刀体结构 刀刃形状 刀柄结构 刀 具 工 件 动平衡 装卸 定位夹紧 加工特征 工件材料 温控系统 换刀装置 基本结构 冷却系统
一文中给出了著名的“Salomom曲线”——对应于一定
的工件材料存在一个临界切削速度,此点切削温度最高
,超过该临界值,切削速度增加,切削温度反而下降。
Salomom的理论与实验结果,引发了人们极大的兴趣,
并由此产生了“高速切削(HSC)”的概念。
他指出,在常规切削速度范围内,切削温度随着切削速
我国高速切削加工技术研究起步较晚,20世纪80年代初期 ,我们切削加工研究组结合陶瓷刀具材料的研究,比较系 统地研究了Al2O3基陶瓷刀具高速硬切削(车和端铣)的切 削力、切削温度、刀具磨损和破损、加工表面质量以及刀
具几何形状等,工件材料包括45#钢、T10A钢、高速钢、轴
承钢、模具钢、渗炭淬硬齿轮钢等,淬硬HRC50-65,切削 速度为100-500m/min,建立了有关切削力、切削温度模型 、刀具磨损与破损理论、加工表面质量变化规律等。
高速切削可加工的工件材料
高速切削加工的工件材料包括钢、铸铁、有色金属及其 合金、高温耐热合金以及碳纤维增强塑料等合材料的加工, 其中以铝合金和铸铁的高速加工最为普遍。 几乎所有传统切削能加工的材料高速切削都能加工,甚 至传统切削很难加工的材料如镍基合金、钛合金和纤维增强 塑料等在高速切削条件下将变得易于切削。
资企业,除陶瓷刀具外,各种高速、高精度和高可靠性的金刚
石、立方氮化硼、TiC(N)基硬质合金(金属陶瓷)和涂层刀具以及
刀柄系统80%以上由它们提供。 目前主要差距是高速切削加工用的高性能刀具材料(包括涂 层材料、涂层技术)、刀具制造工艺技术、刀具安全技术等还处 于初步阶段,要努力建立我国自己的“高效率、高精度、高可
高材料切除率、加工精度和加工表面质量的现代加工
技术。
以切削速度和进给速度界定:高速加工的切削速度和
进给速度为普通切削的5~10倍。
以主轴转速界定:高速加工的主轴转速≥10000 r/min
高速切削是个相对的概念,是相对常规切削而言。高
速切削包括高速软切削、高速硬切削、高速干切削和 大进给切削等。超高速加工的切削速度范围因不同的
ADD YOUR SUBTITLE HERE
高速切削加工技术
LOGO
高速切削的概念和基本原理
高速切削技术,是以比常规高数倍的切削速度对零件进
行切削加工的一项先进制造技术。高速切削理论是1931
年4月德国物理学家Carl.J.Salomon提出的。
1931年德国物理学家C. J. Salomom在“高速切削原理”
近年来,我国航天、航空、汽轮机、模具等制造行业引进了
大量加工中心和数控镗铣床,都不同程度地开始推广应用高速切
削加工技术,其中模具行业应用较多。 例如上海某模具厂,高速铣削高精度铝合金模具型腔,半精 铣采用主轴转速 18000rpm,切削深度2mm,进给速度 5m/min; 精铣采用 20000rpm,切削深度 0.2mm,进给速度 8m/min,加工 周期为6h,质量完全满足客户要求。
高速切削已成为当今制造业中一项快速发展
的新技术,在工业发达国家,高速切削正成 为一种新的切削加工理念。
人们逐渐认识到高速切削是提高加工效率的
关键技术。
高速切削的特点

随切削速度提高,单位时间内材料切除率增加,切削加工时间减
少,切削效率提高3~5倍。加工成本可降低20%-40%。

在高速切削加工范围,随切削速度提高,切削力可减少30%以上, 减少工件变形。对大型框架件、刚性差的薄壁件和薄壁槽形零件 的高精度高效加工,高速铣削是目前最有效的加工方法。
高速切削的应用领域
由于高速切削加工具有高生产效率,减少切削力,提高加工
精度和表面质量,降低生产成本并且可加工高硬材料等许多优点
,已在汽车和摩托车制造业、模具业、轴承业、航空航天业、机 床业、工程机械、石墨电极等行业中广泛应用。 使上述行业的产品质量明显提高,成本大幅度降低,获得了 市场竞争优势,取得了重大的经济效益。对提高切削加工技术的 水平,推动机械制造技术的进步也具有深远的意义。
两种模具加工过程比较
10 1 0.1 0.01 0.001
粗加工
传统加工方法 精加工
高速切削
手工精修
少量手工精修
加工时间 100 %
采用高速加工缩短模具制作周期(日产汽车公司)
对于复杂型面模具,模具精加工费用往往占到模具总费用 的50%以上。采用高速加工可使模具精加工费用大大减少, 从而可降低模具生产成本。
钢和铸铁及其合金500-1500m/min
铸铁最高达2000m/min
钻削100~200m/min,攻丝100m/min 淬硬钢(35~65HRC) 100-400m/min 铝及其合金达到2000-4000m/min,最高达7500m/min 耐热合金达90-500m/min;钛合金达150-1000m/min
高速切削的加工工艺方法
目前高速切削工艺主要在车削和铣削,各类高速切削机床 的发展将使高速切削工艺范围进一步扩大,从粗加工到精加工 ,从车削、铣削到镗削、钻削、拉削、铰削、攻丝、磨削等。 随着市场竞争的进一步加剧,世界各国的制造业都将更加积 极地应用高速切削技术完成高效高精度生产。
相关文档
最新文档