图形的相似题型练习
人教版九年级数学下《图形的相似》拔高练习
《图形的相似》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.2.(5分)已知线段a=3,b=4,则a、b的比例中项为()A.3.5B.12C.2D.±3.(5分)下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5 C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=44.(5分)下列四组线段中,不成比例线段的是()A.2cm,5cm,10cm,25cm B.4cm,7cm,4cm,7cmC.2cm,cm,cm,4cm D.cm,cm,2cm,5cm 5.(5分)下列a、b、c、d四条线段,成比例线段的是()A.a=12,b=4,c=5,d=12B.a=15,b=3,c=5,d=1C.a=13,b=2,c=8,d=12D.a=5,b=0.02,c=0.7,d=0.3二、填空题(本大题共5小题,共25.0分)6.(5分)如图,AB∥CD∥EF,如果AC=2,AE=5,DF=3.6,那么BD=.7.(5分)已知线段a,b,c满足==,且a+2b+c=26,则a=,b=,c=.8.(5分)若,则﹣的值是.9.(5分)如图,已知l1∥l2∥l3,若=,EF=4,则DE=.10.(5分)如图,AE、BD交于点C,AB∥DE,若AC=4,BC=2,DC=1,则EC=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知==,求的值.12.(10分)如图,在平行四边形ABCD中,点E为边BC上一点,联结AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F,=.(1)若BD=20,求BG的长;(2)求的值.13.(10分)如图,已知点D、E分别在△ABC的边BA、CA的延长线上,且AE =3,AC=6,AD=2,AB=4.(1)求证:DE∥BC;(2)若BC=5,求ED的长.14.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC =1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.15.(10分)已知====k,求k值.《图形的相似》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理进行判断即可.【解答】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD∥EF,则,所以B选项的结论正确;C、由AB∥CD∥EF,则,所以C选项的结论正确;D、由AB∥CD∥EF,则,所以D选项的结论错误;故选:D.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.2.(5分)已知线段a=3,b=4,则a、b的比例中项为()A.3.5B.12C.2D.±【分析】根据比例中项的定义列方程求解即可.【解答】解:∵设线段c为a,b的比例中项,∴c2=ab,∵线段a=3,b=4,∴c2=12,∴c=2,c=﹣2(舍去).故选:C.【点评】本题考查了比例线段,熟记比例中项的定义是解题的关键,要注意线段的长度是正数.3.(5分)下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5 C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=4【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、4×10=5×8,能成比例;B、2×5=2×,能成比例;C、1×4≠2×3,不能成比例;D、1×4=2×2,能成比例.故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.4.(5分)下列四组线段中,不成比例线段的是()A.2cm,5cm,10cm,25cm B.4cm,7cm,4cm,7cmC.2cm,cm,cm,4cm D.cm,cm,2cm,5cm 【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.2×25=5×10,四组线段中能成比例,不符合题意;B.4×7=4×7,四组线段中能成比例,不符合题意;C.×4≠×2,四组线段不能成比例,符合题意;D.×5=×2,四组线段中能成比例,不符合题意;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.5.(5分)下列a、b、c、d四条线段,成比例线段的是()A.a=12,b=4,c=5,d=12B.a=15,b=3,c=5,d=1C.a=13,b=2,c=8,d=12D.a=5,b=0.02,c=0.7,d=0.3【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【解答】解:A.4×12≠5×12,所以不成比例,不符合题意;B.1×15=3×5,所以成比例,符合题意;C.2×13≠8×12,所以不成比例,不符合题意;D.0.02×5≠0.3×0.7,所以不成比例,不符合题意;故选:B.【点评】本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,AB∥CD∥EF,如果AC=2,AE=5,DF=3.6,那么BD= 2.4.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC=2,AE=5,∴CE=3,AB∥CD∥EF,∴,即,∴BD=2.4,故答案为:2.4【点评】本题考查平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,列出比例式.7.(5分)已知线段a,b,c满足==,且a+2b+c=26,则a=6,b=4,c=12.【分析】设比值为k,然后用k表示出a、b、c,再代入等式求解得到k,然后求解即可.【解答】解:设===k,则a=3k,b=2k,c=6k,∵a+2b+c=26,∴3k+4k+6k=26,解得:k=2,∴a=6,b=4,c=12,故答案为:6,4,12.【点评】本题考查了比例的性质,比例线段,利用“设k法”用k表示出a、b、c可以使计算更加简便.8.(5分)若,则﹣的值是﹣.【分析】将﹣变形为﹣,再代入计算即可求解.【解答】解:∵,∴=,∴﹣=﹣=﹣.故答案为:﹣.【点评】本题考查了比例的性质,熟记比例的性质是解题的关键.9.(5分)如图,已知l1∥l2∥l3,若=,EF=4,则DE=.【分析】根据平行线分线段成比例定理列出比例式,代入计算.【解答】解:∵l1∥l2∥l3,解得,DE=,故答案为:.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.10.(5分)如图,AE、BD交于点C,AB∥DE,若AC=4,BC=2,DC=1,则EC=2.【分析】由AB∥DE,即可证得△ABC∽△ECD,然后由相似三角形的对应边成比例,即可求得CE的长.【解答】解:∵AB∥DE,∴△ABC∽△ECD,∴,∵AC=4,BC=2,DC=1,∴,解得:CE=2.故答案为:2【点评】此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.三、解答题(本大题共5小题,共50.0分)11.(10分)已知==,求的值.【分析】设===k,根据比例的性质得出x=2k,y=3k,z=4k,代入求出即可.【解答】解:设===k,所以==﹣1.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键.12.(10分)如图,在平行四边形ABCD中,点E为边BC上一点,联结AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F,=.(1)若BD=20,求BG的长;(2)求的值.【分析】(1))由GF∥BC推出=即可解决问题;(2)由AB∥CD,AB=CD,推出=,=,可得=解决问题;【解答】解:(1)∵GF∥BC,∴=,∵BD=20,=∴BG=8.(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴=,∴=,∴=,∴=.【点评】本题考查平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(10分)如图,已知点D、E分别在△ABC的边BA、CA的延长线上,且AE =3,AC=6,AD=2,AB=4.(1)求证:DE∥BC;(2)若BC=5,求ED的长.【分析】(1)根据平行线分线段成比例证明即可;(2)根据平行线的性质和相似三角形的判定定理得出△EAD∽△CAB,根据相似三角形的性质求出即可.【解答】证明:(1)∵AE=3,AC=6,AD=2,AB=4,∴,∴,∴DE∥BC;(2)∵DE∥BC,∴△EAD∽△CAB,∴,∵BC=5,∴,∴ED=2.5.【点评】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD∽△CAB是解此题的关键.14.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC =1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.【分析】(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C =72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CD•AC,于是有AD2=CD•AC,则可根据线段黄金分割点的定义得到结论;(2)设AD=x,则CD=AC﹣AD=1﹣x,由(1)的结论得到x2=1﹣x,然后解方程即可得到AD的长.【解答】(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)解:设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为.【点评】本题考查了黄金分割,相似三角形的判定和性质,解一元二次方程,熟练掌握相似三角形的判定和性质是解题的关键.15.(10分)已知====k,求k值.【分析】依据等比性质可得,=k,分两种情况讨论,即可得到k的值.【解答】解:∵====k,∴由等比性质可得,=k,当a+b+c+d≠0时,k==;当a+b+c+d=0时,b+c+d=﹣a,∴k===﹣2;综上所述,k的值为或﹣2.【点评】本题主要考查了比例的性质的运用,解决问题的关键是掌握比例的性质.。
图形的相似章末重难点题型(举一反三)(原卷版)
【考点1 比例线段】【方法点拨】对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a:b=c:d(即ad=bc),这四条线段是成比例线段,简称比例线段.【例1】(秋•朝阳区校级月考)下面四组线段中,成比例的是()A.a=2,b=3,c=4,d=5B.a=1,b=2,c=2,d=4C.a=4,b=6,c=5 d=10D.a=√2,b=√3,c=3,d=√2【变式1-1】(•成都模拟)已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm【变式1-2】(•龙岗区校级模拟)若a是2,4,6的第四比例项,则a=;若x是4和16的比例中项,则x=.【变式1-3】(秋•皇姑区期末)已知四条线段a ,3,a +1,4是成比例线段,则a 的值为 . 【考点2 黄金分割】【方法点拨】黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB≈0.618AB ,并且线段AB 的黄金分割点有两个.【例2】(•福建模拟)在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACAB=BC AC,那么点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点,当MN =1时,PM 的长是 . 【变式2-1】(秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .AC BCB .BC ACC .BCABD .AB BC【变式2-2】(春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( )A .√5−12B .√5+12C .3−√52D .3+√52【变式2-3】(•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【考点3 比例的基本性质】【方法点拨】解决此类问题通常利用设k 法即可有效解决,注意方程思想以及分类讨论思想的灵活运用. 【例3】(•徐汇区一模)已知:a :b :c =2:3:5 (1)求代数式3a−b+c 2a+3b−c的值; (2)如果3a ﹣b +c =24,求a ,b ,c 的值.【变式3-1】(秋•永登县期末)已知a 、b 、c 是△ABC 的三边,且满足a+43=b+32=c+84,且a +b +c =12,请你探索△ABC 的形状.【变式3-2】(秋•碑林区校级月考)已知2a b+c+d=2b a+c+d=2c a+b+d=2d a+b+c=k ,求k 值.【变式3-3】(秋•雁江区校级月考)已知a 、b 、c 均为非零的实数,且满足a+b−c c=a−b+c b=−a+b+ca,求(a+b)(b+c)(c+a)abc的值.【考点4 平行线分线段成比例】【方法点拨】平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【例4】(•下城区二模)如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ;DF 分别交l 1,l 2,l 3于点D ,E ,F ;AC 与DF 交于点O .已知DE =3,EF =6,AB =4. (1)求AC 的长;(2)若BE :CF =1:3,求OB :AB .【变式4-1】(•亳州模拟)如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于( )A .103B .203C .52D .152【变式4-2】(•哈尔滨模拟)如图,在△ABC 中,AD ∥BC ,点E 在AB 边上,EF ∥BC ,交AC 边于点F ,DE 交AC 边于点G ,则下列结论中错误的是( )A .AE BE=AF CFB .AG GF=DG EGC .AG GF=AE EBD .AEAB=AF AC【变式4-3】(秋•平房区期末)已知,在△ABC 中,点D 为AB 上一点,过点D 作DE ∥BC ,DH ∥AC 分别交AC 、BC 于点E 、H ,点F 是BC 延长线上一点,连接FD 交AC 于点G ,则下列结论中错误的是( )A .AD DB=AE DHB .CFDE=DH CGC .FD FG=EC CGD .CH BC=AE AC【考点5 相似三角形的判定】【方法点拨】相似三角形的判定方法汇总:1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似【例5】(秋•瑞安市期末)如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.【变式5-1】(•农安县一模)在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【变式5-2】(秋•顺义区期末)如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,与①相似的三角形是()A.②④B.②⑤C.③④D.④⑤【变式5-3】(秋•灌云县期末)如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C 、D 、E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(4,2)B .(6,0)C .(6,3)D .(6,5)【考点6 相似三角形的性质(周长)】【方法点拨】掌握相似三角形周长比等于对应边的比是解题关键.【例6】(•利辛县模拟)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,点E 在AD 上,如果∠ABE =∠C ,AE =2ED ,那么△ABE 与△ADC 的周长比为( )A .1:2B .2:3C .1:4D .4:9【变式6-1】(•海南)如图,在▱ABCD 中,AB =10,AD =15,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,若BG =8,则△CEF 的周长为( )A .16B .17C .24D .25【变式6-2】(•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42【变式6-3】(•平顶山一模)如图,已知平行四边形ABCD ,点E 在DC 上,DE :EC =2:1,连接AE 交BD 于点F ,则△DEF 与△BAF 的周长之比为( )A .4:9B .1:3C .1:2D .2:3【考点7 相似三角形的性质(面积)】【方法点拨】掌握相似三角形面积比是对应边比的平方的性质是解题关键.【例7】(秋•商河县期末)如图,在△ABC 中,DE ∥BC ,BE 和CD 相交于点F ,且S △EFC =3S △EFD ,则S△ADE:S △ABC 的值为( )A .1:3B .1:8C .1:9D .1:4【变式7-1】(•海珠区一模)如图,在平行四边形ABCD 中,点E 在DA 的延长线上,且AE =13AD ,连接CE 交BD 于点F ,交AB 于点G ,则S △BGC :S 四边形ADCG 的值是( )A .35B .53C .57D .34【变式7-2】(•松桃县模拟)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △DOE 与S △COE 的比是( )A .1:25B .1:5C .1:4D .1:3【变式7-3】(秋•汝阳县期末)已知如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB于点Q,那么S△CPE:S△ABC=.【考点8 相似基本模型(A字型)】【方法点拨】基础模型:A字型(平行)反A字型(不平行)【例8】(•松江区一模)已知:如图,点D,F在△ABC边AC上,点E在边BC上,且DE∥AB,CD2=CF•CA.(1)求证:EF∥BD;(2)如果AC•CF=BC•CE,求证:BD2=DE•BA.【变式8-1】(秋•青羊区校级月考)如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB 的长; (2)求FG 的长.【变式8-2】(•东明县模拟)如图所示,在△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3. (1)求CE 的长.(2)在△ABC 中,点D ,E ,Q 分别是AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .小明认为DP BQ=PE QC,你认为小明的结论正确吗?请说明你的理由.【变式8-3】(•东莞市一模)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,线段AG 分别交线段DE ,BC 于点F ,G ,且AD AC=DF CG.(1)求证:△ADF ∽△ACG ; (2)若AD AC=37,求AF FG的值.【考点9 相似基本模型(X字型)】【方法点拨】基础模型:X字型(平行)反X字型(不平行)【例9】(秋•滨江区期末)如图,AD与BC交于点O,EF过点O,交AB与点E,交CD与点F,BO=1,CO=3,AO=32,DO=92.(1)求证:∠A=∠D.(2)若AE=BE,求证:CF=DF.【变式9-1】(秋•花都区期末)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.【变式9-2】(秋•朔城区期末)如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求GEED的值【变式9-3】(秋•黄浦区期中)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.【考点10 相似基本模型(AX型)】【方法点拨】A字型及X字型两者相结合,通过线段比进行转化.【例10】(•丛台区校级三模)如图,△ABC中,D.E分别是AB、AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【变式10-1】(•江夏区模拟)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果CE BE=23,求FEEG的值.【变式10-2】(秋•五华县期末)已知,如图,在平行四边形ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连接EM ,分别交线段AD 于点F 、AC 于点G . (1)求证:△AFG ∽△CMG ; (2)求证:GF GM=EF EM.【变式10-3】(•黄浦区一模)如图,已知AB ∥CD ,AC 与BD 相交于点E ,点F 在线段BC 上,AB CD=12,BF CF=12.(1)求证:AB ∥EF ;(2)求S △ABE :S △EBC :S △ECD .【考点11 相似基本模型(作平行线)】【方法点拨】解决此类问题的关键是作平行线去构造相似三角形从而利用相似三角形的性质去解决问题. 基础模型:【例11】(•长丰县一模)如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则AF FC为( )A .1:5B .1:4C .1:3D .1:2【变式11-1】(•金华模拟)如图,D 、E 分别是△ABC 的边BC 、AB 上的点,AD 、CE 相交于点F ,AE =15EB ,BD =13BC ,则CF :EF = .【变式11-2】(秋•福田区校级期末)如图,AD 是△ABC 的中线,点E 是线段AD 上的一点,且AE =13AD ,CE 交AB 于点F .若AF =2cm ,则AB = cm .【变式11-3】(•青白江区模拟)如图,等边三角形ABC 中,AB =3,点D 是CB 延长线上一点,且BD =1,点E 在直线AC 上,当∠BAD =∠CDE 时,AE 的长为 .【考点12 相似基本模型(双垂直型)】【方法点拨】直角三角形被斜边上的高分成两个直角三角形与原三角形相似,即△ACD ∽△ABC ∽△CBD.【例12】(•越城区一模)如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是( )A .3:2B .2:3C .3:√13D .2:√13.【变式12-1】(•张家口模拟)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB=12,△CEF的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( )A .116B .15C .14D .125【变式12-2】(秋•玉田县期末)边长为1的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为316,则CE 的长为 .【变式12-3】(•南岗区二模)如图,AC是矩形ABCD的对角线,过点B作BE⊥AC于点E,BE的延长线交AD于点F,若DF=EF,BC=2,则AF的长为.【考点13 相似基本模型(手拉手型)】【方法点拨】基础模型:旋转放缩变换,图中必有两对相似三角形.【例13】(秋•福田区校级期末)如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3B.4:3C.√5:2D.2:√3【变式13-1】(秋•昭平县期末)如图,AB=3,AC=2,BC=4,AE=3,AD=4.5,DE=6,∠BAD=20°,则∠CAE的度数为()A.10°B.20°C.40°D.无法确定【变式13-2】(秋•漳浦县期末)如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB =4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56AE,其中正确的是()A.①②B.③④C.②③D.②③④【变式13-3】(•亳州模拟)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE •CE =DE •EF . (1)求证:△ADE ∽△ACD ;(2)如果AE •BD =EF •AF ,求证:AB =AC .【考点14 相似基本模型(一线三等角型)】【方法点拨】基础模型:如图1,∠B=∠C=∠EDF 推出△BDE ∽△CFD (一线三等角) 如图2,∠B=∠C=∠ADE 推出△ABD ∽△DCE (一线三等角)如图3,特别地,当D 时BC 中点时:△BDE ∽△DFE ∽△CFD 推出ED 平分∠BEF ,FD 平分∠EFC. 【例14】(•肥东县二模)如图,在△ABC 中,AB =AC =6,D 是AC 中点,E 是BC 上一点,BE =52,∠AED =∠B ,则CE 的长为( )A .152B .223C .365D .649【变式14-1】(秋•资阳区期末)如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =2,CD =1,则△ABC 的边长为( )A .3B .4C .5D .6【变式14-2】(秋•杨浦区校级月考)如图,已知在△ABC 中,AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作∠DEF =∠B ,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.【变式14-3】(•嘉定区二模)已知:△ABC ,AB =AC ,∠BAC =90°,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF . (1)如图1,当∠EDF =90°时,求证:BE =AF ; (2)如图2,当∠EDF =45°时,求证:DE 2DF 2=BE CF.【考点15 相似三角形中的动点问题】【例15】(春•文登区期末)如图,Rt △ABC ,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿CA 向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一个点随之停止.(1)求经过几秒后,△PCQ 的面积等于△ABC 面积的25?(2)经过几秒,△PCQ 与△ABC 相似?【变式15-1】(秋•渭滨区期末)如图所示,在等腰△ABC 中,AB =AC =10cm ,BC =16cm .点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm /s .连接DE ,设运动时间为t (s )(0<t <10),解答下列问题: (1)当t 为何值时,△BDE 的面积为7.5cm 2;(2)在点D ,E 的运动中,是否存在时间t ,使得△BDE 与△ABC 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.【变式15-2】(•晋安区一模)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =2,当点D 在BC 上运动时(点D 不与B 、C 重合),且△ADE 是等腰三角形,求此时BD 的长.【考点16 相似三角形中的折叠问题】【例16】(•渝中区校级三模)如图,在△ABC 中,∠ACB =90°,点D 、E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,若BC =12,AB =20,则CD 的长为( )A .193B .254C .258D .6【变式16-1】(•台安县一模)在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC .下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D =135°;④BB ′=BC ;⑤AB 2=AE •AF .其中正确的个数为( )A .2B .3C .4D .5【变式16-2】(•拱墅区二模)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(填写正确结论的序号)【变式16-3】(春•文登区期末)已知,矩形ABCD,点E是AD上一点,将矩形沿BE折叠,点A恰好落在BD上点F处.(1)如图1,若AB=3,AD=4,求AE的长;(2)如图2,若点F恰好是BD的中点,点M是BD上一点,过点M作MN∥BE交AD于点N,连接EM,若MN平分∠EMD,求证:DN•DE=DM•BM.【考点17 相似三角形的实际应用】【方法点拨】解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题,利用相似及方程思想有效解决.【例17】(•莲湖区二模)数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;【变式17-1】(•山西一模)“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D 处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【变式17-2】(•凉山州)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【考点18 作图—位似变换】【方法点拨】掌握画位似图形的一般步骤为(先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形).【例18】(•长丰县一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2).请解答下列问题:(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点的坐标;(3)如果点D(a,b)在线段BC上,请直接写出经过(2)的变化后对应点D2的坐标.【变式18-1】(春•文登区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【变式18-2】(春•南关区校级期末)如图,在平面直角坐标系中,给出了格点△ABC(顶点均在正方形网格的格点上),已知点A的坐标为(﹣4,3).(1)画出△ABC关于y轴对称的△A1B1C1.(2)以点O为位似中心,在给定的网格中画△A2B2C2,使△ABC与△A2B2C2位似,且点A2的坐标为(8,﹣6).(3)△ABC与△A2B2C2的位似比是.【变式18-3】(•合肥二模)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.。
最新初中数学图形的相似技巧及练习题附答案解析
最新初中数学图形的相似技巧及练习题附答案解析一、选择题1.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.3.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形ABCD 的边长为2,则点F 坐标为( )A .(8,6)B .(9,6)C .19,62⎛⎫ ⎪⎝⎭ D .(10,6)【答案】B【解析】【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO 的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 BC OBEF EO==,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴136BOBO=+,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.4.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ=,再过点Q作垂线,利用相似三角形的性质求出QF、OF,进而确定点Q的坐标,确定k的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.6.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,2542CD OD==,∴CD855=,OD45=,∴C(455,855),∴k325 =,【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.8.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为( )A .20米B .18米C .16米D .15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30, ∴旗杆的高=130=152⨯米. 故选:D .【点睛】 本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.9.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm ,则这条边在投影中的对应边长为( )A .8 cmB .12 cmC .16 cmD .24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm ,∴设这条边在投影中的对应边长为:x ,则=,解得:x=12.故选B .考点:位似变换.11.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V ∴43S ACD S CBA =V V ∵ACD V 的面积为15 ∴44152033S CBA S ACD ==⨯=V V故答案为:A .【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.12.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.13.如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D .下列结论:①△AC 1C 为等腰三角形;②△AB 1D ∽△BCD ;③α=75°;④CA =CB 1,其中正确的是( )A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2yx =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA =∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.15.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.16.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.17.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.5【答案】B【解析】【分析】由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:GH CHAB BC=、GH BHCD BC=,然后两式相加即可.【详解】解:∵AB∥GH,∴△CGH∽△CAB,∴GH CHAB BC=,即2GH CHBC=①,∵CD∥GH,∴△BGH∽△BDC,∴GH BHCD BC=,即3GH BHBC=②,①+②,得:123GH GH CH BHBC BC+=+=,解得:61.25GH==.故选:B.【点睛】本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB BDCD=D.AD ABAB AC=【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.19.如图,在ABC∆中,,D E分别是边,AB AC的中点,ADE∆和四边形BCED的面积分别记为12,S S,那么12SS的值为()A.12B.14C.13D.23【答案】C【解析】【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得12SS的值.【详解】∵,D E分别是边,AB AC的中点,∴DE∥BC,∴△ADE∽△ABC,∴DE:BC=1:2,所以它们的面积比是1:4,所以1211 =413S S= -,故选C.【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.20.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.。
【中考复习】苏教版2023学年中考数学专题复习 图形的相似
图形的相似一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.3.已知=, 那么的值是()A.B.﹣C.5D.﹣54.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.67.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4二.填空题(共5小题)11.已知=, 那么=.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是(把正确结论的序号都填上).13.非零实数x, y满足2x=3y, 则=.14.已知, 则=.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.2023年中考数学专题复习--图形的相似参考答案与试题解析一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.【分析】直接利用位似图形的性质, 进而得出=, 求出答案即可.【解答】解:∵以点O为位似中心, 将△OAB放大后得到△OCD,∴△BOA∽△DOC,∴=,∵OA=2, AC=3,∴=.故选:D.【点评】此题主要考查了位似变换, 正确得出相似三角形是解题关键.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.【分析】根据内项之积等于外项之积即可判断.【解答】解:∵ab=cd,∴=,故选:C.【点评】本题考查比例线段, 解题的关键是灵活运用内项之积等于外项之积解决问题, 属于中考基础题.3.已知=, 那么的值是()A.B.﹣C.5D.﹣5【分析】根据已知条件得出a=5b, 再代入要求的式子进行计算, 即可得出答案.【解答】解:∵=,∴3a﹣3b=2a+2b,∴a=5b,∴==5.故选:C.【点评】此题考查了比例的性质, 熟练掌握两内项之积等于两外项之积.4.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)【分析】根据位似变换的性质计算, 即可解答.【解答】解:以原点O为位似中心, 把这个三角形缩小为原来的得到△CDO, 点A的坐标为(﹣4, 2),则点A的对应点C的坐标为(﹣4×, 2×)或(4×, ﹣2×), 即(﹣2, 1)或(2, ﹣1),故选:B.【点评】本题考查的是位似变换的概念和性质, 解题关键是在平面直角坐标系中, 如果位似变换是以原点为位似中心, 相似比为k, 那么位似图形对应点的坐标的比等于k或﹣k.5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式, 把已知数据代入计算即可.【解答】解:∵AD∥BE∥FC, AB=4, AC=9,∴===,故选:C.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、准对应关系是解题的关键.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.6【分析】过点D作DM⊥AB于M, 过点E作EN⊥BC于N, 根据等腰三角形的性质推出∠B=∠C, 再由三角形的外角定理推出∠DAB=∠EDC, 从而得出△ABD∽△DCE, 根据相似三角形的性质求出EN, 即可求解.【解答】解:过点D作DM⊥AB于M, 过点E作EN⊥BC于N,∵AB=AC=6,∴∠B=∠C,∵∠ADE=∠B, ∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE.∴,∵△ABD的面积等于9,∴AB•DM=×6×DM=9,∴DM=3,∴,∴EN=2.∴△CDE的面积为CD•EN=×4×2=4,故选:A.【点评】本题考查等腰三角形的性质, 相似三角形的判定和性质, 利用等腰三角的性质及相似三角形的判定和性质求解是解题的关键.7.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣【分析】根据黄金分割的定义可得到AC=AB, 然后把AB=2代入计算即可.【解答】解:根据题意得AC=AB=×2=﹣1.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC), 且使AC 是AB和BC的比例中项(即AB:AC=AC:BC), 叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.其中AC=≈0.618AB, 并且线段AB的黄金分割点有两个.8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:A、由=得, xy=6, 故本选项比例式不成立;B、由=得, 3x=2y, 故本选项比例式成立;C、由=得, 2x=3y, 故本选项比例式不成立;D、由=得, xy=6, 故本选项比例式不成立.故选:B.【点评】本题考查了比例的性质, 主要利用了两内项之积等于两外项之积, 熟记性质是解题的关键.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.【分析】根据成比例线段的概念, 可得a:b=c:d, 再根据比例的基本性质, 即可求得d 的值.【解答】解:∵a:b=c:d,∴ad=bc,∵a=2, b=, c=2,∴2d=×2,∴d=.故选:D.【点评】此题考查了成比例线段, 解题时一定要严格按照顺序写出比例式, 再根据比例的基本性质进行求解.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4【分析】根据相似三角形的性质:面积的比等于相似比的平方, 解答即可.【解答】解:∵△ADE∽△ABC, 相似比为2:3,∴△ADE与△ABC的面积比为(2:3)2=4:9.故选:C.【点评】本题主要考查了相似三角形的性质, 相似三角形面积的比等于相似比的平方.二.填空题(共5小题)11.已知=, 那么=﹣.【分析】根据已知条件得出=, 再把化成1﹣, 然后进行计算即可.【解答】解:∵=,∴=,∴=1﹣=1﹣=﹣.故答案为:﹣.【点评】此题考查了比例的性质.题目比较简单, 解题的关键是掌握比例的性质与比例变形.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是①③④(把正确结论的序号都填上).【分析】根据E是CD边的中点, 得到CE:AB=1:2, 根据矩形的性质得到CE∥AB, 推出△CEF∽△ABF, 求得=()2=, 故选①选项正确;根据相似三角形的性质得到=, 设CE=a, AD=b, 则CD=2a, 于是得到=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M, 根据平行四边形的判定定理得到四边形BMDE是平行四边形, 求得BM=DE=DC, 得到DM垂直平分AF, 根据线段垂直平分线的性质得到AD=DF, 故③选项正确;根据射影定理和矩形的性质得到AD2=BE•BF.故④正确.【解答】解:∵E是CD边的中点,∴CE:AB=1:2,∵四边形ABCD是矩形,∴CE∥AB,∴△CEF∽△ABF,∴=()2=, 故选①选项正确;∵四边形ABCD是矩形,∴AD∥BC, ∠ADC=∠BCD=90°,∴∠CAD=∠BCF,∵BE⊥AC,∴∠CFB=90°,∴∠ADC=∠CFB,∴△ADC∽△CFB,∴=,设CE=a, AD=b, 则CD=2a,∴=,即b=a,∴=,∴=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M,∵DE∥BM, BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F, DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴AD=DF, 故③选项正确;∵∠BCE=90°, BE⊥AC,∴BC2=BF•BE,∵AD=BC,∴AD2=BE•BF.故④正确;故答案为:①③④.【点评】本题考查了相似三角形的判定和性质, 矩形的性质, 射影定理, 正确地作出辅助线是解题的关键.13.非零实数x, y满足2x=3y, 则=.【分析】根据比例的性质解决此题.【解答】解:∵2x=3y,∴.故答案为:.【点评】本题主要考查比例的性质, 熟练掌握比例的性质是解决本题的关键.14.已知, 则=.【分析】根据比例的性质, 由, 得5x=2(x+y), 即3x=2y, 即可求出答案.【解答】解:∵,∴5x=2(x+y),∴3x=2y,∴=.故答案为:.【点评】本题考查了比例的性质, 熟记两内项之积等于两外项之积是解题的关键.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.【分析】先根据平行线分线段成比例定理得到=, 然后利用比例性质得到BD的长.【解答】解:∵AB∥CD∥EF,∴=, 即=,解得BD=.故答案为:.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线, 所得的对应线段成比例.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.【分析】(1)过点D作DF⊥AE于点F, 点F即为所求;(2)利用勾股定理全等三角形的性质求解.【解答】解:(1)如图, 点F即为所求.(2)∵四边形ABCD是正方形,∴AD=AB=3,∵△ABE∽△DF A,∴=,∴=,∴DF=.【点评】本题考查作图﹣相似变换, 正方形的性质等知识, 解题的关键是灵活运用所学知识解决问题, 属于中考常考题型.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.【分析】(1)根据平行四边形的性质, 可以得到BA∥CD, 然后即可得到∠E=∠FCD, ∠EAF=∠CDF, 从而可以得到结论成立;(2)①根据相似三角形的性质和题目中的数据, 平行四边形的性质, 可以计算出AB的长;②根据相似三角形面积比等于相似比的平方, 可以计算出△EBC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠E=∠FCD, ∠EAF=∠CDF,∴△AEF∽△DCF;(2)解:①由(1)知△AEF∽△DCF,∴,∵AF:DF=1:2, AE=,∴,∴DC=2,∵四边形ABCD是平行四边形,∴AB=DC,∴AB=2;②∵四边形ABCD是平行四边形,∴AD∥BC,∴△EAF∽△EBC,∴=()2,∵S△AEF=, AB=2, AE=,∴EB=EA+AB=3,∴==,∴,解得S△EBC=6,即△EBC的面积是6.【点评】本题考查相似三角形的判定与性质、平行四边形的性质, 解答本题的关键是明确题意, 利用数形结合的思想解答.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.【分析】(1)利用同角的余角相等, 先说明∠BAF=∠EFC, 再利用相似三角形的判定得结论;(2)先利用勾股定理求出BF, 再利用相似三角形的性质得方程, 求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵△ADE沿AE翻折得到△AFE,∴∠D=∠AFE=90°.∵∠BAF+∠AFB=180°, ∠AFB+∠EFC=90°,∴∠BAF=∠EFC.又∵∠B=∠C,∴△ABF∽△FCE.(2)解:∵四边形ABCD是矩形,∴AB=CD=3.∵△ADE沿AE翻折得到△AFE,∴AD=AF=6, DE=EF.在Rt△ABF中,BF==3.设CE的长为x, 则DE=EF=3﹣x.∵△ABF∽△FCE,∴=.∴CE•AF=BF•EF,即x×6=3×(3﹣x).∴x=, 即EC=.【点评】本题主要考查了矩形的性质、折叠的性质、相似三角形的判定和性质, 掌握“矩形的四个角都是直角、矩形的对边相等”、“折叠前后的两个图形全等”、“两角对应相等的两个三角形相似”及“相似三角形的对应边的比相等”是解决本题的关键.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.【分析】(1)先由勾股定理的逆定理证明△ABC是直角三角形, 且∠BAC=90°, 再证明△CDE∽△CAB, 得=, 则CE==;(2)由DE垂直平分BC, 得BE=CE, 则∠DEF=∠DEC, 由△CDE∽△CAB, 得∠DEC =∠ABC, 由AD=BD=BC, 得∠ABC=∠BAF, 则∠BAF=∠DEF, 而∠AFB=∠EFD, 即可证明△AFB∽△EFD;(3)作DI⊥AC于点I, 先由△DIC∽△BAC, 求得ID:IC:DC=3:4:5, 再分四种情况分别求出DC的长, 并且求出相应的ID和AI的长, 即可由tan∠CAD=, 求出∠CAD的正切值, 一是△ABG是等腰三角形, 且AG=AB=6, 作AH⊥BC于点H, 由×10AH=×6×8=S△ABC, 求得AH=, 再由勾股定理求得GH=BH=, 则CD=;二是△ABG是等腰三角形, 且BG=AB=6, 则CD=×(10﹣6)=2;三是△ABG 是等腰三角形, 且BG=AG, 则CG=AG=BG=BC=5, 所以CD=CG=;四是△ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, DC=×(10+6)=8.【解答】(1)解:∵AB=6, AC=8, BC=10,∴AB2+AC2=BC2=100,∴△ABC是直角三角形, 且∠BAC=90°,由翻折得DG=DC,∵DE⊥BC,∴∠GDE=∠CDE=∠BDE=90°,∴点G在射线CB上,如图2, 点G和点B重合, 则DB=DC=BC=5,∵∠CDE=∠CAB=90°, ∠C=∠C,∴△CDE∽△CAB,∴=,∴CE===,∴CE的长是.(2)证明:如图2,∵DE垂直平分BC,∴BE=CE,∴∠DEF=∠DEC,∵△CDE∽△CAB,∴∠DEC=∠ABC,∴AD=BD=BC,∴∠ABC=∠BAF,∴∠BAF=∠ABC=∠DEC=∠DEF,∵∠AFB=∠EFD,∴△AFB∽△EFD.(3)解:存在,作DI⊥AC于点I, 则∠DIC=∠AID=∠BAC=90°, ∵∠C=∠C,∴△DIC∽△BAC,∴==,∴===, ===,∴ID:IC:DC=3:4:5,如图3, △ABG是等腰三角形, 且AG=AB=6,作AH⊥BC于点H, 则∠AHB=90°,∵×10AH=×6×8=S△ABC,∴AH=,∴GH=BH==,∴DC=CG=×(10﹣2×)=,∴ID=DC=×=, IC=DC=×=,∴AI=8﹣=,∴tan∠CAD===;如图4, △ABG是等腰三角形, 且BG=AB=6,∴CD=×(10﹣6)=2,∴ID=×2=, IC=×2=,∴AI=8﹣=,∴tan∠CAD===;如图5, △ABG是等腰三角形, 且BG=AG, 则∠GAB=∠B, ∵∠GAC+∠GAB=90°, ∠C+∠B=90°,∴∠GAC=∠C,∴CG=AG=BG=BC=5,∴CD=CG=,∴ID=×=, IC=×=2,∴AI=8﹣2=6,∴tan∠CAD===;如图6, △ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, ∴DC=×(10+6)=8,∴ID=×8=, IC=×8=,∴AI=8﹣=,∴tan∠CAD===3,综上所述, ∠CAD的正切值为或或或3.【点评】此题重点考查勾股定理及其逆定理的应用、轴对称的性质、相似三角形的判定与性质、等腰三角形的性质、等角的余角相等、线段的垂直平分线的性质、根据面积等式求线段的长度、数形结合与分类讨论数学思想的运用等知识与方法, 此题综合性强, 难度较大, 正确地作出所需要的辅助线是解题的关键.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.【分析】(1)根据定义画出图形即可;(2)当M'点在BC上时, 菱形P'Q'M'N'的面积最大, 判定出△M'BN'是等边三角形, 在Rt △CM'Q'中求出BM'的长, 再求菱形的面积即可;(3)延长GF、BC交于O点, 连接AO, 先求出OF=OC, OG=BO, 连接OM, 通过证明△MOF≌△MOC(SAS), 得∠FOM=∠COM, △AGO≌△ABO(SAS), 得∠FOA=∠BOA, 证明出A、M、O三点共线, 即GF、BC、AM的延长线交于一点O, 再由平行线的性质得到==, 即可证明△ABG与△MCF位似.【解答】解:(1)如图:(2)∵四边形P'Q'M'N'在△ABC内,∴当M'点在BC上时, 菱形P'Q'M'N'的面积最大,∵四边形PQMN是菱形, 四边形P'Q'M'N'是菱形,∴Q'M'∥AB, M'N'∥PQ,∵∠APQ=120°,∴∠QPB=∠M'N'B=60°,∵∠CAB=30°, ∠ACB=90°,∴∠B=60°,∴△BM'N'是等边三角形,∴M'B=M'N'=Q'M',∵AB=6cm,∴BC=3cm,∴CM'=3﹣BM',在Rt△CM'Q'中, ∠CQ'M'=30°,∴Q'M'=2CM',∴BM'=2(3﹣BM'),解得BM'=2,在△BM'N'中, 过点M'作M'E⊥BN'交于点E, ∵BM'=2, ∠B=60°,∴M'E=,∴菱形P'Q'M'N'的面积=2;(3)延长GF、BC交于O点, 连接AO,∵四边形ABCD、AEFG是全等的两个菱形, ∴AG=AB, ∠AGF=∠ABC,∴∠OGB=∠OBG,∴OG=BO,∵GF=BC,∴OF=OC,∴=,连接OM,∵∠GFE=∠BCD,∴∠MFO=∠MCO,∵∠OFC=∠FCO,∴∠MCF=∠FCM,∴CM=FM,∴△MOF≌△MOC(SAS),∴∠FOM=∠COM,∵AG=AB, ∠AGO=∠ABO, GO=BO,∴△AGO≌△ABO(SAS),∴∠FOA=∠BOA,∴MO与AO重合,∴A、M、O三点共线,∴GF、BC、AM的延长线交于一点O,∴MF∥AG,∴=,∵CM∥AB,∴=,∴==,∴△ABG与△MCF位似.【点评】本题考查相似的综合应用, 掌握位似图形的定义, 平行线的定义, 菱形的性质, 直角三角形的性质, 等边三角形的性质是解题的关键.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.【分析】根据平行线分线段成比例定理得到比例式, 把已知数据代入比例式计算即可.【解答】解:∵l1∥l2∥l3,∴,即,∴BC=14,∴AC=AB+BC=7+14=21.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、找准对应关系是解题的关键.。
人教版九年级数学下《图形的相似》拓展练习
《图形的相似》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.(5分)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.3.(5分)如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.=B.=C.=D.=4.(5分)某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?()舞蹈社溜冰社魔術社上學期345下學期432A.舞蹈社不变,溜冰社减少B.舞蹈社不变,溜冰社不变C.舞蹈社增加,溜冰社减少D.舞蹈社增加,溜冰社不变5.(5分)甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.二、填空题(本大题共5小题,共25.0分)6.(5分)若(k≠0),则y=kx+k﹣2一定经过第象限.7.(5分)把2米长的线段进行黄金分割,则分成的较长的线段长为.8.(5分)如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.9.(5分)如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠F AC=90°﹣3∠BAF,BF:AC=2:5,EF=2,则AB长为.10.(5分)如图,在三角形ABC中,D为BC的中点,AF=2BF,CE=3AE,连接CF交DE于P点,则的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D为△ABC内部一点,点E、F、G分别为线段AB、AC、AD上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当时,求的值.12.(10分)如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.(1)求线段BF的长;(2)求AE:EC的值.13.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618.这个比值,被称为黄金分割数.我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数.定义:点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点(如图1).如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.14.(10分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.15.(10分)如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.《图形的相似》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定【分析】设正方形ABCD的边长为2a,根据勾股定理求出BE,求出EF,求出AF,再根据面积公式求出S1、S2即可.【解答】解:∵四边形ABCD是正方形,∴∠EAB=90°,设正方形ABCD的边长为2a,∵E为AD的中点,∴AE=a,在Rt△EAB中,由勾股定理得:BE===a,∵EF=BE,∴EF=a,∴AF=EF﹣AE=a﹣a=(﹣1)a,即AF=AH=(﹣1)a∴S1=AF×AH=(﹣1)a×(﹣1)a=6a2﹣2a2,S2=S正方形ABCD﹣S长方形ADIH=2a×2a﹣2a×(﹣1)a=6a2﹣2a2,即S1=S2,故选:C.【点评】本题考查了勾股定理和正方形的性质,能熟记正方形的性质是解此题的关键,注意:正方形的每个角都是90°,正方形的四边都相等.2.(5分)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.【分析】根据题设条件,由,知[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,由此能求出最佳乐观系数x的值.【解答】解:∵c﹣a=x(b﹣a),b﹣c=(b﹣a)﹣x(b﹣a),,∴[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,∴x2+x﹣1=0,解得x=,∵0<x<1,∴x=.故选:D.【点评】本题考查黄金分割的应用,解题时要注意一元二次方程的求解方法.3.(5分)如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理逐个判断即可.【解答】解:A、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;B、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;C、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;D、∵直线b∥直线c,∴△OEB∽△OFC,∴=,错误,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理,能灵活运用定理进行推理是解此题的关键.4.(5分)某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?()舞蹈社溜冰社魔術社上學期345下學期432A.舞蹈社不变,溜冰社减少B.舞蹈社不变,溜冰社不变C.舞蹈社增加,溜冰社减少D.舞蹈社增加,溜冰社不变【分析】若甲:乙:丙=a:b:c,则甲占全部的,乙占全部的,丙占全部的.【解答】解:由表得知上、下学期各社团人数占全部人数的比例如下:舞蹈社溜冰社魔術社上學期===下學期===∴舞蹈社增加,溜冰社不变.故选:D.【点评】本题考查了比例的性质:两内项之积等于两外项之积.5.(5分)甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.【分析】设地图上,甲乙两地的距离是xcm,根据比例尺的定理列出方程,解之可得.【解答】解:设地图上,甲乙两地的距离是xcm,根据题意,得:=,解得:x=80,即地图上,甲乙两地的距离是80cm,故选:C.【点评】本题考查了比例线段,能够根据比例尺灵活计算,注意单位的换算问题.二、填空题(本大题共5小题,共25.0分)6.(5分)若(k≠0),则y=kx+k﹣2一定经过第三象限.【分析】利用比例的等比性质正确求得k的值,然后根据直线解析式中的k的值正确判断直线经过的象限.【解答】解:根据比例的等比性质,得k=,当a+b+c≠0时,k=2,∴直线解析式是y=2x,∴图象经过一、三象限.当a+b+c=0时,a+b=﹣c,∴k===﹣1,∴直线解析式是y=﹣x﹣3,∴图象经过二、三、四象限.综上所述,直线一定经过第三象限,故答案为:三.【点评】本题考查的是一次函数的图象与系数的关系,利用k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降,是解答此题的关键.7.(5分)把2米长的线段进行黄金分割,则分成的较长的线段长为﹣1.【分析】设分成的较长的线段长为x,根据黄金分割的定义得出方程2(2﹣x)=x2,求出方程的解即可.【解答】解:设分成的较长的线段长为x,则2(2﹣x)=x2,x2+2x﹣4=0,x=,x1=﹣1,x2=﹣﹣1(负数不符合题意,舍去),故答案为:﹣1.【点评】本题考查了黄金分割,能熟记黄金分割的定义是解此题的关键.8.(5分)如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为3.【分析】根据平行线分线段成比例定理得出比例式,再代入求出即可.【解答】解:∵AD∥BE∥FC,∴=,∵=,DF=7.5,∴=,解得:DE=3,故答案为:3.【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出比例式是解此题的关键.9.(5分)如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠F AC=90°﹣3∠BAF,BF:AC=2:5,EF=2,则AB长为.【分析】如图,连接BE.设∠BAF=α.BF=2k,BC=CA=5k.首先证明∠ACE =∠BEF=∠BCD=2α,想办法求出k,再设DE=a,BD=b,理由勾股定理构建方程组解决问题即可;【解答】解:如图,连接BE.设∠BAF=α.BF=2k,BC=CA=5k.∵CA=CB,AD=DB,∴CD⊥AB,∠ACD=∠BCD,∴∠CDA=90°,EA=EB,∴∠EAB=∠EBA=α,∠BEF=2α,∵∠EAC+∠DAE+∠ACD=90°,∠F AC=90°﹣3∠BAF,∴∠ACD=∠BCD=2α=∠BEF,∵∠EBF=∠CBE,∴△EBF∽△CBE,∴==,∴BE=k,EC=,∵∠CEF=2α+∠CAE,∥EFC=2α+∠FBE,∵∠CAB=∠CBA,∠EAB=∠EBA,∴∠CAE=∠CBE,∴∠CEF=∠CFE,∴CE=CF,∴3k=,∴k=,∴BE=,BC=,设DE=a,BD=b,则有,解得a=,b=,∴AB=2b=2,故答案为2【点评】本题考查相似三角形的判定和性质、勾股定理、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程或方程组解决问题,属于中考填空题中的压轴题.10.(5分)如图,在三角形ABC中,D为BC的中点,AF=2BF,CE=3AE,连接CF交DE于P点,则的值为3.【分析】作EG∥CB交AB于G,交CF的延长线于H.根据EP:PD=EH:CD,设EG=m,求出EH,CD即可解决问题;【解答】解:作EG∥CB交AB于G,交CF的延长线于H.∵===,∴可以设EG=m,则BC=4m,∵AF=2BF,设BF=a,则AF=2a,∴AG=AB=a,FG=2a﹣a=a,∵=,∴=,∴HG=5m,∵=,CD=2m,EH=6m,∴==3,故答案为3.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D为△ABC内部一点,点E、F、G分别为线段AB、AC、AD上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当时,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】解:(1)∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵=,∴=,∴=()2=.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(10分)如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.(1)求线段BF的长;(2)求AE:EC的值.【分析】(1)作AH⊥BC于H,如图,利用等腰三角形的性质得BH=CH=BC =2,再利用勾股定理计算出AH=4,然后证明Rt△FBD∽Rt△ABH,再利用相似比计算BF和DF的长;(2)作CG∥AB交DF于G,如图,利用CG∥BD得到==,然后由CG∥AD,根据平行线分线段成比例定理得到AE:EC的值.【解答】解:(1)作AH⊥BC于H,如图,∵AB=AC=,∴BH=CH=BC=2,在Rt△ABH中,AH==4,∵DF垂直平分AB,∴BD=,∠BDF=90°∵∠ABH=∠FBD,∴Rt△FBD∽Rt△ABH,∴==,即==,∴BF=5,DF=2;(2)作CG∥AB交DF于G,如图,∵BF=5,BC=4,∴CF=1,∵CG∥BD,∴==,∵CG∥AD,∴===5.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.也考查了等腰三角形的性质和线段垂直平分线的性质.13.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618.这个比值,被称为黄金分割数.我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数.定义:点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点(如图1).如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.【分析】(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C =72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CD•AC,于是有AD2=CD•AC,则可根据线段黄金分割点的定义得到结论;(2)设AD=x,则CD=AC﹣AD=1﹣x,由(1)的结论得到x2=1﹣x,然后解方程即可得到AD的长.【解答】(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.14.(10分)如图1,我们已经学过:点C 将线段AB 分成两部分,如果,那么称点C 为线段AB 的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果,那么称直线l 为该图形的黄金分割线.如图2,在△ABC 中,∠A =36°,AB =AC ,∠C 的平分线交AB 于点D .(1)证明点D 是AB 边上的黄金分割点;(2)证明直线CD 是△ABC 的黄金分割线.【分析】(1)易证△BCD ∽△BAC ,则有=,再由BC =CD =AD 可得=,由此可得D 是AB 边上的黄金分割点;(2)设△ABC 的边AB 上的高为h ,则S △ADC =AD •h ,S △DBC =DB •h ,S △ABC =AB •h ,即可得到=,=.由(1)得=,即可知=,由此可得CD 是△ABC 的黄金分割线.【解答】解:(1)点D 是边AB 上的黄金分割点,理由如下:∵∠A =36°,AB =AC ,∴∠B =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠DCB =36°,∴∠BDC =∠B =72°,∠ACD =∠A =36°,∴BC =DC =AD .∵∠A =∠BCD ,∠B =∠B ,∴△BCD ∽△BAC ,∴=.∴=.∴D是AB边上的黄金分割点;(2)直线CD是△ABC的黄金分割线,理由如下:设△ABC的边AB上的高为h,则S△ADC=AD•h,S△DBC=DB•h,S△ABC=AB•h,∴=,=.∵D是AB的黄金分割点,∴=,∴=.∴CD是△ABC的黄金分割线.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的面积公式,需要注意的是:当比例顺序不确定时,应分情况讨论,避免出现漏解的现象.15.(10分)如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.【分析】(1)利用平行线分线段成比例定理,由EF∥CD得到,由DE ∥BC得到,然后利用等量代换可得到结论;(2)根据比例的性质由AD:BD=2:1可计算出AD=10,则利用AF:FD=AD:DB得到AF=2DF,然后利用2DF+DF=10可计算出DF.【解答】(1)证明:∵EF∥CD,∴,∵DE∥BC,∴∴.(2)∵AD:BD=2:1,∴BD=AD,∴AD+AD=15,∴AD=10,∵AF:FD=AD:DB,∴AF:FD=2:1,∴AF=2DF,∵AF+DF=10,∴2DF+DF=10,∴DF=.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.。
图形的相似(压轴专练)(十大题型)(原卷版)—2024-2025学年九年级数学上册(北师大版)
图形的相似(压轴专练)(十大题型)题型1:相似三角形解答证明题1.在ABC V 中,AB AC =,点D 在线段CB 的延长线上,连接AD ,过点B 作BE BC ^交线段AD 于点,2120E BED BAC Ð+Ð=°.(1)如图1,求CAD Ð的度数.(2)如图2,若32DE AE =,求BD BC的值.(3)如图3,在(2)的条件下,连接,EC EC 交线段AB 于点F ,若BD =AF 的长.2.如图1,在ABC V 中,90BAC AB AC BD CD Ð=°=^,,于点D ,连接AD ,在CD 上截取CE ,使CE BD =,连接AE .(1)直接判断AE 与AD 的位置关系(2)如图2,延长AD ,CB 交于点F ,过点E 作EG AF ∥交BC 于点G ,试判断FG 与AB 之间的数量关系,并证明;(3)在(2)的条件下,若2AE =,CE =EG 的长.题型2:相似三角形在特殊平行四边形中的应用3.如图1,四边形ABCD 是正方形,点E 在边BC 的延长线上,点F 在边AB 上,且AF CE =,连接EF 交DC 于点P ,连接AC 交EF 于Q ,连接DE DF 、.(1)求证:EQ FQ =;(2)连接BQ ,如图2,①若AQ DP ×=BQ 的长;②若FP FD =,则PE PQ = .4.综合与实践已知:矩形ABCD ,M 是AD 边上一点.【基本图形】(1)如图1,AM MD =,BM 交AC 于F 点,BM 的延长线与CD 的延长线交于点E ,连AE ,求证:MF EM BF EB=;【类比探究】(2)如图2,AM MD =,过点D 任意作直线与BM ,BC 的延长线分别交于点E ,点P ,连AE ,求证:EAD PAD ÐÐ=;【扩展延伸】(3)如图3,E 是CD 延长线上一点,P 是BC 延长线上一点,AP 交CD 于Q 点,BE 交AD 于M 点,延长AD 交EP 于N 点,若M 是AN 的中点,且3AB =,4BC =,求AEP △的面积.题型3:翻折问题5.菱形ABCD 中,5AB =,点F 是AD 边上的点,点Q 是AB 边上的点.(1)如图1,若点F 是AD 的中点,CQ AB ^,连接CF 并延长交BA 的延长线于点P ,连接QF ,①求证:PAF CDF △≌△;②判定FCQ V 的形状,并说明理由;(2)若菱形面积为20,将菱形ABCD 沿CQ 翻折,点B 的对应点为点E .①如图2,当点E 落在BA 边的延长线上时,连接BD ,交CQ 于R ,交EC 于点M ,求DR BM 的值;②如图3,当CE AD ^,垂足为点F ,交AD 于点N ,求四边形CFNQ 的面积.6.如图1,在矩形ABCD 中,3AB =,4=AD ,点E 在BC 上,连接AE ,把ABE V 沿直线AE 翻折得到AFE △,直线EF 与直线CD 交于点G ,连接DF .(1)当DFG GEC Ð=Ð时,求BE 的长.小星看到把ABE V 沿直线AE 翻折得到AFE △,就想到翻折图形的特征特点,对应边相等,对应角相等,对应点连线被对称轴垂直平分,那么他就知道BE FE =,AB AF =,90ABE AFE Ð=Ð=°,根据DFG GEC Ð=Ð,他延长EG 与AD 的延长线相交于点H ,可证AD DF DH ==,AH EH =,再通过勾股定理即可求出BE 的长.请用小星的方法或自己的方法求BE 的长;(2)当G 是CD 的中点时,求BE 的长;(3)如图2,已知等边ABC V 的边长为6,点D 在边BC 上,连接AD ,把ABD △沿直线AD 翻折得到AED △,直线DE 与直线AC 交于点F ,若12CF =,求BD 的长.7.(1)发现:如图1,正方形ABCD 中,点E 在CD 边上,将ADE V 沿AE 对折得到AFE △,延长EF 交BC 边于点G ,连接AG .证明:BG DE EG +=.(2)探究:如图2,矩形ABCD 中AD AB >,O 是对角线的交点,过O 任作一直线分别交BC AD 、于点M 、N ,四边形AMNE 是四边形CMND 沿MN 翻折得到的,连接CN ,若CDN △的面积与CMN V 的面积比为1:3,求MN DN的值.(3)拓展:如图3,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60D Ð=°,将ADE V 沿AE 翻折得到AFE △,直线EF 交BC 于点P ,求PC 的长.题型4:旋转问题8.如图,ABC V 和ADE V 是有公共顶点的等腰直角三角形,90BAC DAE Ð=Ð=°.(1)如图1,连接BE 、CD ,BE 的延长线交AC 于F ,交CD 于点P ,求证:①ABE ACD V V ≌;②BP CD ^;(2)如图2,把ADE V 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE 、CD ,CD 的延长线交BE 于点P ,若BC =3AD =.①求证:BDP CDA △∽△,②PDE △的面积是 .9.问题背景:如图(1),在ABC V 和ADE V 中,AB AC AD AE ==,,BAC DAE Ð=Ð,求证:ABD ACE △△≌;尝试应用:如图(2),在ABC V 和ADE V 中,90ABC ADE Ð=Ð=°,30ACB AED Ð=Ð=°,连接CE ,点F 是CE 的中点.判定以B ,D ,F 为顶点的三角形的形状,并证明你的结论;拓展创新:如图(3),在ABC V 中,AC BC =AB 绕点A 逆时针旋转90°得到AD ,连接BD CD ,.若点E 是CD 的中点,连接BE ,直接写出BE 的最大值.10.如图,在V 锐角ABC 中,AB =3BC =,45ACB Ð=°,将ABC V 绕点B 按逆时针方向旋转得到11A BC V .(1)如图①,当点1C 在线段CA 的延长线上时,求11CC A Ð的度数;(2)如图②,连接1AA ,1CC ,若1ABA △的面积为2,求1CBC △的面积;(3)如图③,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC V 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,求线段1EP 长度的最大值与最小值.题型5:最值问题11.如图,在ABC V 中,90,BAC AB AC Ð=°=,点D 为AC 一点,连接BD .(1)如图1,若CD =,15ABD Ð=°,求AD 的长;(2)如图2,过点A 作AE BD ^于点E ,交BC 于点M ,AG BC ^于点G ,交BD 于点N ,求证:BM CM =;(3)如图3,将ABD △沿BD 翻折至BDE V 处,在AC 上取点F ,连接BF ,过点E 作EH BF ^交AC 于点G ,GE 交BF 于点H ,连接AH ,若:2GE BF =,AB =AH 的最小值.12.如图1和图2,平面上,四边形ABCD 中1582AB BC ==,,252CD =,6DA =,90A Ð=°,点M 在AD边上,且2DM =.点P 从点A 沿折线AB BC -上运动到点C ,将APM △沿MP 翻折,点A 的对应点为点A ¢,设点P 的运动路径长为x (0)x >.(1)如图1,连接BD ,①求CBD Ð的度数;②求证:AB CD ∥.(2)如图2,当点A ¢落到四边形ABCD 内部时,求x 的取值范围.(3)①当点A ¢落在AD 的延长线上时,请直接写出x 的值.②设点A ¢到边BC 所在直线的距离为h ,请直接写出h 的最小值.13.如图,在Rt ABC △中,90ACB Ð=°,AC BC =,点D 在直线AB 上,点E 在直线AC 上,连接BE ,DE ,且BE DE =,直线DE 交BC 于点F .(1)如图①,当点D 在线段AB 上时,AD 4AC =,求BE 的长;(2)如图②,当D 是AB 的中点时,求证:CE CF BF +=;(3)如图③,连接CD ,将ADC △沿着CD 翻折,得到A CD ¢△,M 是AB 上一点,且37BM AB =,当A M ¢最短时,请直接写出DF BE 的值.题型6:比值问题14.如图1,在ABC D 中,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DC ,点F 、P 、G分别为DE 、DC 、BC 的中点,连接FP ,PG .(1)图1中,求证:PF PG =;(2)当ADE V 绕点A 旋转到如图2所示的位置时,①PF PG =是否仍然成立?若成立请证明;若不成立,说明理由;②若:1:(1)AD AB n n =>,PDF △和PGC V 的面积分别是1S ,2S ,ABC V 的面积为3S ,求123S S S +的值.15.【特例感知】(1)如图1,在正方形ABCD 中,点P 在边AB 的延长线上,连接PD ,过点D 作DM PD ^,交BC 的延长线于点M .求证:DP DM =.【变式求异】(2)如图2,在Rt ABC △中,90ABC Ð=°,点D 在边AB 上,过点D 作DQ AB ^,交AC 于点Q ,点P 在边AB 的延长线上,连接PQ ,过点Q 作QM PQ ^,交射线BC 于点M .已知8BC =,10AC =,AD =2DB ,求PQ QM的值.【拓展应用】(3)如图3,在Rt ABC △中,90BAC Ð=°,点P 在边AB 的延长线上,点Q 在边AC 上(不与点A ,C 重合),连接PQ ,以Q 为顶点作PQM PBC Ð=Ð,PQM Ð的边QM 交射线BC 于点M .若AC mAB =,CQ nAC =(m ,n 是常数),直接写出PQ QM的值(用含m ,n 的代数式表示).题型7:“手拉手”模型16.在ABC V 中,90ACB Ð=°,AC BC =,点D 是BC 边上一动点,过点C 作CE AD ^交AB 于点E .(1)如图1,若AC AE =,求ADB Ð的度数;(2)如图2,点F 是BD 上一点,连接EF 并延长交AD 的延长线于点G .若点P 为AD 的中点,CP DG =,2G CAD Ð=Ð,求证:2CE EF FG +=;(3)点F 是BC 边上一点,射线EF 与射线AD 交于点G ,BFE ADC Ð=Ð,点H 是AC 上一点,且14CH AC =,连接HF ,H G ,点M 是射线AD 上一动点,连接MH ,MF .在点D 的运动过程中,当GH 取得最小值m 时,在平面内将HFM △沿直线HM 翻折得到HNM V ,连接EN .在点M 的运动过程中,若EN 的最大值为n ,直接写出n m的值.17.如图所示,在ABC V 中,D 、E 分别是AB 、AC 上的点,DE BC ∥,如图1,然后将ADE V 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)若AB AC =,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是 ;②在图3中,猜想AM 与AN 的数量关系、MAN Ð与BAC Ð的数量关系,并证明你的猜想;(2)若·1AB k AC k =(>),按上述操作方法,得到图4,请继续探究:AM 与AN 的数量关系、MAN Ð与BAC Ð的数量关系,直接写出你的猜想,不必证明.题型8:定值问题18.如图1,在ABCD Y 中,60A Ð=°,4=AD ,8AB =.Y的面积;(1)请计算ABCD△沿着AC翻折,D点的对应点为D¢,线段CD¢交AB于点M,请计算AM的长度;(2)如图2,将ADC^交AD¢的延(3)如图3,在(2)的条件下,点P为线段CM上一动点,过点P作PN AC^于点N,PG AD¢长线于点G.在点P PG+的长度是否为定值?如果是,请计算出这个定值;如果不是,请说明理由.题型9:情景探究题19.[问题情境](1)王老师给爱好学习的小明和小颖提出这样一个问题:如图①,在ABC V 中,AB AC =,P 为边BC 上的任一点,过点P 作,PD AB PE AC ^^,垂足分别为D ,E ,过点C 作CF AB ^,垂足为F .求证:PD PE CF +=.小明的证明思路是:如图①,连接AP ,由ABP V 与APC △面积之和等于ABC V 的面积可以证得:PD PE CF +=.小颖的证明思路是:如图②,过点P 作PG CF ^,垂足为G ,可以证得:,PD GF PE CG ==,则PD PE CF +=.请你选择小明、小颖两种证明思路中的任意一种,写出详细的证明过程.[变式探究](2)如图③,当点Р在BC 延长线上时,问题情境中,其余条件不变,则PD PE CF 、、之间的数量关系是______.[结论运用](3)如图④,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C ¢处,点P 为折痕EF 上的任一点,过点Р作,PG BE PH BF ^^,垂足分别为G ,H ,若18,5AD CF ==,求PG PH +的值.[迁移拓展](4)图⑤是一个机器模型的截面示意图,在四边形ABCD 中,E 为AB 边上的一点,,ED AD EC CB ^^,垂足分别为D ,C ,且,3cm,AD CE DE BC AB AD BD ====××,M 、N 分别为AE BE ,的中点,连接DM CN ,,请直接写出DEM △与CEN V 的周长之和___________.题型10:相似三角形在平面直角坐标系的应用20.如图,在平面直角坐标系中;一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点B (0,3),与直线OC 交于点8,13C æöç÷èø.(1)求直线AB 的函数表达式;(2)过点C 作CD x ^轴于点D ,将ACD V 沿射线CB 平移得到的三角形记为A C D ¢¢¢△,点A ,C ,D 的对应点分别为A ¢,C ¢,D ¢,若A C D ¢¢¢△与BOC V 重叠部分的面积为S ,平移的距离CC m ¢=,当点A ¢与点B 重合时停止运动,当925S =时,求m 的值.21.综合运用如图1,在平面直角坐标系中,AOB V 是等腰直角三角形,AO BO =,点A 的坐标为()0,6.点C 是边OB 上一点,连接AC ,将线段AC 绕点C 顺时针旋转90°,得到线段CD ,连接AD ,BD .(1)当AB 平分CAD Ð时,OAC Ð=________°;(2)若13CO BO =,求BD 的长;(3)如图2,作点C 关于AD 的对称点E ,连接BE ,CE ,DE .设BDE V 的面积S =,CO m =,求S 关于m 的函数表达式.。
小学数学相似形计算练习题
小学数学相似形计算练习题
一、计算题
1. 计算下列各组图形的相似比例:
(1)
图形A: 高度为4cm,底边长度为6cm
图形B: 高度为8cm,底边长度为12cm
(2)
图形C: 半径为3cm的圆
图形D: 半径为6cm的圆
(3)
图形E: 长为8cm,宽为6cm的长方形
图形F: 长为16cm,宽为12cm的长方形
2. 用相似比例计算下列各题:
(1) 如果小明身高为150cm,他的影子高度为50cm,当一棵树的影子高度为15m时,树的实际高度是多少?
(2) 如果一条船长为12m,她在河中的两侧有一座相似的大桥,大桥的长度为48m,船与大桥之间的距离为18m,求大桥的实际长度。
(3) 三角形ABC和三角形XYZ相似,已知AB = 8cm,BC = 12cm,XY = 4cm,求XZ的长度。
二、简答题
1. 什么是相似形?
2. 相似形计算中重要的概念有哪些?
3. 如何计算相似形的比例?
4. 相似形计算中有哪些常见的应用场景?
5. 相似形计算有什么实际意义?
三、解答题
1. 一张长方形纸片的长与宽的比例为3:2,如果长为18cm,求它的宽。
2. 图中的图形ABCD和图形EFGH相似,已知AB = 4cm,BC =
6cm,EF = 10cm,求图形EFGH中FG的长度。
3. 图中的三角形ABC和三角形XYZ相似,已知AB = 12cm,BC = 20cm,XY = 8cm,求图中三角形XYZ中XZ的长度。
注意:以上题目仅供参考,可以根据实际需要进行修改和调整。
相似三角形练习题
相似三角形练习题题目一已知三角形ABC中,∠A = 60°,AC = 6 cm,BC = 8 cm。
将三角形ABC沿着边BC剪开,使得三角形ABD与三角形ACD相似,连接BD。
求BD的长度。
解答一由已知条件可知∠A = ∠ADC = 60°,而∠ABD与∠ACD互为对应角,故∠ABD = ∠ACD = 60°,说明三角形ABD与三角形ACD相似。
根据相似三角形的性质,相似三角形中对应边的比例相等,即有:BD/AD = AC/CD将已知数值代入,得到:BD/AD = 6/8进一步化简,可得:BD/AD = 3/4将上式两侧同乘以AD,可得:BD = (3/4) * AD由直角三角形ADC中,利用三角函数可得AD的值:AD = AC * sin(60°) = 6 * √3 / 2 = 3√3 cm代入上式,可得:BD = (3/4) * 3√3 = 9√3 / 4 cm所以,BD的长度为9√3 / 4 cm。
题目二已知∆ABC与∆DEF相似,∠B = 40°,∠E = 20°,AB = 5 cm,FE = 3 cm。
求BC、DE的长度。
解答二由已知条件可知∠B = ∠F,即∠B = 40°。
而∆ABC与∆DEF相似,根据相似三角形的性质,相似三角形中对应边的比例相等,即有:AB/FE = BC/DE将已知数值代入,得到:5/3 = BC/DE进一步化简,可得:5DE = 3BC根据已知条件,我们还可以得到∠E = ∠C。
联立上述两个条件,可以列出方程组:{5DE = 3BC∠E = ∠C}要求BC和DE的长度,需要求解以上方程组。
我们可以通过求解方程组来得到BC和DE的长度。
题目三AG和EK是∆ABC和∆EFD的高,点G和点K分别位于边BC和边DE上,且∆AGK和∆EKG相似。
已知∠B = 45°,AB = 12 cm,BC = 10 cm,ED = 8 cm。
4.7 图形的位似(9大题型)(分层练习)(原卷版)
第4章相似三角形4.7 图形的位似(9大题型)分层练习考查题型一位似图形的识别1.(2022秋·九年级单元测试)如图,下面三组图形中,位似图形有( )A.0组B.1组C.2组D.3组2.(2023·河北廊坊·校考三模)在研究相似问题时,嘉嘉和淇淇两同学的观点如下:嘉嘉:将边长为1的正方形按图1的方式向外扩张,得到新正方形,它们的对应边间距为1,则新正方形与原正方形相似,同时也位似;淇淇:将边长为1的正方形按图2的方式向外扩张,得到新正方形,每条对角线向其延长线两个方向各延伸1,则新正方形与原正方形相似,同时也位似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对3.(2022春·全国·九年级专题练习)位似图形的性质(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于(2)位似图形相似图形,但相似图形4.(2020秋·安徽滁州·九年级校联考阶段练习)在如图所示的网格中,以点的位似图形,小明认为四边形边形NPMQ,你认为正确的是A.2、点P B2.(2023·河北沧州·模拟预测)如图,A.点M B.点3.(2023秋·九年级课时练习)如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为4.(2022春·九年级课时练习)如图,在正方形()1,1--,则两个正方形的位似中心的坐标是(1)在图中标出ABC V 与111A B C △的位似中心点M 的位置,并直接写出点(2)若以点O 为位似中心,请你帮小明在图中画出△似比为2(只画出一个三角形即可).考查题型三 位似图形相关概念辨析1.(2022秋·吉林长春·九年级校考阶段练习)如图,ABC V 与DEF V 位似,点O 为位似中心,位似比为2:3,若DEF V 的周长为6,则ABC V 的周长是( )A.16B.2.(2023秋·河北保定·九年级统考期末)下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;4.(2023秋·九年级课时练习)如图,点=;ABCÐ=,Ð5.(2022春·九年级单元测试)如图,在68´的网格中,每个小正方形的边长均为1,点O 和ABC V 的顶点均为小正方形的顶点.(1)在图中ABC V 的内部作A B C ¢¢¢V ,使A B C ¢¢¢V 和ABC V 位似,且位似中心为点O ,位似比为1:2;(2)连接(1)中的AA ¢,则线段AA ¢的长度是________.A .1:2B .2:12.(2023秋·全国·九年级专题练习)如图,四边形形,若四边形ABCD 与四边形A .23:B .49:C .3.(2023秋·陕西西安·九年级高新一中校考阶段练习)面积为1,DEF V 面积为9,则OC CF 的值为4.(2023秋·黑龙江哈尔滨·九年级哈尔滨工业大学附属中学校校考开学考试)四边形1111D C B A 是位似图形,点A 与点么AB A B = .(1)在图中画出ABC V 沿x 轴翻折后的11A B C △(2)以点()1,2M 为位似中心,作出111A B C △按(3)求点2A 的坐标以及ABC V 与222A B C △的周长比.考查题型五 画已知图形放大或缩小n 倍后的位似图形1.(2023春·河北邢台·九年级统考开学考试)以O 为位似中心,画出一个矩形,使得所画的矩形与矩形ABCD 位似,且位似比为1:2,则所画的矩形可以是( )A .①B .②C .③D .④A.P点B.Q点3.(2022春·九年级课前预习)总结画位似图形的一般步骤:(1)确定;(2)分别连接并延长和能代表原图的关键点;(3)根据,确定能代表所作的位似图形的关键点;(4)顺次连接上述各点,得到放大或缩小的图形.4.(2022春·九年级课前预习)把图中的四边形分析:把原图形缩小到原来的似中心的距离之比为作法:5.(2022秋·四川成都·九年级川大附中校考期中)在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ¢¢△,放大后点B ,C 两点的对应点分别为B ¢,C ¢,请画出OB C ¢¢△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M ¢的坐标.(用含a ,b 的代数式表示)A.62.(2022秋·安徽合肥为位似中心,把△A.(9,6)B.3.(2023秋·福建莆田·九年级校考阶段练习)如图,()A-,OAB4,2V与OCDV4.(2023秋·陕西榆林·九年级校考期末)如图,在平面直角坐标系中,位似中心的位似图形,点A、5,6,则点A点A的坐标为()5.(2023秋·浙江·九年级专题练习)如图,方格纸中的每个小方格都是边长为面直角坐标系后,ABC V 的顶点均在格点上,点C 的坐标为()41-,.(1)以O 为位似中心在第二象限作位似比为1:2变换,得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;(2)以原点O 为旋转中心,画出把ABC V 顺时针旋转90°的图形222A B C △,并写出2C 的坐标.A .2B .33.(2022春·八年级单元测试)如图,四边形6,4,3OC CC AB ¢===,则A B ¢¢=4.(2023·山西运城·统考一模)在平面直角坐标系中,的坐标分别为()1,3-,()3,9-,则ABC V 5.(2022秋·广西贵港·九年级统考期中)A .DEF VB .DHF △2.(2023春·河北邯郸·九年级校考开学考试)在如图所示正方形网格图中,以大为原来的2倍,则A 的对应点为(A .N 点B .M 点3.(2023春·九年级单元测试)已知方形网格中,每个小正方形的边长是与ABC V 位似,且111A B C △与ABC V5.(2022春·湖南郴州·九年级校考开学考试)如图,平面直角坐标系中,点上.(1)以O 点为位似中心,位似比为2,将ABC V (2)若ABC V ,111A B C △的面积为S 、1S ,写出考查题型九 在坐标系中画位似中心1.(2023春·云南昭通·九年级统考期中)如图,在直角坐标系中,ABC V 与ODE V 是位似图形,已知点()2,1A ,则位似中心的坐标是( )A .()1,5B .()4,22.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF V V 、成位似关系,则位似中心的坐标为(A .()1,0-B .()0,03.(2023秋·全国·九年级专题练习)如图,在直角坐标系中,则位似中心的坐标是 .5.(2023秋·全国·九年级专题练习)已知,分别为()()()104132-,,,,,.1A △(1)请画出点P 的位置,并写出点P 的坐标(2)以点O 为位似中心,在y 轴左侧画出V 内一点,则点M 在222A B C △内的对应点的坐标为1,2BA.()2.(2023秋·浙江·九年级专题练习)如图,四边形OE2A.4B.163.(2023秋·山东聊城·九年级校考开学考试)如图,在边长为V的三个顶点均在格点(网格线的交点)上.以原点标系,ABC相似比为2,则点B的对应点1B的坐标是(42,B.A.()4.(2023·山东日照·校考三模)如图,在平面直角坐标系中,()-,,点C坐标为()20-,10A .()3,2-B .5.(2021春·福建龙岩·九年级校考阶段练习)COD △的相似比是31:,且点A .()2,4B .7.(2023秋·湖南衡阳·九年级校联考阶段练习)将函数的新函数记作()g x ,我们称()f x 与(g x 8.(2023秋·全国·九年级专题练习)如图,在平面直角坐标系中,是位似中心,已知点()2,0A ,点(),C a b ,式子表示)9.(2023·辽宁盘锦·统考中考真题)如图,ABO V 中心,将ABO V 缩小为原来的13,得到A B O ¢¢△10.(2022秋·湖南长沙位似比是1:3,已知11.(2022秋·湖南永州·九年级校考期中)如图,()2,4C -,请你画出以坐标原点并直接写出A 、B 的对应点的坐标.12.(2022秋·陕西渭南·九年级统考期末)如图,在平面直角坐标系中,()()()0,02,11,2O A B -、、.(1)以原点O 为位似中心,在图中画出OAB V 的位似11OA B V ,使得点AB 、的对应点11A B 、均在y 轴的右侧,且11OA B V 与OAB V 的相似比为2:1;(2)在(1)的条件下,写出点1A 的坐标.13.(2023秋·山东临沂·七年级统考开学考试)(1)用数对分别表示出梯形四个顶点的位置:A ( )B ( )C ( )D ( )(2)把图中的梯形绕B 点顺时针旋转90°,画出旋转后的图形.(3)将原梯形按2:1放大,画出放大后的图形.14.(2023春·黑龙江绥化·九年级校考阶段练习)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC V 的三个顶点坐标分别为()1,4A ,()1,1B ,()3,1C .(1)画出ABC V ,再画出ABC V 关于x 轴对称的111A B C △;(2)画出ABC V 以点O 为位似中心扩大2倍后的图形222A B C △.15.(2023秋·全国·九年级专题练习)如图,已知()0,2A -,()2,1B -,()3,2C .(1)求线段AB 的长;(2)把A 、B 、C 三点的横坐标,纵坐标都乘2,得到A ¢,B ¢,C ¢的坐标,画出A B C ¢¢¢V ,并求A B ¢¢的长;(3)ABC V 与A B C ¢¢¢V 是位似图形吗?若是,请写出位似中心的坐标,并求出位似比.。
专题04 图形的相似(五大类型)(题型专练)(原卷版)
专题04 图形的相似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形-作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形-作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。
判定两个图形是否相似练习题
判定两个图形是否相似练习题图形的相似性是几何学中重要的概念之一,它用于描述两个图形在形状上的相似程度。
在解决几何问题或应用中,判定两个图形是否相似是一项基本技能。
本文将介绍一些判定两个图形是否相似的练习题,帮助读者提升这一方面的能力。
一、什么是相似图形?在开始练习之前,我们首先来回顾一下相似图形的概念。
相似图形是指具有相同形状但可能不同大小的图形。
如果两个图形的对应边成比例,那么这两个图形就是相似的。
比例关系可以用于描述两个相似图形之间的对应边长比值。
二、练习题一已知图形ABCD和图形EFGH如下所示:```A E/ \ / \B C F G| |D H```请判断图形ABCD和图形EFGH是否相似,并给出相似的对应边长比值。
解答:首先,我们需要比较图形ABCD和图形EFGH的各边是否成比例。
观察这两个图形的对应边,可以看出:AB/EF = BC/FG = CD/GH = AD/EH由于这些比值都相等,我们可以得出结论:图形ABCD与图形EFGH相似。
相似的对应边长比值为:AB : EF = BC : FG = CD : GH = AD : EH三、练习题二现有两个图形:一个是正方形,另一个是一个矩形。
请判断这两个图形是否相似,并给出相似的对应边长比值。
解答:首先,我们需要比较这两个图形的各边是否成比例。
对于一个正方形,每条边的长度相等;而矩形的对边长度不相等。
因此,正方形和矩形不可能相似。
无法给出相似的对应边长比值。
四、练习题三现有两个图形:一个是等边三角形,另一个是等腰梯形。
请判断这两个图形是否相似,并给出相似的对应边长比值。
解答:首先,我们需要比较这两个图形的各边是否成比例。
对于一个等边三角形,每条边的长度相等;而等腰梯形的对边长度不相等。
因此,等边三角形和等腰梯形不可能相似。
无法给出相似的对应边长比值。
五、练习题四已知图形IJKL和图形MNOP如下所示:```I M/ \ / \J K N O| |L P```请判断图形IJKL和图形MNOP是否相似,并给出相似的对应边长比值。
相似形常考题型
一、选择题1.下列命题中,正确的是( )A .任意两个等腰三角形相似B .任意两个菱形相似C .任意两个矩形相似D .任意两个等边三角形相似2.如图4所示,打靶训练中,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( ) A .3米 B .0.3米 C .0.03米 D .0.2米3. 如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形与原矩形相似,则留下矩形的面积是( )A . 2 cm 2B . 4 cm 2C . 8 cm 2D . 16 cm 2 4.ΔABC 中,DE//BC ,且S ΔABC :S 梯形BCED =1:2,则DE:BC 的值是( )A .1:2B .1:3C .1:2D .1:3 5.下列语句正确的是 ( )A .相似图形一定是位似图形,位似图形一定是相似图形B .位似图形一定是相似图形,位似比等于相似比C .利用位似变换只能放大图形,不能缩小D .位似中心只能在外部,不能在内部6.如图□ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ:CQ=4:3,则AP:PR=( ) A .4:3 B .4:7 C .3:4 D .3:77.如图,梯形ABCD 的对角线相交于点O ,有如下结论:①ΔAOB ∽ΔCOD ,②ΔAOD ∽ΔBOC ,③S ΔAOD =S ΔBOC ,④S ΔCOD :S ΔAOD =DC:AB ;其中一定正确的有( )A .1个B .2个C .3个D .4个RQPDCBAOCBD A8.如图,已知△ADE ∽△ACB,其中∠AED=∠B,则下列比例式成立的是( )A BC DEAB AE AC AD == B BC DE AC AE AB AD == C BC DE AB AC AE AD == D BC DEEC AE AB AD ==9.在△ABC 和△A ′B ′C ′中,∠B=∠B ′,下列条件不能判断这两个三角形相似的是( )A.∠A=∠C ′B.∠A=∠A ′C.C B B A BC AB ''''=D.C A B A AC AB ''''=10.如图,正方形ABCD 内接于等腰三角形PQR,则PA ∶PQ 等于( )A.1∶2B.1∶2C.1∶3D.2∶3 11.如图,已知AB CD ∥,AD 与BC 相交于点P ,4AB =,7CD =, 10AD =,则AP 的长等于( )A .4011 B .407 C .7011 D. 227 12.如图6,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )A.AD OACD AB =B.BC OBOD OA =C.OCOBCD AB =D.ODOBAD BC =图6 图713.如图7,D 为△ABC 的边AB 上一点,且∠ABC=∠ACD ,AD=3 cm, AB=4 cm ,则AC 的长为( ) A.2 cmB 3 cm C.12 cm D. 23 cm14.在平行四边形ABCD 中,E 在BC 边上,AE 交BD 于F ,若BE ∶EC=4∶5,则BF ∶FD 等于( )A.4∶5B.5∶4C.5∶9D.4∶915、如果43=b a ,则下列各式中不正确的是( )AB CDP(A )a b 43= (B )41=-b a b (C )4343=++b a (D )b a 43=16、下列有关相似的命题:①有一个角等于120°的两个等腰三角形相似;②将一个菱形放在2倍的放大镜下,各角和边长扩大为原来的2倍,面积扩大为原来的4倍;③全等三角形一定是相似三角形,相似三角形一定不是全等三角形;④位似图形一定是相似图形,而相似图形不一定是位似图形,其中真命题的个数为( )A.4个.B.3个.C.2个.D.1个.17、已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍球的高度h 应为( )(A ) 2.7m (B ) 1.8m (C ) 0.9m (D ) 6m 18、如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC △∽ADE △的是( ) A .AE AC AD AB = B .DEBCAD AB =C .D B ∠=∠ D .AED C ∠=∠ CBAE12DMCANB19、三角形三边之比为3∶4∶5,与它相似的另一个三角形的最短边为6cm ,则这个三角形的周长为( )(A)12cm (B)18cm (C)24cm (D)30cm20、如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD,只要CD 等于 ( )A.c b 2B.a b 2C.cab D.c a 2 21、 如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=5m ,点P 到CD 的距离是3m ,则P 到AB 的距离是( )。
第四章图形的相似题型专练2021-2022学年数学北师大版九年级上册 (含答案)
2021-2022学年数学北师大版九年级上册第四章图形的相似题型专练1.四条线段a ,b ,c ,d 成比例,其中3b =cm,8c = cm,12d = cm ,则a =( ) A.2 cmB.4 cmC.6 cmD.8 cm2.如图27-2-1-24,在ABC △中,//,932DE BC AD DB CE ===,,, 则AC 的长为( )A.6B.7C.8D.93.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上.如果矩形OA B C '''与矩形OABC 关于点O 位似,且矩形OA B C '''与矩形OABC 的相似比为12,那么点B '的坐标是( )A.(2,3)-B.(2,3)-C.(3,2)-或(2,3)-D.(2,3)-或(2,3)-4.下列说法中正确的个数为( ) ①凡正方形都相似; ②凡等腰三角形都相似; ③凡等腰直角三角形都相似;④两个相似多边形的面积比为4:9,则周长的比为16:81. A.1B.2C.3D.45.下列图形中不一定是相似图形的是( ) A.两个含60°角的平行四边形 B.两个含60°角的菱形 C.含60°角的菱形和含120°角的菱形 D.两个正方形6.已知FHB EAD ∽它们的周长分别为30和15,且6FH =,则EA 的长为( )A.3B.2C.4D.57.若线段MN 长为1,点P 是MN 的黄金分割点,则MP 的长是( )D.不能确定8.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高1.5m ,测得 1.2AB =m,12.8BC = m ,则建筑物CD 的高是( )A.17.5 mB.17 mC.16.5 mD.18 m9.如图,在ABC 中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC 的面积为a ,则ABD 的面积为( )A.2aB.52a C.3aD.72a 10.如图,在ABC 中,ABC C ∠=∠,将ABC 绕点B 逆时针旋转得到DBE ,点E 在AC 上,若3ED =,1EC =,则EB =( )B.32D.211.如图,直线////a b c ,ABC 的边AB 被这组平行线截成四等份,ABC 的面积为32,则图中阴影四边形DFIG 的面积是( )A.12B.16C.20D.2412.如图,在ABC 中,12AB AC ==,8BC =.正方形DEFG 的顶点E ,F 在ABC 内,顶点D ,G 分别在AB ,AC 上,AD AG =,4DG =,则点F 到BC 的距离为( )A.1B.2C.4D.413.湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1:6700000表示出来,使读者能够全面、直观地认识我国版图,若在这幅地图上量得我国南北的距离是82.09厘米,则我国南北的实际距离大约是___________千米(结果精确到1千米).14.已知直线//CD EF ,若3,4OC CE ==,则ODOF的值是_________.15.已知111ABC A B C ∽,顶点A 、B 、 C 分别与1A 、1B 、1C 对应,12AC =,118AC =,ABC 的高AD 的长为6,那么111A B C 的高11A D 的长为___________.16.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2,4AB CD ==,则GH 的长为__________.17.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是________cm .18.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m 的大视力表制作一个测试距离为3 m 的小视力表.如图,如果大视力表中“E”的高度是3.5 cm ,那么小视力表中相应“E”的高度是_____________.19.如图,在矩形ABCD 中,2AD =,5AB =,P 为CD 边上的动点.当ADP 与BCP 相似时,DP =__________.20.如图,∆AOB 三个顶点的坐标分别为(8,0)A ,(0,0)O ,(8,6)B -,点M 为OB 的中点,以点O 为位似中心,把∆AOB 各边缩小为原来的12,得到∆A’OB’,点M '为OB '的中点,则MM '的长为____________.21.如果两个相似三角形的相似比为2:3,两个三角形的周长的和是100 cm ,那么较小的三角形的周长为___________cm.22.如图,ABC 的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FGAG=_______________.23.如图,正方形OEFG 和正方形ABCD 是位似图形,且点F 与点C 是对对应点,点F 的坐标是(1,1),点C 的坐标是(4,2),则它们的位似中心的坐标是_____________.24.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且14CF CD =.有下列结论:① 30BAE ∠=︒,②AE EF ⊥,③ABE AEF ,④ADF ECF .其中正确的结论是_______.(填序号)25.已知线段,,a b c 满足0326a b c==≠,且226a b c ++=. (1)求线段,,a b c 的长;(2)若线段x 是线段,a b 的比例中项,求x .26.如图,ABC 中,D 是AC 的中点,E 在AB 上,BD 、CE 交于O 点.已知::1:2OB OD =,求BEAE的值.27.已知,如图27-2-1-23,点,C D 在线段AB 上,PCD △是等边三角形,且1,24AC CD DB ===,.求证:.ACP PDB △△~28.如图,在66⨯的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的ABC 是一个格点三角形.(1)在图①中,请判断ABC 与DEF 是否相似,并说明理由;(2)在图②中,以点O 为位似中心,再画一个格点三角形,使它与ABC 的相似比为2:1;(3)在图③中,请画出所有满足条件的格点三角形,它与ABC 相似,且有一条公共边和一个公共角.29.如图,将一张长、宽之比为的矩形纸ABCD 依次不断对折,可以得到矩形,,,BCEF AEML GMFH LGPN .(1)判断矩形,,,,ABCD BCFE AEML GMFH LGPN 的长、宽之比是否相等,并说明理由; (2)你认为这些大小不同的矩形相似吗?30.如图,在ABCD 中,M 是BC 边的中点,E 是边BA 延长线上的一点,连接EM ,交线段AD 于点F 、AC 于点G .(1)求证:AFG CMG ∽; (2)求证:GF EFGM EM=. 31.如图,在ABC 中,5,3,4,//,AB BC AC PQ AB ===点P 在AC 上(与点A ,C 不重合),点Q 在BC 上.(1)当PQC 的面积与四边形PABQ 的面积相等时,求CP 的长. (2)当PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.32.如图,在ABC 和A B C '''中,D 、D '分别是AB 、''A B 上一点,AD A D AB A B ''=''.(1)当时CD AC ABC D A C A B '''='''=,求证:ABC A B C '''∽. 证明的途径可以用如图所示的框图表示,请填写其中的空格.(2)当CD AC BCC D A C B C '''='''=时,判断ABC 与A B C '''是否相似,并说明理由.答案以及解析1.答案:A解析:四条线段a 、b 、c 、d 成比例,a c b d ∴=,3cm b =,8cm c =12cm d =,8312a ∴=,解得2a =cm.故选A. 2.答案:C解析://,DE BC AD AE DB EC ∴=即9,32AE=6AE ∴=,628.AC AE EC ∴=+=+= 3.答案:D解析:矩形OA B C '''和OABC 关于点O 位似,相似比为12,且点B 的坐标为(4,6)-. 点B '的坐标为(2,3)-或(2,3)-. 4.答案:B解析:①所有正方形的边成比例,角相等,都相似,故①正确;②等腰三角形形状不一定相同,所以不一定相似,故②错误;③所有等腰直角三角形的边成比例,角分别相等,都相似,故③正确;④两个相似多边形的面积比为4:9,则周长的比为2:3,故④错误.所以说法正确的有①③,共2个.故选B. 5.答案:A解析:对于选项A ,两个平行四边形都含60°角,则角分别相等,但边不一定成比例,故不一定相似,故A 符合题意;对于选项B 、C ,两个菱形的角分别相等,边成比例,一定相似,故B 、C 不合题意;对于选项D ,两个正方形一定相似,故D 不合题意.故选A. 6.答案:A 解析:FHB EAD ∽,且FHB 和EAD 的周长分别为30和15,FHB ∴和EAD 的周长比为2:1,FHB EAD ∽,2FH EA ∴=,即62EA=,解得3EA =,故选A. 7.答案:C解析:设MP x =,则1PN x =-.当MP PN PN MN =时,111x xx -=-,解得x =x =(不合题意,舍去).MP 的长也可以为1-=. 8.答案:A解析:EB AC ⊥,DC AC ⊥,//EB DC ∴,ABE ACD ∴∽,AB BEAC CD∴=. 1.5BE =m ,1.2AB =m ,12.8BC =m ,14AC AB BC ∴=+=m ,1.2 1.514DC=,解得17.5DC =m.故选A. 9.答案:C解析:在BAC 和ADC 中,C ∠是公共角,CAD B ∠=∠,BAC ADC ∴∽,2()4ABC DACS BC SAC∴==,又ADC 的面积为a ,ABC ∴的面积为4a ,ABD ∴的面积为3a .10.答案:A解析:由旋转可得ABC DBE ≌,BC BE ∴=,3DE AC ==,C BEC ∴∠=∠.又ABC C ∠=∠,ABC BEC ∴∠=∠,又C C ∠=∠,ABC BEC ∴∽,EC BCBC AC∴=,即2BC CE CA =⋅,BC ∴=,BE ∴=故选A.11.答案:B 12.答案:C解析:如图,作AN BC ⊥于N ,交DG 于M ,交EF 于H .12AB AC ==,AN BC ⊥,8BC =,4BN CN ∴==,AN ∴,AD AG =,AB AC =,ADG AGD ∴∠=∠,B C ∠=∠,2180DAG ADG ∴∠+∠=︒,2180DAG B ∠+∠=︒,ADG B ∴∠=∠,//DG BC ∴,ADG ABC ∴∽,AM DG ⊥,AM DGAN BC ∴=,48=,AM ∴=,MN ∴=,易知四边形MHFG 是矩形,4MH GF DG ∴===,4HN MN MH ∴=-=,点F 到BC 的距离为4.故选C.13.答案:5500解析:设我国南北的实际距离是x 厘米,由题意得82.09:1:6700000x =,解得550003000x =,550003000厘米5500≈千米.14.答案:37解析://,::CD EF OD OF OC OE ∴=.3,4,::3:7OC CE OD OF OC OE ==∴==.15.答案:4解析:111ABC A B C ∽,12AC =,118AC =,相似比为12382=,ABC 的高AD 的长为6,111A B C ∴的高11A D 的长为2643⨯=. 16.答案:43 解析:////AB GH CD ,,GH CH GH BH AB BC CD BC∴==, 1GH GH CH BH AB CD BC BC∴+=+=, 2,4AB CD ==,124GH GH ∴+=,解得43GH =. 17.答案:20解析:两个相似三角形的面积之比是9:25,大三角形的周长:小三角形的周长5:3=.小三角形一边上的中线长是12cm ,大三角形对应边上的中线长是31220(cm)5÷=. 18.答案:2.1 cm 解析:由题意得//CD AB ,ECD EAB ∴∽,CD DE AB BE ∴=. 3.5AB = cm ,5BE = m ,3DE =m ,33.55CD ∴=, 2. 1CD ∴=(cm ). 19.答案:1或4或2.5解析:①当APD PBC 时,AD PD PC BC =,即252PD PD =-,解得1PD =或4PD =. ②当PAD PBC 时,AD PD BC PC =,即225PD PD =-,解得 2.5DP =.综上所述,DP 的长度是1或4或2.5.20.答案:2.5或7.5解析:由A ,B ,O 三点坐标知AOB 为直角三角形,由勾股定理得10OB =,因为M 为OB的中点,所以5OM =.根据题意作AOB 的位似图形A OB '',有两种情况:当位似图形与原图形在位似中心同侧时,点B '与点M 重合,点M '位于OM 的中点, 2.5OM '=,则5 2.5 2.5MM '=-=;当位似图形与原图形在位似中心两侧时,5 2.57.5MM '=+=,所以MM '的长为2.5或7.5.21.答案:40解析:设较小的三角形的周长为x cm ,则较大的三角形的周长为(100)x -cm ,两个相似角形的相似比为2:3,两个相似三角形的周长比为2:3,21003x x ∴=-,解得40x =,即较小的三角形的周长为40 cm.22.答案:14解析:线段AD 、BE 是 ABC 的中线,BD CD ∴=,AE EC =,又//EF BC , EF 是ACD的中位线, AF FD ∴=,1122EF CD BD ==.//EF BC ,EFG BDG ∴∽,12FG EF DG BD ∴==,2DG FG ∴=,3DF AF FG ∴==,4AG FG ∴=,14FG AG ∴=. 23.答案:(2,0)-解析:连接CF 并延长,交x 轴于点H ,则点H 就是位似中心.(1,1)F ,(4,2)C ,1OE ∴=,4OB =,1EF =,2BC =.由图可知,EF x ⊥轴,BC x ⊥轴,//EF BC ∴,HEF HBC ∴∽,HE EF HB BC ∴=,即1142OH OH +=+,解得2OH =,(2,0)H ∴-,即位似中心的坐标是(2,0)-.24.答案:②③解析:在正方形ABCD 中,AB BC =, E 是BC 的中点,11,22BE BE AB AB ∴==, 30BAE ∴∠≠︒,故①错误;E 是BC 的中点,:1:4CF CD =,2AB BE CE CF ∴==,又,B C ABE ECF ∠=∠∴,BAE CEF ∴∠=∠.又90,90BAE AEB AEB FEC ∠+∠=∴∠+∠=︒︒,90AEF ∴∠=︒,即AE EF ⊥,故②正确;,2,AE AB ABE ECF EF EC ∴== AB CE BE AE EF EF∴==,且90ABE AEF ∠=∠=︒, ABE AEF ∴,③正确;2,3,DA DF AD DF CE CF CE CF==∴≠, ADF ∴和ECF 不相似,④错误.综上可知,正确的为②③.25.答案:(1)解:设(0)326a b c k k ===≠ 3,2,6a k b k c k ∴===226a b c ++=34636k k k ∴++=,2k ∴=6,4,12a b c ∴===(2)线段x 是线段,a b 的比例中项,2x ab ∴=.又6,4a b ==,x ∴=(负值舍去).26.答案:如图,取AE 的中点F ,连接DF ,D 是AC 的中点,F 为AE 的中点,DF 为AEC 的中位线,//DF CE ∴.//OE DF ,12BE BO EF OD ∴==, 14BE AE ∴=. 27.答案:证明:PCD △是等边三角形,602PCD PDC PC CD PD ∴∠=∠====,,°120PCA PDB ∴∠=∠=°.14AC BD ==,,11,,22AC PD PC BD ∴== ,AC PD PC BD ∴= .ACP PDB ∴△△~28.答案:(l )如图①所示,ABC 与DEF 相似.理由如下:1,4,AB BC AC DE EF DF ====AB BC AC DE EF DF ∴====ABC ∴与DEF 相似.(2)如图②所示,A B C '''即为所求.(3)如图③所示,ADC 和CEB 即为所求.29.答案:解:(1)矩形, , ,, ABCD BCFE AEML GMFH LGPN 的长、宽之比相等.理由如下: 设矩形纸的宽BC a =,长AB =,则有,,222a BE AE a ME ===,,,24a MF HF a ==,,44a LG LN ==AB BC BC a BE ∴====22AE a ME ==a MF HF ==44LG a LN== ∴五个矩形的长、宽之比相等.(2)这些大小不同的矩形都相似.30.答案:(1)证明://AD BC ,FAG MCG ∴∠=∠.AGF CGM ∠=∠,AFG CMG ∴∽.(2)证明:AFG CMG ∽,GF AF GM CM∴=.//AD BC ,AEF BEM ∴∽,AF EF BM EM∴=. 又由M 是BC 边的中点知CM BM =, AF EF CM EM∴=, GF EF GM EM ∴=. 31.答案:(1)PABQ PQC S S =四边形,:1:2.//,,,,PQC ABC S S PQ AB CPQ CAB CQP CBA PQC ABC ∴=∴∠=∠∠=∠∴222:1:2,14,2PQC ABCPC S S AC PC PC ⎛⎫∴== ⎪⎝⎭∴=⨯∴= (2)PQC 的周长与四边形PABQ 的周长相等, 1()6,26.PC CQ PA AB QB AB BC AC CQ CP ∴+=++=++=∴=- ,CPQ CAB ,CP CQ CA CB ∴=即6,43CP CP -=解得247CP =. 32.答案:(1)CD AC AD C D A C A D '''='''=;A A ∠=∠'. (2)ABC A B C '''∽.理由:如图,分别过点D ,D '作//DE BC ,//D E B C '''',DE 交AC 于点E ,DE''交A C ''于点E './/DE BC ,ADE ABC ∴~,AD DE AE AB BC AC∴==. 同理,A D D E A E A B B CA C '''''''''='''=. r AD A D AB A B '='', DE D E BC B C '''∴'=, DE BC D E B C ∴=''''. 同理,AE A E AC A C ''=''. AC AE A C A E AC A C '''-'∴'='-,即EC E C AC A C ''='', EC AC E C A C ∴=''''. CD AC BC C D A C B C '''=''=', CD DE EC C D D E E C ''='∴'=''. DCE D C E ∴'''∽,CED C E D ∴∠=∠'''.//DE BC ,180CED ACB ∴∠+∠=.同理,180C E D A C B ''''''∠+∠=, ACB A C B ∴∠=∠'''.AC CB A C C B ='''', ABC A B C ∴'''∽.。
相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧
相似三角形(8大题型)(48道压轴题专练) 压轴题型一 相似形压轴题型1.(20-21九年级上·重庆渝中·期末)如图,△ABC 三个顶点的坐标分别是A (-2,2),B (-4,1),C (-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A'B'C .并把△ABC 的边长放大为原来的2倍,那么点A'的坐标为( )A .(1,-6)B .(1,-7)C .(2,-6)D .(2,-7)2.(23-24八年级下·山东淄博·(2)ABCD AD AB AD <<纸片,以它的一边为边长剪去一个菱形,在余下的平行四边形中,再以它的一边为边长剪去一个菱形.若剪去两个菱形后余下的平行四边形与原平行四边形ABCD 相似,则平行四边形ABCD 的相邻两边AD 与AB 的比值是 .3.(2024·湖北武汉·一模)如图是由小正方形组成的网格,四边形ABCD的顶点都在格点上,仅用无刻度的直尺在所给定的网格中按要求完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先以点A为位似中心,将四边形ABCD缩小为原来的12,画出缩小后的四边形111AB C D,再在AB上画点E,使得DE平分四边形ABCD的周长;(2)在图2中,先在AB上画点F,使得CF BC=,再分别在AD,AB上画点M,N,使得四边形BCMN 是平行四边形.4.(23-24九年级上·江苏南京·阶段练习)形状相同(即长与宽之比相等)的矩形是相似矩形,已知一个矩形长为()1a a³,宽为1.一分为二(1)如图1,将矩形分割为一个正方形(阴影部分)和小矩形,小矩形恰与原矩形相似,则a的值为______.(2)如图2,将矩形分割为两个矩形,使每个小矩形均与原矩形相似,则a的值为______.一分为多(3)有同学说“无论a为何值,该矩形总可以分割为几个小矩形,这几个小矩形都与原矩形相似”,你同意这个说法吗?若同意,在图3中画出一种可行的分割方案;若不同意,举出反例.一分为三(4)将矩形分割为三个矩形,使每个小矩形均与原矩形相似.画出所有可能的分割方案的示意图,并在每个示意图下方直接写出对应的a 的值.5.(20-21八年级下·山东淄博·期末)如图,四边形ABCD ∽四边形A B C D ¢¢¢¢,且62A Ð=°,75B Ð=°,140D Т=°,9AD =,11A B ¢¢=,6A D ¢¢=,8B C ¢¢=.(1)请直接写出:C Ð= 度;(2)求边AB 和BC 的长.6.(23-24九年级上·广西南宁·阶段练习)如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()3,2B ,()2,3C (每个方格的边长均为1个单位长度),请按下列要求画图:(1)111A B C △与ABC V 关于原点O 成中心对称,画出111A B C △并写出点1A 的坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC V 放大,画出放大后的222A B C △并写出点2B 的坐标;(3)根据信息回答问题:已知ABC V 的面积为32,AB ,请直接写出222A B C △的面积和22A B 边上的高的值.压轴题型二 比例线段压轴题型1.(2020古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底0.618≈,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm2.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为 .3.(23-24八年级下·贵州六盘水·期末)已知a ,b ,c ,d ,e ,f 六个数,如果()0a c e k b d f b d f ===++¹,那么a c e k b d f++=++.理由如下:∵()0a c e k b d f b d f===++¹∴a bk =,c dk =,e fk =(第一步)∴()k b d f a c e bk dk fk k b d f b d f b d f++++++===++++++(第二步)(1)解题过程中第一步应用了______的基本性质;在第二步解题过程中,()k b d f k b d f ++=++应用了______的基本性质;(2)应用此解题过程中的思路和方法解决问题:①如果22567a b c ===,则218a b c ++=______;②已知0345x y z ==¹,求23x y z x y z -++-的值.4.(23-24九年级上··的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽1AB =.(1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.5.(22-23九年级上·浙江·周测)若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+×+×+的值.6.(23-24九年级下·山东淄博·期末)已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b =,求a b b +与a b a b -+的值;(2)如果(),a c a b c d b d =¹¹,求证a c b a d c =--;(3)如果a c a b d b +=+,求证a c b d=.压轴题型三 相似三角形的判定压轴题型1.(21-22九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,E 是AD 边的中点,BE ^F ,连接DF ,分析下列四个结论,①AEF CAB △∽△,②CF 2AF =;③DF DC =;④CD AC =.其中正确的结论有( )A .4个B .3个C .2个D .1个2.(2024·广东深圳·二模)如图,在等腰直角ABC V 中,4AB BC ==,D 为BC 上一点,E 为BC 延长线上一点,且45DAE =°∠,2AE AD =,则BD = .3.(2024·广东梅州·模拟预测)(1)如图1,在矩形ABCD 中,点C ,D 分别在边DC ,BC 上,AB AB ^,垂足为点G .求证:ADE DCF ∽V V .【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H Ð=Ð.【类比迁移】(3)如图3,在菱形ABCD 中,E F 分别在边DC ,BC 上,10AE DF ==,7DE =,60AED Ð=°,求CF 的长.4.(2024·山西晋中·二模)综合与实践问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形ABCD 中,4AB =,点E ,F 分别是边AB ,AD 的中点,连接EF ,点G 是线段EF 上的一个动点,连接AG ,将线段AG 绕点A 逆时针方向旋转90°,得到AH ,连接HD ,GB .猜想证明:(1)针对老师给出的问题背景,“智慧小组”发现GB HD =,请你证明这一结论;操作探究:(2)“善思小组”提出问题:如图2,当点G 为线段EF 的中点时,连接FH ,试判断四边形AGFH 的形状,并说明理由;深入探究:(3)“创新小组”BG 与直线DH 交于点M ,当AHD V 为直角三角形时,请直接写出四边形AGMH 的面积.5.(2024·安徽蚌埠·一模)如图1,在四边形ABCD 中,120ABC Ð=°,60ADC Ð=°,对角线AC ,BD 相交于点O ,且AC AD =,BD 平分ABC Ð.(1)求证:DB AB CB =+;(2)如图2,过点D 作DE AB ∥,使DE BC =,连接AE ,取AE 中点 F ,连接DF ,求证:22AC DF OD =×.6.(23-24九年级上·湖南常德·期中)(1)如图1,在四边形ABCD 中,90BAD BCD Ð=Ð=°,连接AC BD ,,过点A 作AE AC ^交CB 的延长线于点E ,求证:E ACD Ð=Ð.(2)如图2,在四边形ABCD 中,AB AD =,(1)中的其它条件不变,点M ,N 分别是BD EC ,的中点,连接AN AM ,,MN .①求证:AE AC =﹔②求证:N ABE AM ∽△△.压轴题型四 相似三角形的性质压轴题型1.(22-23九年级上·上海长宁·期中)已知点D 在ABC V 的边BC 上,联结AD ,如果ABD △与ACD V 相似,那么下列四个说法:①BAD C Ð=Ð;②AD BC ^;③2AD BD CD =×;④22AB BD AC CD =.一定成立的是( ).A .②④B .①③C .①②③D .②③④2.(2024·上海浦东新·三模)如图,在ABC V 中,3AC BC ==,90C Ð=°,点D 在边BC 上(不与点B ,点C 重合),连接AD ,点E 在边AB 上,EDB ADC Ð=Ð.已知点H 在射线AC 上,连接EH 交线段AD 于点G ,当1CH =,且AEH BED Ð=Ð时,则BE AB = .3.(23-24八年级下·山东威海·期末)如图1,矩形ABCD ,点E ,点F 分别为AD ,BC 上的点,将矩形沿EF 折叠,使点B 的对应点B ¢落在CD 上,连接BB ¢.(1)如图2,当点B ¢与点D 重合时,连接BE ,试判断四边形BEB F ¢的形状,并说明理由;(2)若6AB =,8BC =,求折痕EF 的最大值.4.(23-24八年级下·山东东营·期末)综合与探究(1)如图1,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,且AE BF ^,则线段AE 与BF 的之间的数量关系为_____________;(2)【类比探究】如图2,在矩形ABCD 中,35AB AD ==,,点E ,F 分别在边BC ,CD 上,且AE BF ^,请写出线段AE 与BF 的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt ABC V 中,9046ABC AB BC Ð=°==,,,D 为BC 上一点,且2BD =,连接AD ,过点B 作BE AD ^于点F ,交AC 于点E ,求BE 的长.5.(23-24九年级下·广西南宁·阶段练习)已知等边ABC V ,以AC 为斜边向外作Rt ACD △,定义Rt ACD △为等边ABC V 的“关联直角三角形”,连接BD 交AC 于点E ,下面我们来研究与DE BE的值有关的问题.(1)如图①,当“关联直角三角形”是等腰直角三角形时,DE BE的值为______;(2)如图②,当“关联直角三角形”是含30°的直角三角形时,求DE BE的值;(3)如图③,当“关联直角三角形”是一般的直角三角形时,若16,3DE AB BE ==,求BD 的值.6.(2024·安徽·中考真题)如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF Ð=°,求AC BD 的值.压轴题型五 相似三角形的应用压轴题型1.(2024·浙江温州·三模)图1是《九章算术》中记载的“测井深”示意图,译文指出:“如图2,今有井直径CD 为5尺,不知其深AD .立5尺长的木CE 于井上,从木的末梢E 点观察井水水岸A 处,测得“入径CF ”为4寸,问井深AD 是多少?(其中1尺10=寸)”根据译文信息,则井深AD 为( )A .500寸B .525寸C .550寸D .575寸2.(2022·浙江金华·一模)将一本高为17cm (即17cm EF =)的词典放入高(AB )为16cm 的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F 离收纳盒最左端B 处8cm ,若此时将词典无滑动向右倒,书角H 的对应点H ¢恰为CD 中点.(1)收纳盒的长BC = ;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有本书可与边BC 有公共点.3.(2024·江苏南京·一模)在光学中,由实际光线会聚成的像,称为实像,而光线能会聚的是因为折射.图中,凸透镜EF 的焦距为f ,主光轴l EF ^,A ,B ,C ,D 都在l 上,其中O 是光心,2OB OD f ==,蜡烛PQ l ^(蜡烛可移动,且OQ f >),光线PG l ∥,其折射光线GC 与另一条经过光心的光线PP ¢相交于点P ¢(P Q l ¢¢^)即为蜡烛在光屏上所成的实像.图中所有点都在同一平面内.记物高()PQ 为h ,像高()P Q ¢¢为h ¢,物距()OQ ,像距()OQ ¢为v .(1)若10cm f =,10cm h =,15cm u =,=v cm .(2)求证111u v f+=.(3)当f 一定时,画出v 与u 之间的函数图象()u f >,并结合图象描述v 是怎么随着u 的变化而变化的?4.(23-24九年级上·河北邢台·1,小红家的阳台上放置了一个晒衣架,图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点在地面上,经测量得到136cm AB CD ==,51cm OA OC ==,34cm OE OF ==,现将晒衣架完全稳固张开,扣链EF 成一条线段.发现:连接AC .则AC 与EF 有何位置关系?并说明理由;探究:若32cm EF =,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?5.(22-23九年级上·浙江·单元测试)如图,Rt ABC V 为一块铁板余料,90B Ð=°,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.6.(2022九年级·全国·专题练习)阅读理解:如图1,AD 是△ABC 的高,点E 、F 分别在AB 和AC 边上,且EF //BC ,可以得到以下结论:AH EF AD BC=.拓展应用:(1)如图2,在△ABC 中,BC =3,BC 边上的高为4,在△ABC 内放一个正方形EFGM ,使其一边GM 在BC 上,点E 、F 分别在AB 、AC 上,则正方形EFGM 的边长是多少?(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为160cm 的等腰三角形展台.现需将展台用隔板沿平行于底边,每间隔10cm 分隔出一排,再将每一排尽可能多的分隔成若干个无盖正方体格子,要求每个正方体格子内放置一瓶葡萄酒.平面设计图如图3所示,将底边BC 的长度看作是0排隔板的长度.①在分隔的过程中发现,当正方体间的隔板厚度忽略不计时,每排的隔板长度(单位:厘米)随着排数(单位:排)的变化而变化.请完成下表:排数/排0123…隔板长度/厘米160__________________…若用n 表示排数,y 表示每排的隔板长度,试求出y 与n 的关系式;②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?压轴题型六 重心的性质压轴题型1.(23-24九年级上·浙江宁波·期末)如图,点G 是ABC V 的重心,过点G 作MN BC ∥分别交AB AC ,于点M ,N ,过点N 作ND AB ∥交BC 于点D ,则四边形BDNM 与ABC V 的面积之比是( )A .1:2B .2:3C .4:9D .7:92.(2023·上海·一模)在Rt ABC △中,9030B BAC BC Ð=°Ð=°=,,1,以AC 为边在ABC V 外作等边ACD V ,设点E 、F 分别是ABC V 和ACD V 的重心,则两重心E 与F 之间的距离是 .3.(2024·江苏盐城·中考真题)如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)4.(23-24七年级下·江苏扬州·阶段练习)作图.(1)直尺作图:如图1,已知D 、E 分别为AB 、AC 中点,过点A 作AF 平分ABC V 面积;(2)直尺作图:如图2,已知AD BC ∥,在四边形ABCD 中作一点O ,使AOB COD S S =△△;(3)尺规作图:如图3,已知D 为AC 中点,点M 在BC ,在AC 上作点N 使MN 平分ABC V 面积.5.(2024·辽宁丹东·二模)阅读与思考:三角形的重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.三角形重心的一个重要性质:重心与一边中点的连线的长是对应中线长的13.下面是小明证明性质的过程.如图,在ABC V 中,D 、E 分别是边BC 、AC 的中点,AD 、BE 相交于点G ,求证:13GE GD BE AD ==证明:连接ED ,∵D ,E 是边BC ,AC 的中点,∴DE AB ∥,12DE AB =(依据1)∴ABG DEGV V ∽∴12GE GD DE GB GA AB ===(依据2)∴13GE GD BE AD ==(1)任务一,在小明的证明过程中,依据1和依据2的内容分别是:依据1:______________________依据2:______________________(2)应用①如图,在ABC V 中,点G 是ABC V 中的重心,连接AG 并延长交BC 与点E ,若 3.5GE =,求AG 长.②在ABC V 中,中线AD 、BE 相交于点O ,若ABC V 的面积等于30,求BOD V 的面积.6.(2024·河南周口·三模)(1)古往今来,人们在生产和生活中对三角形的应用层出不穷,三角形也是我们平时研究的重点,如图1,已知ABC V 是等边三角形. P 是ABC V 的重心,连接BP CP ,并延长分别交边AC AB ,于点E ,D .试判断:①BPD Ð的度数为 ;②线段PB PD PE ,,之间的数量关系:PB PD PE +;(填写“>”“<”或“=”)(2)如图2,若在等边ABC V 中,点E 是射线AC 上一动点(其中点E 不与点A 重合,且12CE AC <),连接BE ,作边BA 关于直线 BE 的对称线段 BD ,直线CD ,BE 相交于点 P ,试探究线段PB PC PD ,,的数量关系,并说明理由.压轴题型七 平面向量的线性运算压轴题型1.(23-24九年级上·上海·期中)下列判断不正确的是( )A .()222a b a b +=+r r r r ;B .如果向量a r 与b r 均为单位向量,那么a b =r r 或a b =-r r ;C .如果a b =r r ,那么a b =r r ;D .对于非零向量b r ,如果()0a k b k =×¹r r ,那么a b r r P .2.(2024·上海普陀·二模)如图,梯形ABCD 中,AD BC ∥,过点A 作AE DC ∥分别交BD 、BC 于点F 、E ,23BE BC =,设AD a =uuu r r ,AB b =uuu r r ,那么向量FE uuu r 用向量a r 、b r 表示为 .3.(23-24八年级下·上海崇明·期末)如图,点E 在平行四边形ABCD 的对角线BD 的延长线上.(1)填空:BA AB +uuu r uuu r = ,BA AE ED DC +++uuu r uuu r uuu r uuu r = ;(2)图中与AB uuu r 相等的向量是 ,与AD uuu r 相反的向量是 ;(3)求作:DC DE +uuu r uuu r (不写作法,保留作图痕迹,写出结论).4.(23-24八年级下·上海·期末)如图,在四边形ABCD 中,AD BC ∥,点O 是对角线AC 的中点,DO 的延长线与BC 相交于点E ,设AB a uuu r r =,AD b =uuu r r ,BE c =uuu r r .(1)试用向量a r 、b r 、c r 表示向量:ED =uuu r ______;(2)写出图中所有与AD uuu r 互为相反向量的向量:______;(3)求作:AD OC +uuu r uuu r.(画出所求向量,并直接写出结论)5.(23-24八年级下·上海闵行·期末)如图,已知梯形ABCD 中,AB DC P ,点E 在AB 上,ED BC ∥.(1)填空:BE ED DC CB +++=uuu r uuu r uuu r uuu r ,(2)填空:BA AD DC EA ++-=uuu r uuu r uuu r uuu r ;(3)在图中直接作出AE ED AB +-uuu r uuu r uuu r .(不写作法,写结论)6.(2022八年级下·上海·专题练习)如图,已知点M 是△ABC 边BC 上一点,设AB uuu r =a r ,AC uuu r =b r .(1)当BM MC=2时,AM uuuu r =______;(用a r 与b r 表示)(2)当AM uuuu r =4377a b +r r 时,BM MC =______;(3)在原图上作出AM uuuu r 在AB uuu r 、AC uuu r 上的分向量.压轴题型八 相似三角形的动点问题1.(2020·山西·一模)如图,在ABC V 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位长度/秒的速度向点A 运动,同时点Q 从点C 出发以2个单位长度/秒的速度向点B 运动,其中一点到达另一点即停.当以B ,P ,Q 为顶点的三角形与ABC V 相似时,运动时间为( )A .2411秒B .95秒C .2411秒或95秒D .以上均不对2.(2023八年级上·江苏·专题练习)如图,在ABC V 中,90C Ð=°,3AC =,4BC =,动点P 从点B 出发以每秒1个单位长度的速度沿B A ®匀速运动;同时点Q 从点A 出发同样的速度沿A C B ®®匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.3.(2024·吉林长春·三模)如图,在Rt ABC △中,90ABC Ð=°,8AB =,6BC =,点D 为AC 中点,动点P 从点A 出发,沿边AB 以每秒5个单位长度的速度向终点B 运动,连结DP ,将线段DP 绕点D 逆时针旋转90°得线段DE ,连结PE .设点P 运动的时间为t 秒.(1)用含t 的代数式表示点P 到AC 的距离为________;(2)当点E 落在ABC V 内部(不包括边界)时,求t 的取值范围;(3)当PE 与ABC V 的一边平行时,求线段PE 的长度;(4)当经过点E 与ABC V 的一个顶点的直线平分ABC V 面积时,直接写出t 的值.4.(2024·江苏苏州·二模)如图,矩形ABCD 中,4AB =厘米,3BC =厘米,点E 从A 出发沿AB BC -匀速运动,速度为1厘米/秒;同时,点F 从C 出发沿对角线CA 向A 匀速运动,速度为1厘米/秒,连接DE DF EF 、、,设运动时间为t 秒.请解答以下问题:(1)当0 2.5t <<时①t 为何值时,EF AD ∥;②设DEF V 的面积为y ,求y 关于t 的函数;5.(2023·吉林松原·模拟预测)已知ABC V 中,90C Ð=°,3cm AC =,4cm CD =,BD AD =.点F 从点A 出发,沿AC CD -运动,速度为1cm/s ,同时点E 从点B 出发,沿BD DA -运动,运动速度为1cm/s ,一个点到达终点,另一点也停止运动.设AEF △ 的面积为S 2cm ,点E ,F 运动时间为t s .(1)求BD 的长;(2)用含t 的代数式表示DE ;(3)求S 与t 的函数关系式,并写出t 的取值范围.6.(23-24九年级下·河北邯郸·阶段练习)如图1和2,在矩形ABCD 中,6,8AB BC ==,点K 在CD 边上.且73CK =.点M N ,分别在,AB BC 边上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速运动,点E 在CD 边上随P 移动,且始终保持^PE AP ;点Q 从点D 出发沿DC 匀速运动,点P Q ,同时出发,点Q 的速度是点P 的一半,点P 到达点N 时停止,点Q 随之停止.设点P 移动的路程为x .(1)当点Q 与点K 重合时,通过计算确定点P 的位置;(2)若点P 在BN 上,当BP CE =时,如图2,求x 的值;(3)在点P 沿折线MB BN -运动过程中,求点Q ,E 的距离(用含x 的式子表示);(4)已知点P 从点M 到点B 再到点N 共用时20秒,请直接写出点K 在线段QE 上(包含端点)的总时长.。
专题02 相似三角形的判定与性质(六大类型)(题型专练)(解析版)
专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是( )A.B.C.D.【答案】C【解答】根据勾股定理,BC==,AC==,AB==2.所以AB2+AC2=AB2.所以△ABC是直角三角形,且∠B=90°.所以,夹直角的两边的比为=2,观察各选项,只有C选项中的三角形与所给图形的三角形相似.故选:C.2.(2022秋•道外区期末)下列三角形一定相似的是( )A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形【答案】B【解答】解:A、等腰三角形的角度不一定相等,各边也不一定对应成比例,故D不符合题意.B、两个等边三角形的各角度都为60°,各边对应相等,故A符合题意;C、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故B不符合题意;D、这两个三角形可能分别为:30°,30°,120°与30°,75°,75°的两个三角形,故不能判定各有一个角是30°的两个等腰三角形一定相似,故C 不符合题意.故选:B.3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有( )A.2组B.3组C.4组D.5组【答案】A【解答】解:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等符合相似的条件;④不相似,因为没有指明边的情况,虽然其四个角均相等,不符合相似的条件;⑤不相似,因为无法得到相等的角或成比例的边;⑥相似,因为两正五边形有相等的角或成比例的边故正确的有③⑥,故选:A.4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是( )A.①与②B.①与③C.③与④D.②与③【答案】B【解答】解:图形①的三边为:2,,;图形②的三边为:3,,;图形③的三边为:2,2,2;图形④的三边为:3,,,∵=,==∴①与③相似,故选:B.5.(2022秋•襄都区校级期末)下列判断中,不正确的有( )A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【答案】B【解答】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选:B.【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是( )A.B.C.2D.3【答案】C【解答】解:∵△ABC∽△DEF,∴,即,解得DF=2,故选:C.7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是( )A.2:3B.4:9C.9:4D.16:81【答案】D【解答】解:∵两个相似三角形的相似比是4:9,∴其面积之比是16:81,故选:D.8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是( )A.1B.2C.3D.4【答案】B【解答】解:∵△ABO∽△CDO,∴=,即=,解得CD=2.故选:B.9.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为 48 .【答案】48.【解答】解:法一、∵62+82=102,∴△ABC是直角三角形.∴S=×6×8=24.△ABC∵△ABC∽△DEF,∴两个三角形的相似比为=.∵△ABC的周长为6+8+10=24,∴△DEF的周长=2×24=48.故答案为:48.法二、∵62+82=102,∴△ABC是直角三角形.=×6×8=24.∴S△ABC∵△ABC∽△DEF,∴两个三角形的相似比为=.∴△DEF的三边长分别为12、16、20.∴△DEF的周长=12+16+20=48.故答案为:48.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE= 8 cm.【答案】见试题解答内容【解答】解:△ABC的面积为81cm2,△DEF的面积为36cm2,因而两个三角形面积的比是81:36,相似三角形面积的比等于相似比的平方,则相似比是9:6,则有12:DE=9:6解得:DE=8cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为 32 cm2.【答案】32.【解答】解:∵两个相似三角形的周长比是3:4,∴这两个相似三角形的相似比是3:4,∴这两个相似三角形的面积比是9:16,∵较小三角形的面积为18cm2,∴较大的三角形面积为,故答案为:32.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为 1:36 .【答案】1:36.【解答】解:∵两个相似三角形的周长之比为1:6,∴它们的相似比为1:6,∴它们的面积比为1:36,故答案为:1:36.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是 1:3 .【答案】1:3.【解答】解:∵两个相似三角形的面积比是1:9,∴两个三角形的相似比为,1:3,∴它们的周长比是1:3,故答案为:1:3.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE=4,则BC= 6 .【答案】6.【解答】解:∵AD=6,BD=3,∴AD:AB=6:,∵DE∥BC,∴△ADE∽△ABC,∴==,∵DE=4,∴BC=6.故答案为:6.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为 27 cm2.【答案】27.【解答】解:设△A′B′C′的面积为Scm2,∵△ABC∽△A′B′C′,且,△ABC的面积为12cm2,∴12:S=9:4,解得S=27cm2.故答案为:27.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.【答案】证明见解答.【解答】证明:∵AB=8,BD=5,AC=6,CE=2,∴AD=AB﹣BD=8﹣5=3,AE=AC﹣CE=6﹣2=4,∵==,==,∴,又∠A=∠A,∴△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【答案】见试题解答内容【解答】解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.【答案】证明过程见解答.【解答】证明:∵,AB=18,AE=15,∴==,∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【答案】证明见解答过程.【解答】证明:∵BF=3,CF=5,∴BC=BF+CF=8,∵DE=15,DF=25.∠E=90°,∴EF==20,∴,,∴,∵∠B=∠E=90°,∴△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.【答案】证明过程见解答.【解答】证明:∵∠A=40°,∠C=80°,∴∠B=180°﹣∠A﹣∠B=180°﹣40°﹣80°=60°,∵∠AED=60°,∴∠AED=∠B,∵∠A=∠A,∴△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.【答案】见解答.【解答】证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∵∠ACB=90°,∴∠ACB=∠BDC,∴∠B=∠B,∴△CBD∽△ABC.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.【答案】见解析过程.【解答】证明:∵∠BCE=∠ACD,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E 在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.【答案】见解答.【解答】解:∵AD=AB,∴∠B=∠ADB,∵∠DEC=∠B,∴∠ADB=∠DEC,∴180°﹣∠ADB=180°﹣∠DEC,∴∠ADC=∠AED,∵∠DAE=∠CAD,∴△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【答案】见解析过程.【解答】证明:∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=36°,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.【答案】△ABC∽△DEF.理由见解析.【解答】解:△ABC∽△DEF.理由:∵AC=3,BC=3.5,AB=4,DF=1.8,EF=2.1,DE=2.4,∴,∴△ABC∽△DEF.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【答案】见试题解答内容【解答】解:观察图象可知:∠ACB=∠DEF=90°,∵AC==2,EF==4,BC==,DF==2,∴==,∴△ACB∽△FED.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.【答案】(1)12;(2)证明见解析.【解答】(1)解:∵AB∥CD,∴∠A=∠DCE,∠ABE=∠D,∴△ABE∽CDE,∴=,即=,∴CD=12;(2)证明:∵AB=4,AE=2,AC=8,∴==,==,∴=,又∵∠A=∠A,∴△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.【答案】(1)证明见解析;(2).【解答】(1)证明:∵AC⊥MN,BD⊥MN,∴∠ACO=∠BDO=90°,∵∠AOB=90°,∴∠A+∠AOC=∠BOD+∠AOC,∴∠A=∠BOD,∴△AOC∽△OBD;(2)解:在Rt△ACO中,AC===4,∵△AOC∽△OBD,∴OC:BD=AC:OD,∴3:BD=4:3,∴BD=.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.【答案】.【解答】(1)证明:∵四边形ABCD为菱形,∴AD=CD,∠ADB=∠CDB,在△ADM和△CDM中,,∴△ADM≌△CDM(SAS),∴CM=AM.(2)解:过点E作EH⊥MC于点H,∵四边形ABCD为菱形,且∠ABC=60°,∴∠ABD=∠CBD=30°,由(1)知:△ADM≌△CDM∴∠AMD=∠CMD,∵∠CME=30°,∴∠AMC=150°,∴∠AMD=∠CMD=75°,又∵∠CMD=∠CBD+∠MCE,∴∠MCE=∠CMD﹣∠CBD=75°﹣30°=45°∵EH⊥MC,∴△EHC为等腰直角三角形,设CH=a,则EH=a,在Rt△MEH中,∠CME=30°,EH=a,∴ME=2a,由勾股定理得:,∴,∴.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵DF∥AB,DE∥BC,∴∠DFC=∠ABF,∠AED=∠ABF,∴∠DFC=∠AED,∵DE∥BC,∴∠DCF=∠ADE,∴△DFC∽△AED;(2)解:∵CD=AC,∴=,由(1)知△DFC和△AED的相似比为:=,∴=()2=()2=.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.【答案】(1)证明见解析;(2)15.【解答】(1)证明:∵∠CBD=∠A,∠D=∠D,∴△BCD∽△ABD;(2)解:由(1)知:△BCD∽△ABD,∴.∵BC:AB=3:5,∴.设BD=3x,则AD=5x,∴CD=AD﹣AC=5x﹣16.∵△BCD∽△ABD,∴,∴BD2=AD•CD,∴(3x)2=5x(5x﹣16),∴16x2﹣80x=0.解得:x=0(不合题意,舍去)或x=5,∴BD=3x=15.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.【答案】(1)证明见解析;(2).【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,∵△AEF是△AED翻折得到,∴∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∵∠AFB+∠BAF=90°,∴∠FAB=∠EFC,∴△ABF∽△FCE;(2)解:由题意可知,AF=AD=8,,DE=EF,设CE长为x,则,在Rt△ABF中,,∵△ABF∽△FCE,∴,即,解得:.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为 4 .【答案】(1)见解析;(2)4.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ABC=∠BCF=90°,∵=,∴△ABE∽△BCF,∴∠BAE=∠CBF,∵∠AEB+∠BAE=90°.∴∠AEB+∠EBG=∠AEB+∠BAE=90°,∴∠EGB=90°.即AE⊥BF;(2)解:过点E作EM⊥BC,交BF于M,设EM=x,∵四边形ABCD是矩形,∴∠ABC=∠BCF=90°,AB=CD,∴AB∥EM∥CD,∵E,F分别是BC,CD的中点,∴M是BF的中点,∴CF=2EM=2x,∴AB=CD=4x,∵AB∥EM,∴△ABG∽△EMG,∴=4.故答案为:4.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.【答案】(1)详见解答;(2).【解答】(1)证明:∵AD平分∠BAC,AF平分∠EAD,∴∠BAC=2∠EAB=2∠BAD,∠EAD=2∠BAD.∴∠BAC=∠EAD.又∵,∴△AED∽△ABC.(2)解:由(1)知△AED∽△ABC,∴∠B=∠E.又∵∠EFA=∠BFD,∴∠EAB=∠EDB.∵∠EAB=∠BAD,∴∠EDB=∠BAD.又∵∠B=∠B,∴△BDF∽△BAD.∴=.∴AB===.答:AB的长为.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.【答案】(1)S=﹣x2+12x(0<x<6);(2)x=4.【解答】解:(1)过点作AM⊥BC于点M,∵AB=AC=10,BC=16,∴BM=BC=8,在Rt△ABM中,AM==6,∵四边形DEFG是矩形,∴DG∥EF,DE⊥BC,∴AN⊥DG,四边形EDMN是矩形,∴MN=DE,DN=EM,∵BE=x,∴EM=DN=8﹣x,设DE=MN=a,则AN=6﹣a,∵DG∥EF,∴△ADN∽△ABM,∴=,即=,∴a=x,∴DE=x,=DE•EF=x•(16﹣2x)=﹣x2+12x(0<x<6)∴S=S矩形DEFG(2)当S=24时,﹣x2+12x=24,解得x=4.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.【答案】2.【解答】解:如图所示,设EH与AD交于点M,∵四边形EFGH是正方形,∴EH∥BC,EH=FG,∴∠AEH=∠ABC,∵∠EAH=∠BAC,∴△AEH∽△ABC,∴,又∵AD⊥BC,∴AD⊥EH,EH=EF=MD,∵EH∥BC,∴,即,设EH=x,则AM=AD﹣MD=3﹣x,∴,解得x=2,∴EH=2,∴这个正方形的边长为2.。
数学图形的相似试题
数学图形的相似试题1.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1,并写出A1、B1、C1的坐标;(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使.【答案】(1),A1(1,-3),B1(4,-2),C1(2,-1)(2)【解析】解:(1)△ABC关于x轴对称的△A1B1C1,如图所示:A1(1,-3),B1(4,-2),C1(2,-1)。
(2)根据A(1,3)、B(4,2)、C(2,1),以原点O为位似中心,在原点的另一侧画出△A2B2C2,使,则A2(-2,-6),B2(-8,-4),C2(-4,-2)。
在坐标系中找出各点并连接,如图所示:(1)根据坐标系找出点A、B、C关于x轴对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1、B1、C1的坐标即可。
(2)利用在原点的另一侧画出△A2B2C2,使,原三角形的各顶点坐标都乘以-2得出对应点的坐标即可得出图形。
2.如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.【答案】(1)4(2)当t=6时,△AMN的面积最大,最大值为【解析】解:(1)∵从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒,∴AM=12﹣t,AN=2t。
∵∠AMN=∠ANM,∴AM=AN,即12﹣t=2t,解得:t="4" 秒。
∴当t为4时,∠AMN=∠ANM。
(2)如图作NH⊥AC于H,∴∠NHA=∠C=90°。
∴NH∥BC。
∴△ANH∽△ABC。
∴,即。
九年级数学图形的相似(带答案)
第3章图形的相似【经典例题】1.(2014湖北咸宁,6,3分)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E点的坐标为().A .(2,0)B .(23,23)C .(2,2)D .(2,2)【解析】由已知得,E 点的坐标就是点A 坐标的2倍.【答案】C【点评】本题着重考查了位似图形的坐标特点,注意本题是同向位似.2.(2014山东日照,8,3分)在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则FD BF 的值是( ) A.21 B.31 C.41 D.51 解析:如图,由菱形ABCD 得AD ∥BE,,所以△BEF ∽△ADF, 又由EC =2BE ,得AD=BC=3BE ,故FD BF =AD BE =31. 解答:选B .点评:本题主要考查了棱形的性质、相似三角形的判定与性质,正确画出图形是解题的关键.3.(2014·湖南省张家界市·10题·3分)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .【分析】相似三角形相似比等于面积比的算术平方根.【解答】ABC △与DEF △的相似比为254=52. 【点评】相似三角形面积比等于相似比的平方.4.(2014山东省滨州,18,4分)如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形: (用相似符号连接).【解析】(1)由于∠BDE=∠CDF ∠BED=∠CFD=90°,可得△BDE ∽△CDF 。
由于∠A=∠A ,∠AFB=∠AEC=90°,可得△ABF ∽△ACE 。
解:(1)在△BDE 和△CDF 中∠BDE=∠CDF ∠BED=∠CFD=90°,∴△BDE ∽△CDF .(2)在△ABF 和△ACE 中,∵∠A=∠A ,∠AFB=∠AEC=90°,∴△ABF ∽△ACE .【答案】△BDE ∽△CDF ,△ABF ∽△ACEABC D FE (第6题) yxAO C B D EF【点评】本题考查相似三角形的判定方法.三角形相似的判定方法有,AA ,AAS 、ASA 、SAS 等.5.(2014贵州黔西南州,17,3分)如图5,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD=1,BC=3,△AOD 的面积为3,则△BOC 的面积为___________.【解析】由题意知AD ∥BC ,所以∠OAD=∠OCB ,∠ODA=∠OBC ,所以△OAD ∽△OCB .又AD=1,BC=3,所以△OAD 与△OCB 的相似比为1:3,面积之比为1:9,而△AOD 的面积为3,所以△BOC 的面积为27.【答案】27.【点评】理解相似三角形的相似比与周长比、面积比之间的关系,是解决本题的关键.6.(2014贵州遵义,7,3分)如图,在△ABC 中,EF∥BC,=,S 四边形BCFE =8,则S △ABC =( )A . 9B . 10C . 12D . 13 解析:求出的值,推出△AEF∽△ABC,得出=,把S 四边形BCFE =8代入求出即可. 解:∵=, ∴==,∵EF∥BC,∴△AEF∽△ABC,∴==,∴9S △AEF =S △ABC ,∵S 四边形BCFE =8,∴9(S △ABC ﹣8)=S △ABC ,解得:S △ABC =9.故选A .答案: A点评: 本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方,题型较好,但是一道比较容易出错的题目.7.(2014南京市,15,2)如图,在平行四边形ABCD 中,AD=10厘米,CD=6厘米,E 为AD 上一点,且BE=BC,CE=CD ,则DE= 厘米.C A E解析:△BCE 与△CDE 均为等腰三角形,且两个底角∠DEC=∠BCE ,∴△BCE ∽△CDE ,∴CD BC =DECE ,∴ 610=DE6,∴DE=3.6厘米. 答案:3.6.点评:在图形中,利用相似,得出比例式,可以求出线段的长.8.(2014山东日照,21,9分) 如图,在正方形ABCD 中,E 是BC 上的一点,连结AE ,作BF ⊥AE ,垂足为H ,交CD 于F ,作CG ∥AE ,交BF 于G .(1)求证CG =BH ;(2)FC 2=BF·GF ; (3) 22AB FC =GBGF .解析:(1)可证△ABH ≌△BCG ;(2)证△CFG ∽△BFC 可得;(3)先证△B CG ∽△BFC 得BC 2=BF·BG ,结合AB=BC 可得.证明: (1)∵BF ⊥AE ,CG ∥AE , CG ⊥BF ,∴ CG ⊥BF .∵在正方形ABCD 中,∠ABH+∠CBG =90o , ∠CBG+∠BCG =90o,∠BAH+∠ABH =90o ,∴∠BAH=∠CBG, ∠ABH=∠BCG, AB=BC,∴△ABH ≌△BCG ,∴CG=BH ;(2) ∵∠BFC=∠CFG, ∠BCF=∠CGF=90 o ,∴△CFG ∽△BFC ,∴FCGF BF FC =, 即FC 2=BF ·GF ; (3) 由(2)可知,BC 2=BG ·BF ,∵AB=BC ,∴AB 2=BG ·BF , ∴22BC FC =BF BG BF FG ••=BGFGAF即22AB FC =GBGF 点评:本题考查了正方形的性质、全等三角形和相似三角形的判定与性质,解题的关键是找到全等(或相似)三角形,并找到三角形全等(或相似)的条件.9.(2014海南省,12,3分)12、如图3,在△ABC 中,∠ACB=090,CD ⊥AB ,于点D ,则图中相似三角形共有( )C D B AA 、1对B 、2对C 、3对D 、4对【解题思路】由射影定理可知图中相似三角形共有三对:△BDC ~△BCA ~△CDA【答案】C .【点评】本题主要考查相似三角形基本图形中的一种,也是很重要的一种:射影定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学图形的相似题型总结
【例题讲解】
题型一:比例性质的考查
a
2
例1、( 1 )已知线段a、b,且上一,则下列说法错误的是()
b 3
B. a=2k , b=3k ( k 工0)
2
C. 3a=2b
D. a=—b
3
题型二:黄金分割的考查
例2、已知点C为线段AB的黄金分割点,且AC=1cm,则线段AB的长为
题型三:平行线分线段成比例的考查
// AB,且AD : DB=3 : 5,那么CF : CB 等于( )
D. 2: 5
B C
A. a=2cm, b=3cm
(2 )如果
a
b
3
—?
2
那么
a
a b
等于( )
A. 3: 2
B. 2 :3
C. 3: 5
(3 )若-
b b
c c a
k , 则k的值为()
c a b
D. 5: 3
D.不存在
例3、(1 )如图,在△ ABC 中,DE || BC ,
AD
DB
-,DE=4,则BC的长是(
2
B、10
C、11
D、12
(2)如图,已知在厶ABC中,点D、E、F分别是边AB、AC、BC上的点, DE // BC , EF A. 2 B. -1 C. 2 或-1
例3 (2 )图
例4 (1 )图 例4 (2)图
欢迎下载
2
题型四:相似三角形性质的考查 例4、(1 )如图,在等边三角形 ABC 中,D E 、F 分别是边 BC AG AB 上的点, DEI AC,
EF 丄AB, FD! BC,则厶DEF 的面积与厶 ABC 的面积之比等于( A 1:3
B :
2 ) :
3 (2)如图,DE 是厶ABC 的中位线, M 是DE 的中点,若厶ABC 的面积为48cm 2,则厶DMN
的面积为 ______ cm (3)如图,已知△ ADE ABC ,
AD=6cm , DB=3cm , BC=9.9cm ,/ A=70 度,/ B=50 度,1)求/ ADE 的大小;2)求/ AED 的大小;3)求DE 的长。
题型五:相似三角形判定的考查
例5、(1)如图,点D 在厶ABC 的边AC 上, ABC 相似,添加一个条件,不正确的是( A 、/ ABD= / C
B 、/ ADB= / AB
C C 、
D 、 要判定△ (2)如图,M 是Rt △ ABC 的斜边BC 上异于B 、
BD CD C 的一定点,过 AB AC M 点作直线截△ ABC ,
使截得的三角形与△ ABC 相似,这样的直线共有 条。
(3)如图,点C 为线段AB 上任意一点(不与 A 、B 重合),分别以
AC
、
BC 为一腰在 AB 的同侧作等腰 △ACD 和等腰 ABCE , CA=CD , CB=CE ,/ ACD 与/ BCE 都是锐角且/ ACD= / BCE ,连接AE 交CD 于点M ,连接BD 交CE 于点N , AE 与BD 交 于点P ,连接PC . (1) 求证:△ACE ADCB ;
(2) 请你判断△AMC 与ADMP 的形状有何关系并说明理由; (3) 求证:/ APC= / BPC .
例6、一天,小青在校园内发现旁边一棵树在阳光下的影子和她本人的影子在同一直线上, 树顶的影子和她头顶的影子恰好落在地面的同一点, 同时还发现她站立于树影的中点
(如图
所示)•如果小青的身高为 1.65米,由此可推断出树高是
似中心,在x 轴的下方作△ ABC 的位似图形,并把△ ABC 的边长放大到原来的 2
倍,记所得
________ 米
.
题型七:图形位似的考查
例7、(1)如图,A ABO 缩小后变为A A ''0, 点上,若线段 AB 上有一点P ( m , n ),则点
其中A 、B 的对应点分别为 A'、B 均在图中格 P 在A ' B '上的对应点P '的坐标为 _________________
(2)如图,
△ABC 中,A 、B 两个顶点在x 轴的上方,点 C 的坐标是(-1 , 0),以点C 为位
题型六:相似三角形的应用
的像是△ A ' B ' C.设点B 的对应点B '的横坐标是a ,则点B 的横坐标是(
【课堂练习】
x
1、如果x-3y=0 ,且y 丰0,那么一等于(
)
y
B .
1
D .
1 A . 3
C. -3
3
3
…a b 2 a
)
2、若一
, 则一=(
b
3
b
人1
2
4
5
A.-
B
—
C.-
D .
3
3 3
3
3、如图, 在厶ABC 中,点D 、 E 分别是边AB 、 AC 的中点, 则下列结论不正确的是 ( )
A 、BC=2DE
B 、△ ADE
ABC
C AD
AB
D
、 S ABC
3S ADE
AE AC
5、如图,在一场羽毛球比赛中, 站在场内M 处的运动员林丹把球从 N 点击到了对方内的 B 1 A 、 a
2
B 、2(a 1)
C 2
(a 1)
1(a 3)
4、如图,在△ ABC 中,AB=AC / 仁/2.
(1 )△ ADB 和△ ABE 相似吗?( 2)小明说:
“ AB 2
AD?AE ”,你同意吗?
点,已知网高 OA=1.52米,0B=4米,
0M=5米,则林丹起跳后击球点
N 离地面的距离
第6题图
【课后作业】
1、已知:如图,DE // BC, AD : DB=1:2 ,则下列结论不正确的是
交于点 F ,则 DEF :S △ ADF :S △ABF 等于(
6>A ABC 三个顶点坐标分别为 A ( 2,— 2) , B (4, - 5) , C ( 5, - 2),以原点0为位似中 心,将这个三角形放大为原来的
2倍.相应坐标是 ________________________________________
7、如图,在厶 ABC 中,DE // BC , EF // AB ,求证:△ ADE EFC .
第7题图
c 、
2、 DE 1 BC 2 ADE 的周长 ABC 的周长
为了测量一池塘的宽 DE , 长线上找一点A ,测得
ADE 的面积 ABC 的面积 ADE 的面积 四边形BCED 的面积
在岸边找一点 C ,测得CD=30m ,在DC 的延 AC=5m ,过点 A 作AB // DE ,交EC 的延长线于
A 、
25m
B 、30m
C 、36m
3、 已知 AB // CD // EF ,那么下列结论正确的是
AD
BC BC DF
CD A
B ——
C 、
DF
CE
CE AD
EF
D 、40m
BC
BE
CE D
EF
AD AF
ABCD 中,E 为 CD 上一点,DE :CE 2:3,连结 AE, BE, BD 且 AE, BD
4:10: 25
B 、4:9: 25
2:3:5 2:5: 25
5、东东和爸爸到广场散步,爸爸的身咼是
176cm ,东东的身高是 156cm ,在同一时刻爸爸
的影长是88cm ,那么东东的影长是
cm .
测得AB=6m ,则池塘的宽 DE 为( ) D
B ,
A
4、如图,在平行四边形
D
8、如图,在矩形ABCD 中,点E、F 分别在边AD、DC 上,△ ABE DEF , AB=6 , AE=9 ,。