四年级长方形和正方形的面积(奥数)
四年级奥数详解答案 第6讲 面积的计算
四年级奥数详解答案 第6讲第六讲 面积的计算一、知识概要1. 面积:面积是围成的平面图形的大小。
2. 各种图形的计算公式1. 三角形 面积=底×高÷2 用字母表示为:S=ah ÷2(注:高,就是从三角形的顶点向它的对边所做的那条垂线段)}是特殊的平行四边形为:用字母表示边长边长面积正方形为:用字母表示宽长面积长方形2a S . 3.ab S .2=⨯==⨯= 4. 平行四边形 面积=底×高 用字母表示为:S=ah5. 梯形 面积=(上底+下底)×高÷2 用字母表示为:S=2h b)a ⨯+( {注: 解梯形应用题常用到梯形的中位线。
中位线就两腰的中立的连线。
中位线等于两底边之和的一半,即,中位线=(a+b)÷2}}二、典型题目精讲1. 用同样大小的长方形纸片摆成下图,已知每张小纸片的宽是4厘米,阴影部分的面积是多少平方厘米?分析:(如图)5个长方形的长等于3个长十3个宽即5a=3a+3b,则2a=3b,a=3×4÷2=6(cm) 图中阴影部分是三个相等的小正方形,其一个正方形的边长为长-宽,即6-4=2(cm),这样,全部阴影部分面积就是(2×2×3)cm 2了。
解:①3×4÷2=6(cm)②6-4=2(cm)③2×2×3=12(cm 2)答:阴影部分的面积是12 cm 2。
2. 下图是一个边长为20厘米的正方形和一个长方形的组合图形,求阴影部分的面积。
分析:作二条辅助线,交于正点使EF=20cm ,EG=10 cm(如图)则阴影面积=上、下两个长方形面积之和-∆ABC 的面积-∆ADE 的面积解:①S ∆ABC=(20+10+4)×14÷2=238(cm 2) ②S ∆ADE=(20+10)×(20+14)÷2=510(cm 2) ③34×14+30×20=1076(cm 2) ④1076-(238+510)=328(cm 2)答:阴影部分的面积等于328cm2。
小学奥数图形的面积
直线型面积计算(1)对于三角形的面积计算,我们除了熟练运用基本的计算公式,在技巧性很强的奥数题中还要根据相应的性质和结论来解题,下面就是我们小学奥数常用的三条性质:【例 1】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E BA E BA【分析】 本题是等底等高的两个三角形面积相等的应用.连接BH 、CH . ∵AE EB =, ∴S S AEH BEH =V V .同理,S S BFH CFH =V V ,S =S CGH DGH V V ,∴11S S 562822==⨯=阴影长方形ABCD (平方厘米).[铺垫]你有多少种方法将任意一个三角形分成:⑴2个面积相等的三角形; ⑵3个面积相等的三角形; ⑶4个面积相等的三角形.[分析] ⑴如右图,D 、E 、F 分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;CBAEA B CFCB A①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如BCD ACD S S ∆∆=; 反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD .DC BA⑵如右图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点;答案不唯一;ED A BC FC BADGDA BC⑶如下图,答案不唯一,以下仅供参考.(5)(4)(3)(2)(1)【例 2】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?EDCB AEDC B A【分析】 连接CE .∵3AE AB =,∴2BE AB =,2BCE ACB S S ∆∆=.又∵2BD BC =,∴244BDE BCE ABC S S S ∆∆∆===.【例 3】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?ECBA 【分析】 ∵3CE AE =,∴4AC AE =,4ADC ADE S S ∆∆=;又∵2DC BD =,∴32BC DC =,361202ABC ADC ADE S S S ∆∆∆===(平方厘米).[铺垫]如图,三角形ABC 被分成了甲、乙两部分,4BD DC ==,3BE =,6AE =,甲部分面积是乙部分面积的几分之几?乙甲E CBAABCDE[分析] 连接AD .∵3BE =,6AE =,∴13BE AB =,13BDE ABD S S ∆∆=.又∵4BD DC ==,∴12ABD ABC S S ∆∆=,∴1136BDE ABD ABC S S S ∆∆∆==,∴15S S =乙甲.[拓展]如图,在三角形ABC 中,8BC =厘米,6AD =厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBAFE CBA[分析] ∵F 是AC 的中点,∴12ABF ABC S S ∆∆=,同理12BEF ABF S S ∆∆=,∴111866442BEF ABC S S ∆∆==⨯⨯⨯=(平方厘米).【例 4】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB A AB CDEF【分析】 本题是性质的反复使用(还可以用燕尾定理,但本讲不用这种方法,燕尾定理我们会放到五年级春季再讲).连接AE 、CD .∵S 1S 1S 1ABC ABC DBC ==V V V ,, ∴S 1DBC =V .同理可得其它,最后三角形DEF 的面积18=.[拓展]如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH[分析] 连接BD .设1DCB S S =V ,2DAB S S =V ∵CB BF =,∴2CDF CDB CDB CB BFS S S CB∆∆∆+==,又∵DC CG =,∴12CFG CDF S S S ∆∆==,同理22AEH S S ∆=, ∴2CFG AEH ABCD S S S ∆∆+=连接AC ,同理2HDG BEF ABCD S S S ∆∆+=∴5EFGH CFG AEH HDG BEF ABCD ABCD S S S S S S S ∆∆∆∆=++++=,111355ABCD EFGH S S ==(平方米).[拓展]如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的面积是4,那么三角形ABC 的面积是多少?F E D CA F ED CA[分析] 连接对角线AE .∵ADEF 是长方形∴12ADE AEF ADEF S S S ∆∆==X∴38ADB ADE S DB DE S ∆∆==, 12ACF AEF S FC EF S ∆∆== ∴58BE DE DB DE DE -==,12CE FE CF EF EF -== ∴1515162822BEC S ∆=⨯⨯⨯=∴132ABC ADEF ADB ACF CBE S S S S S ∆∆∆∆=---=X .[拓展]如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G[分析] 连接AE ,FE .因为:2:3BE EC =,:1:2DF FC =,所以3111()53210DEF ABCD ABCD S S S =⨯⨯=V 长方形长方形.因为12AED ABCD S S =V 长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==V V ,所以12AFD S =V .因为16AFD ABCD S S =V 长方形,所以长方形ABCD 的面积是72平方厘米.【例 5】 (第八届小数报数学竞赛决赛试题)如下图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF FC =,并且甲、乙、丙3个三角形面积相等.已知梯形ABCD 的面积是32平方厘米.求图中阴影部分的面积.BC【分析】 因为乙、丙两个三角形面积相等,底DF FC =.所以A 到CD 的距离与E 到CD 的距离相等,即AE 与CD 平行,四边形ADCE 是平行四边形,阴影部分的面积=平行四边形ADCE 的面积的12,所以阴影部分的面积=乙的面积2⨯.从而阴影部分的面积23212.85=⨯=(平方厘米).[拓展]如图,在平行四边形ABCD 中,BE EC =,2CF FD =.求阴影面积与空白面积的比.B[分析] 因为BE EC =,2CF FD =,所以14ABE ABCD S S =V 四边形,16ADF ABCD S S =V 四边形.因为2AD BE =,所以2AG GE =,所以11312BGE ABE ABCD S S S ==V V 四边形,2136ABG ABE ABCD S S S ==V V 四边形.同理可得,18ADH ABCD S S =V 四边形,124DHF ABCD S S =V 四边形.因为12BCD ABCD S S =V 四边形,所以空白部分的面积111112()21224683ABCD ABCD S S =--++=四边形四边形,所以阴影部分的面积是13ABCD S四边形. 12:1:233=,所以阴影面积与空白面积的比是1:2.【例 6】 如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.GFECB AGFECB A【分析】 本题主要是让学生了解并会运用等底等高的两个平行四边形面积相等和三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接BE .(我们通过ABE V 把这两个看似无关的平行四边形联系在一起.)∵在平行四边形ABCD 中,12ABE S AB AB =⨯⨯V 边上的高,∴1S S 2ABG ABCD =V W (也就是等积变换的重要依据③的特殊情况).同理,1S S 2ABE AEGF =V Y ,∴平行四边形ABCD 与AEGF 面积相等.[拓展]如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?A BGC E F DABGCEF D[分析] 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接AG .(我们通过ABG V 把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯V 边上的高,∴1S S 2ABG ABCD =V W (三角形面积等于与它等底等高的平行四边形面积的一半)同理,1S S 2ABG EFGB =V .∴正方形ABCD 与长方形EFGB 面积相等. 长方形的宽8810 6.4=⨯÷=(厘米).【例 7】 如图,正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,求图中三角形BFD 的面积为多少平方厘米?HGFED C BAHG FED C BA【分析】 连接CF .∵BD ,CF 都是正方形的对角线∴45DBC FCE ∠=∠=︒,BD ∥CF .∴BFD ∆与BCD ∆同底等高,11010502BFD BCD S S ∆∆==⨯⨯=(平方厘米) .【例 8】 (03年西城某重点中学小升初分班考题)右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.AA【分析】 这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD (见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD 是三角形ABD 与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG 与三角形GCD 面积仍然相等.根据等量代换,求三角形ABC 的面积等于求三角形BCD 的面积,等于4428⨯÷=.[拓展](小学数学夏令营五年级组试题)如图,四边形ABCD 和四边形DEFG 都是正方形,已知三角形AFH 的面积为6平方厘米,求三角形CDH 的面积.[分析] 通常求三角形的面积,都是先求它的底和高.题目中没有一条线段的长度是已知的,所以我们只能通过创造等积的方法来求.直接找三角形HDC 与三角形AFH 的关系还很难,而且也没有利用“四边形ABCD 和四边形DEFG 是正方形”这一条件.我们不妨将它们都补上梯形DEFH 这一块.寻找新得到大三角形CEF 和大直角梯形DEFA 之间的关系.经过验算,可以知道它们的面积是相等的.从而得到三角形HDC 与三角形AFH 面积相等,也是6平方厘米.【例 9】 如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若1ADE S =V ,求BEF V 的面积.AB CDEFABCDEF[分析] 本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思想.连接AC .∵AB ∥CD ,∴ADE ACE S S =V V . 同理AD ∥BC ,∴ACF ABF S S =V V .又ACF ACE AEF S S S =+V V V ,ABF BEF AEF S S S =+V V V ,∴ ACE BEF S S =V V ,即 1BEF ADE S S ==V V .【例10】 (小学数学奥林匹克决赛试题)右图中,ABCD 是74⨯的长方形,DEFG 是102⨯的长方形,求三角形BCO 与三角形EFO 的面积之差. 【分析】 直接求出三角形BCO 与三角形EFO 的面积之差,不太容易做到.如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了.法1:连结BE (见右图).三角形BCO 与三角形EFO 都加上三角形BEO ,则原来的问题转OA BCD E F G OA BC D E FG法2:连结CF (见右图).三角形BCO 与三角形EFO 都加上三角形CFO ,则原来的问题转化为求三角形BCF 与三角形ECF 的面积之差.所求为4(107)22(107)23⨯-÷-⨯-÷=.法3:延长BC 交GF 于H (见右图).三角形BCO 与三角形EFO 都加上梯形COFH ,则原来的问题转化为求三角形BHF 与矩形CEFH 的面积之差. 所求为(42)(107)22(107)3+⨯-÷-⨯-=.法4:延长AB ,FE 交于H (见右图).三角形BCO 与三角形EFO 都加上梯形BHEO ,则原来的问题转化为求矩形BHEC 与直角三角形BHF 的面积之差.所求为4(107)(42)(107)23⨯--+⨯-÷=.【例11】 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?BE【分析】 三角形ABC 的面积+三角形CDE 的面积(133549)+++=长方形面积+阴影部分面积;又因为三角形ABC 的面积=三角形CDE 的面积12=长方形面积,所以可得:阴影部分面积13354997=++=.1. 如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.ABC DZ Y【分析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =⨯⨯,14ZCY DCB S S =V V ,又∵ABCD 是长方形,∴11124442ZCY DCB ABCD S S S ==⨯=V V Y (平方厘米).2. 如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?A BCD EA BCDE【分析】 连接BE .∵13AE EC = ∴13ABE ABC S S ∆∆=.又∵15AD AB =∴11515ADE ABE ABC S S S ∆∆∆==,∴1515ABC ADE S S ∆∆==.3. 两个正方形组成右图所示的组合图形.已知组合图形的周长是52厘米,4DG =厘米,求阴影部分的面积.A【分析】 组合图形的周长并不等于两个正方形的周长之和,因为CG 部分重合了.用组合图形的周长减去DG ,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(524)316-÷=(厘米).又由两个正方形的边长之差是4厘米,可求出大正方形边长(164)210=+÷=(厘米),小正方形边长(164)26=-÷=(厘米).阴影部分面积410266238BDG BFG S S =+=⨯÷+⨯÷=V V (平方厘米).HO A BCD E FGH OA B CD E FG4. 在右图中,平行四边形ABCD 的边BC 长10厘米,直角三角形ECB 的直角边EC 长8厘米.已知阴影部分的总面积比三角形EFG 的面积大10平方厘米,求平行四边形ABCD 的面积.[分析] 因为阴影部分比三角形EFG 的面积大10平方厘米,都加上梯形FGCB 后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD 比直角三角形ECB 的面积大10平方厘米,所以平行四边形ABCD 的面积等于10821050⨯÷+=平方厘米.5. 右图中,4CA AB ==厘米,三角形ABE 比三角形CDE 的面积大2平方厘米,求CD 的长.ABCD E 【分析】 连结CB .三角形DCB 的面积为44226⨯÷-=平方厘米,6243CD =⨯÷=厘米.直线型面积计算(2)在小学的学习中几何是一个很重要的部分,每一个几何图形都非常美妙,几何图形的美妙不仅来源于它的外形,更重要的是在几何模型上出现的那些美妙的规律,下面我们就一起来看看几个美妙的几何模型:模型一:任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.模型二:梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.模型三:相似三角形性质:GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形【例 9】 如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?B【分析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=.【例 10】 (2006年南京智力数学冬令营)如下图,梯形ABCD 的AB ∥CD ,对角线AC ,BD 交于O ,已知AOB V 与BOC V 的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.3525OABCD 【分析】 根据梯形蝴蝶定理,2::25:35AOB BOC S S a ab ==V V ,可得:5:7a b =,再根据梯形蝴蝶定理,2222::5:725:49AOB DOC S S a b ===V V ,所以49DOC S =V (平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方厘米).[铺垫]梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.OA B CD[分析] 根据梯形蝴蝶定理,2::2:3AOB BOC S S ab b ==V V ,可以求出:2:3a b =,再根据梯形蝴蝶定理,2222::2:34:9AOD BOC S S a b ===V V .通过利用已有几何模型,我们轻松解决了这个问题,而没有像以前一样,为了某个条件的缺乏而千辛万苦进行构造假设,所以,请同学们一定要牢记几何模型的结论.【例 11】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABC DOH GA B C D O【分析】 在本题中,四边形ABCD 为任意四边形,对于这种“不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个“不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ∆∆==, ∴236OC =⨯=, ∴:6:32:1OC OD ==.解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AOD DOC S S ∆∆=,∴13AO CO =,∴236OC =⨯=, ∴:6:32:1OC OD ==.【例 12】 在边长为1的正方形ABCD 中,2BE EC =,2DF FC =.求四边形ABGD 的面积.ABCDE FGABCDE FG【分析】 题目要求四边形ABGD 的面积,可以发现这个四边形是个“不良四边形”,需要对它进行改造.通常在一个四边形中画辅助线,会想到画对角线,又注意到E 、F 都是三等分点,如果连接EF ,因为EF ∥BD ,则可以构造一个梯形,从而应用梯形蝴蝶定理快速求解.因为2BE EC =,2DF FC =,所以:3:1BD EF =.根据梯形蝴蝶定理可以知道,等腰梯形BDFE 四部分面积比为1:3:3:9;而等腰梯形BDFE 的面积为:111141122339⨯⨯-⨯⨯=,所以9113394BDG BDFE S S =⨯=+++V ,得11311244ABGD ADB BDG S S S =+=⨯⨯+=V V .【例 13】如图,正方形ABCD 面积为1,M 是AD 边上的中点.求图中阴影部分的面积.【分析】 因为M 是AD 边上的中点,所以12AM =,可得34AMCB S =梯形,由于:1:2AM BC =,根据梯形蝴蝶定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=V V V V ()(),所以阴影部分面积占梯形面积的22412249+=+++,所以341493S =⨯=阴影.【例 14】如图,在长方形ABCD 中,6AB =,2AD =,AE EF FB ==,求阴影部分的面积.DD【分析】 如图,连接DE ,DE 将阴影部分的面积分为两个部分,其中三角形AED 的面积为26322⨯÷÷=.由于:1:3EF DC =,根据梯形蝴蝶定理,:3:1DEO EFO S S =V V ,所以34DEO DEF S S =V V ,而2DEF ADE S S ==V V ,所以32 1.54DEO S =⨯=V ,阴影部分的面积为2 1.5 3.5+=.相似三角形性质【例 7】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO V 的面积是ABO V 面积的几倍?ABCDO EFABCO【分析】 连接BC ,易知OA ∥EF ,根据相似三角形性质,可知::OB OD AE AD =,且::1:2OA BE DA DE ==,所以CDO V 的面积等于CBO V 的面积;由1124OA BE AC ==可得3CO OA =,所以3CDO CBO ABO S S S ==V V V ,即CDO V 的面积是ABO V 面积的3倍.【例 8】 如图,线段AB 与BC 垂直,已知4AD EC ==,6BD BE ==,那么图中阴影部分面积是多少?A BCDA BDA BD【分析】 解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO ,则图形关于BO 对称,有ADO CEO S S =V V ,DBO EBO S S =V V ,且:4:62:3ADO DBO S S ==V V . 设ADO V 的面积为2份,则DBO V 的面积为3份,直角三角形ABE 的面积为8份.因为610230ABE S =⨯÷=V ,而阴影部分的面积为4份,所以阴影部分的面积为308415÷⨯=.解法二:连接DE 、AC .由于4AD EC ==,6BD BE ==,所以DE ∥AC ,根据相似三角形性质,可知::6:103:5DE AC BD BA ===,根据梯形蝴蝶定理,()()22:::3:35:35:59:15:15:25DOE DOA COE COA S S S S =⨯⨯=V V V V ,所以()():1515:915152515:32ADEC S S =++++=阴影梯形,即1532ADECS S=阴影梯形; 又11101066=3222ADEC S =⨯⨯-⨯⨯梯形,所以151532ADEC S S ==阴影梯形.【例 9】 右图中正方形的面积为1, E 、F 分别为AB 、BD 的中点,13GC FC =.求阴影部分的面积.AB EABE【分析】 题中条件给出的都是比例关系,由此可以初步推断阴影部分的面积要通过比例求解,而图中出现最多的就是三角形,那么首先想到的就是利用相似三角形的性质.阴影部分为三角形,已知底边为正方形边长的一半,只要求出高,便可求出面积. 可以作FH 垂直BC 于H ,GI 垂直BC 于I .根据相似三角形性质,::1:3CI CH CG CF ==,又因为CH HB =,所以:1:6CI CB =,即():61:65:6BI BC =-=,所以115522624BGE S =⨯⨯=V .【例10】 如图,长方形ABCD 中,E 为AD 的中点,AF 与BE 、BD 分别交于G 、H ,OE 垂直AD 于E ,交AF 于O ,已知5AH cm =,3HF cm =,求AG .ABC DEFGHO【分析】 由于AB ∥DF ,利用相似三角形性质可以得到::5:3AB DF AH HF ==,又因为E 为AD 中点,那么有:1:2OE FD =, 所以3:5:10:32AB OE ==,利用相似三角形性质可以得到::10:3AG GO AB OE ==, 而()()1153422AO AF cm ==⨯+=,所以()104041313AG cm =⨯=.【例11】 ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,则图中阴影部分的面积为____平方厘米.BB【分析】 注意引导学生利用三角形的中位线定理以及平行线的相关性质.设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD .可得1=4AED ABCD S S V 平行四边形,对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥EF ,所以23::2:344DO ED BD BD ==,()()::32:31:3OE ED ED OD ED =-=-=,所以 11117263434AEO ABCD S S =⨯=⨯⨯=V 平行四边形(平方厘米),212ADO AEO S S =⨯=V V (平方厘米).同理可得6CFM S =V 平方厘米,12CDM S =V 平方厘米. 所以 366624ABC AEO CFM S S S --=--=V V V (平方厘米), 于是,阴影部分的面积为24121248++=(平方厘米).练习5. (第十届华杯赛)如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且35ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少?ABCDO【分析】 根据蝴蝶定理,ABD AO CBD CO =三角形的面积三角形的面积,所以35AO CO =,又1AO =,所以53CO =.6. 如图,梯形ABCD 中,AOB ∆、COD ∆的面积分别为1.2和2.7,求梯形ABCD 的面积.ODC BA 【分析】 根据梯形蝴蝶定理,22::4:9AOB ACOD S S a b ==V V ,所以:2:3a b =,2:::3:2AOD AOB S S ab a b a ===V V ,31.2 1.82AOD COB S S ==⨯=V V ,1.2 1.8 1.82.77.5ABCD S =+++=梯形.7. 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影部分的面积.【分析】 已知:2:1AF FC =,且EF ∥BC ,利用相似三角形性质可知::2:3EF BC AF AC ==,所以23EF BC =,且:4:9AEF ABC S S =V V .又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么12EG BC =,12::3:423EG EF ==,所以:1:4GF EF =,可得:1:8CFG AFE S S =V V ,所以:1:18CFG ABC S S =V V ,那么18CFG a S =V .8. 在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【分析】 根据相似三角形性质可知::1:2EF AF BE AD ==,所以33ABE BEF S S ==V V (平方厘米),那么412ABCD ABE S S ==W V (平方厘米).。
小升初奥数专题_第六讲图形面积
第六讲图形面积简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算.上面左图是边长为4的正方形,它的面积是4×4=16(格);右图是3×5的长方形,它的面积是3×5=15(格).上面左图是一个锐角三角形,它的底是5,高是4,面积是5×4÷2=10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面.上面左图是一个平行四边形,底是5,高是3,它的面积是5×3=15(格);右图是一个梯形,上底是4,下底是7,高是4,它的面积是(4+7)×4÷2=22(格).上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.6.1 三角形的面积用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2.这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用.例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?解:三角形ABD与三角形ADC的高相同.三角形ABD面积=4×高÷2.三角形ADC面积=2×高÷2.因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2 右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.解:BC=2+4+2=8.三角形ABC面积= 8×4÷2=16.我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高相同,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.三角形DFE面积= 16÷4=4.例3 右图中长方形的长是20,宽是12,求它的内部阴影部分面积.解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与BE一样长.而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是FE×BE÷2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的一半.因此所有阴影的面积是长方形ABCD面积的一半,也就是20×12÷2=120.通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成.因此所有这些直角三角形(阴影部分)的面积之和是长方形ABCD面积的的一半.例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD (阴影部分)的面积是多少?解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此面积=4×10÷2=20.对三角形ADC来说,DC是底边,高是8,因此面积=7×8÷2=28.四边形ABCD面积= 20+28=48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.例5 在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF 的面积.解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积三角形ABE面积=3×6×2=9.三角形BCF面积= 6×(6-2)÷2=12.三角形DEF面积=2×(6-3)÷2=3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:三角形BEF面积=6×6-9-12-3=12.例6 在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABMD(阴影部分)的面积.解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形DCE与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形DCE的面积是7×2÷2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE 面积是7÷2=3.5.因为BE=8是CE=2的4倍,三角形MBE与三角形MCE高一样,因此三角形MBE面积是3.5×4=14.长方形ABCD面积=7×(8+2)=70.四边形ABMD面积=70-7- 14=49.6.2 有关正方形的问题先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长,这样的直角三角形,就叫做等腰直角三角形.它有一个直角(90度),还有两个角都是45度,通常在一副三角尺中.有一个就是等腰直角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图(a).四个一样的等腰直角三角形,也可以拼成一个正方形,如图(b).一个等腰直角三角形,当知道它的直角边长,从图(a)知,它的面积是直角边长的平方÷2.当知道它的斜边长,从图(b)知,它的面积是斜边的平方÷4例7 右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半,第一个等腰直角三角形的面积是8×8÷2=32.这一个图形的面积是32+16+8+4 +2+1=63.例8 如右图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?解:为了说明的方便,在图上标上英文字母D,E,F,G.三角形ABC的面积=2×2÷2=2.三角形ABC,ADE,EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形ADE面积=ABC面积×2=4.三角形EFG的斜边与三角形ABC的直角边一样长.因此三角形EFG面积=ABC面积÷2=1.阴影部分的总面积是4+1=5.例9 如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和D是直角,角A是45°.求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE,切掉一个等腰直角三角形BCE.因为A是45°,角D是90°,角E是180°-45°-90°=45°,所以ADE是等腰直角三角形,BCE也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即7×7÷2-3×3÷2=20.这是1994小学数学奥林匹克决赛试题.原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多.但是有一些同学,用直线AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了.这样做,角A是45°,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何,千万不要随便对图形下结论.我们应该从题目中已有的条件作为思考的线索.有45°和直角,你应首先考虑等腰直角三角形.现在我们转向正方形的问题.例10 在右图11×15的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和.长-宽=15-11=4是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=11-4×2=3.中间小正方形面积=3×3=9.如果把这一图形,画在方格纸上,就一目了然了.例11 从一块正方形土地中,划出一块宽为1米的长方形土地(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.解:剩下的长方形土地,我们已知道长-宽=1(米).还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?如果能求出,那么与上面“差”的算式就形成和差问题了.我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下图就拼成一个大正方形,这个正方形的边长,恰好是长方形的长与宽之和.可是这个大正方形的中间还有一个空洞.它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米.现在,我们就可以算出大正方形面积:15.75×4+1×1=64(平方米).64是8×8,大正方形边长是8米,也就是说长方形的长+宽=8(米).因此长=(8+1)÷2=4.5(米).宽=8-4.5=3.5(米).那么划出的长方形面积是4.5×1=4. 5(平方米).例12 如右图.正方形ABCD与正方形EFGC并放在一起.已知小正方形EFGC的边长是6,求三角形AEG(阴影部分)的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此四边形AECD面积=(小正方形边长+大正方形边长)×大正方形边长÷2三角形ADG是直角三角形,它的一条直角边长DG=(小正方形边长+大正方形边长),因此三角形ADG面积=(小正方形边长+大正方形边长)×大正方形边长÷2.四边形AECD与三角形ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH与三角形HCG面积相等,都加上三角形EHG面积后,就有阴影部分面积=三角形ECG面积=小正方形面积的一半= 6×6÷2=18.十分有趣的是,影阴部分面积,只与小正方形边长有关,而与大正方形边长却没有关系.6.3 其他的面积这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会.例13 画在方格纸上的一个用粗线围成的图形(如右图),求它的面积.解:直接计算粗线围成的面积是困难的,我们通过扣除周围正方形和直角三角形来计算.周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围成面积是4×4-3-5-1.5=6.5.例6与本题在解题思路上是完全类同的.例14 下图中ABCD是6×8的长方形,AF长是4,求阴影部分三角形AEF的面积.解:三角形AEF中,我们知道一边AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形AEB,底边AB,就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出.三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积.因此三角形AEF面积=(三角形AEB面积)-(三角形AFB面积)=8×6÷2-4×8÷2=8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的部分也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15 下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底×高.从图上可以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与10×2的长方形面积相等.可以设想,把这个平行四边形换成10×2的长方形,再把横竖两条都移至边上(如前页右图),草地部分面积(阴影部分)还是与原来一样大小,因此草地面积=(16-2)×(10-2)=112.例16 右图是两个相同的直角三角形叠在一起,求阴影部分的面积.解:实际上,阴影部分是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影部分与三角形BCE合在一起,就是原直角三角形.你是否看出,ABCD也是梯形,它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影部分面积一样大.梯形ABCD的上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影部分面积等于梯形ABCD面积=(8+8-3)×5÷2=32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等积变形.要想有这种“换”的本领,首先要提高对图形的观察能力.例17 下图是两个直角三角形叠放在一起形成的图形.已知AF,FE,EC都等于3,CB,BD都等于4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的.三角形ABC面积=(3+3+3)×4÷2=18.三角形CDE面积=(4+4)×3÷2=12.这两个直角三角形有一个重叠部分--四边形BCEG,只要减去这个重叠部分,所求图形的面积立即可以得出.因为AF=FE=EC=3,所以AGF,FGE,EGC是三个面积相等的三角形.因为CB=BD=4,所以CGB,BGD是两个面积相等的三角形.2×三角形DEC面积= 2×2×(三角形GBC面积)+2×(三角形GCE面积).三角形ABC面积= (三角形GBC面积)+3×(三角形GCE面积).四边形BCEG面积=(三角形GBC面积)+(三角形GCE面积)=(2×12+18)÷5=8.4.所求图形面积=12+18- 8.4=21.6.例18 如下页左图,ABCG是4×7长方形,DEFG是2×10长方形.求三角形BCM与三角形DEM面积之差.解:三角形BCM与非阴影部分合起来是梯形ABEF.三角形DEM与非阴影部分合起来是两个长方形的和.(三角形BCM面积)-(三角形DEM面积)=(梯形ABEF面积)-(两个长方形面积之和=(7+10)×(4+2)÷2-(4×7 +2×10)=3.例19 上右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?解:所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为13,49,35这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分,因此(三角形ABC面积)+(三角形CDE面积)+(13+49+35)=(长方形面积)+(阴影部分面积).三角形ABC,底是长方形的长,高是长方形的宽;三角形CDE,底是长方形的宽,高是长方形的长.因此,三角形ABC面积,与三角形CDE面积,都是长方形面积的一半,就有阴影部分面积=13 + 49+ 35= 97.6.4 几种常见模型一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△DC BA图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.EDCBAEDCBAGF E ABCD AB CDEF G S 4S 3S 2S 1O DCB A A BCDO ba S 3S 2S 1S 4所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.OFE DCBA。
奥数四年级—长方形和正方形面积省名师优质课赛课获奖课件市赛课一等奖课件
练 5、如图,是由9个小长方形构成旳,按图中 习 编号,第1,2,3,4,5号旳面积分别是1平
方米,2平方米,3平方米,4平方米,5平方 米,那么,第6号长方形和面积是多少呢?
1×1=1
3×2.5=7.5
练 6、如图,一种正方形中套着一种长方形,
习 已知正方形旳边长是20分米,长方形旳四个
角旳顶点恰好把正方形四条边都提成两段,
20÷2=10 米 20×10=200 平方米 1×1=1 平方米 200-1=199 平方米
拆分
例2、如图,是由6个相同旳等腰三角形拼成旳图形, 求这个图形旳面积是多少?
图形不规则,已知条件也极少!
拆分
例2、如图,是由6个相同旳等腰三角形拼成旳图形, 求这个图形旳面积是多少?(单位:米)
拆 开
4×4 =16(平方米) 16÷2=8 (平方米) 16+8=24 (平方米)
分块
例3、如图,已知大正方形旳边长比小正方形旳边长 多4,大正方形旳面积比小正方形旳面积多96。求大 小正方形面积各是多少? (单位:厘米)
分块
例3、如图,已知大正方形旳边长比小正方形旳边长 多4,大正方形旳面积比小正方形旳面积多96。求大 小正方形面积各是多少? (单位:厘米)
最多能裁出12张 长4宽1厘米旳纸条
练 1.用48厘米长旳一根铁丝围成一种正方形, 习 它旳面积是多少?用这根铁丝围成一种长15
厘米旳长方形,它旳面积是多少?
48÷4=12 12×12=144
15×2=30
48-30=18 18÷2=9
15×9=135
练 2、有一种长方形旳市民广场,长100米,宽 习 80米。广场中间留了宽4米旳人行道,把广
12.5×2=25 50×2=100
(三年级)长方形和正方形的面积奥数题训练
(三年级)长方形和正方形的面积奥数题训
练
题一:
一个长方形的长为10cm,宽为5cm。
计算它的面积。
解答:
长方形的面积可以通过将长乘以宽来计算。
根据题目给出的数据,我们可以使用以下公式来计算面积:
面积 = 长 ×宽
将给定的数值代入公式,即可得到答案:
面积 = 10cm × 5cm = 50cm²
所以,该长方形的面积为50平方厘米。
题二:
一个正方形的边长为20cm。
计算它的面积。
解答:
正方形的面积可以通过将边长的平方来计算。
根据题目给出的数据,我们可以使用以下公式来计算面积:
面积 = 边长²
将给定的数值代入公式,即可得到答案:
面积 = 20cm × 20cm = 400cm²
所以,该正方形的面积为400平方厘米。
题三:
一个长方形的面积是36平方米,宽为6米,求它的长。
解答:
根据题目给出的数据,我们可以使用以下公式来计算长方形的长:
面积 = 长 ×宽
将给定的数值代入公式,即可得到答案:
36平方米 = 长 × 6米
解方程,可以得出:
36 = 长 × 6
长 = 36 / 6 = 6米
所以,该长方形的长为6米。
总结:
通过这些奥数题训练,我们研究了如何计算长方形和正方形的面积。
对于长方形,可以使用长乘以宽的方式计算面积;对于正方形,可以使用边长的平方来计算面积。
四年级奥数第12讲-图形面积(教)
学科教师辅导讲义 学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数 学科教师: 授课主题第12讲-图形面积 授课类型 T 同步课堂 P 实战演练 S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。
② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。
③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。
授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1、人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。
例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。
而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。
小学四年级奥数思维问题之图形面积
图形面积问题教学目标:①知识与技能目标:借助所学知识计算组合图形的面积②过程与方法目标:通过对数量关系地分析,让学生在解决问题过程中掌握一些解决问题的基本策略③情感态度与价值观目标:感受所学知识与现实生活的紧密联系教学重点:图形面积公式的运用教学难点:组合图形的面积计算[知识引领与方法]1.细心观察,把握图形特点,合理的进行切拼,从而使问题得以顺利解答2.从整体上观察图形的特征,掌握图形本质,结合必要的分析,推理和计算,使隐蔽的数量关系明朗化[例题精选及训练]【例1】一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习:1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?2.有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?【例2】一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?练习:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?3.一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。
求这个长方形花圃原来的面积。
【例3】下图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习:1.右图是某个养鸡专业户用一段长13米的篱笆围成一个长形的养鸡场,则养鸡场的占地面积有多大?2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例4】街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习:1.有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
四年级奥数长方形的面积
10、如果正方形A的周长是正的多少倍?
11、将一个长方形的长增加1厘米,宽增加3厘米,就变成了一个正方形,面积增加33平方厘米,原来的长方形面积是多少平方厘米?
12、如图,正方形与阴影长方形的边分别平行,正方形边长为10,阴影长方形的面积为6,那么图中四边形ABCD的面积是多少?
2、如图,大小两个正方形对应边的距离均为2厘米,如果两个正方形之间部分的面积是40平方厘米,那么小正方形的面积是多少平方厘米?
第2题
3、把一个长26厘米,宽14厘米的长方形分成5块,两个长方形能完全重合,两个正方形也能完全重合,求小正方形的面积是多少?
第3题
4、每边长是10厘米的正方形纸片,正中间挖去了一个正方形的洞,成为宽度为1厘米的方框,把五个这样的方框放在桌面上(如图),问桌面上这些方框盖住的面积是多少平方厘米?
4、如图,大小两个正方形部分重合,重合部分的面积是2平方厘米,阴影部分的面积是多少平方厘米?
第3题
第4题
5、一个正方形,如果边长增加1厘米,那么面积增加17平方厘米,这个正方形原来面积是多少平方厘米?
6、现代养鸡场是一个长方形,其中一条边利用原来的旧墙,其余三面打砖墙,砖墙总长60米,若长是宽的2倍,求其面积;若长与宽相等,其面积是多少?
7、如图,阴影部分的面积是多少?
第7题
8、有一个长方形长为8厘米,宽为3厘米,把它的长和宽分别增加2厘米,那么这个长方形面积增加了多少平方厘米?
9、如图,是一个边长为4的正方形,我们称它为第一个正方形,依次连结四条边的中点,得到第二个正方形,继续这样下去,得到第三个、第四个、第五个正方形,那么第一个正方形至第五个正方形的面积是多少?
7、一个长方形的宽增加4厘米,就成了一个正方形,这样面积增加了48平方厘米,求原来长方形的面积。
四年级下同步奥数第五讲 解决问题的策略(图形面积的计算)
第五讲解决问题的策略(图形面积的计算)[知识概述]解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解答。
2.从整体上观察图形特征.掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例题精学例1有一块长方形地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪。
如图,草坪的总面积是多少平方米?[思路分析]要求草坪的面积,就要用长方形土地的面积减去正方形雕塑的面积。
要求长方形土地的面积,就要知道它的长与宽。
现在已知长20米是宽的2倍,可以先求出宽,再求出长方形土地的面积。
1. 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?2.下图是由6个相同的三角形拼成的图形,求这个图形的面积。
(单位:分米)3.用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?例2、红山小学操场长90米,宽45米,改造后,长增加10米,宽增加5米,现在操场面积比原来增加多少平方米?[思路分析]用操场现在的面积减去操场原来的面积,就得到增加的面积,操场的长增加10米,宽增加5米,操场现在的面积是(90+10)X(45+5)= 5000(平方米),操场原来的面积是:90X45=4050(平方米),从而可求出增加的面积。
1.有一块长方形菜地,长18米,宽10米,如果长和宽都减少了4米,面积比原来减少了多少平方米?2.一块长方形木板,长24分米,宽16分米,如果长减少4分米,宽减少2分米,面积比原来减少多少平方分米?3、一块长方形果园,长是90米,宽是60米,如果把长增加2米,宽增加3米,面积增加多少平方米?例3一个长方形,如果长不变,宽增加6米,面积就增加72平方米:如果宽不变,长增加4米,面积就增加了32平方米。
这个长方形原来的面积是多少平方米?[思路分析]由长不变,宽增加6 米,面积就增加72平方米,可求出它的长为:72+6=12(米);又由宽不变,长增加4米,面积就增加32平方米,可求出它的宽为:32+4=8(米),从而可求出这个长方形原来的面积。
小学奥数-举一反三-长方形、正方形面积
8
5
例题2
例2 一个大长方形被两条平行于它的两条边的线段分成四 个较小的长方形,其中三个长方形的面积如下图所求,求 第四个长方形的面积。
分析
因为AE×CE=6,DE×EB=35,把两个式子相乘 AE×CE×DE×EB=35×6,而CE×EB=14,所以 AE×DE=35×6÷14=15。
举一反三
第2题解法1
思路分析:设正方形原边长为a, 增加的这边面积=缩短这边的面积 30 ×(a – 18) = a × 18 30a - 30 ×18 = 18a 30a -18a = 30 ×18 12a = 540 a = 540÷12 a = 45(厘米) 原面积=45×45=2025平方0-18)=45
正方形面积=45×45=2025平方厘米
第3题解法1
思路分析:增加部分的面积正好等于三个 长方形面积之和。如果我们把拼成的正方 形的边长当作a,就可以计算出两个阴影长 方形的面积。 5分米 5 × ( a – 8) + 8 ×(a – 5) = 181-5 ×8 13a – 80 = 141 13a = 141 + 80 a = 221÷ 13 a = 17
面积就非常简单了。
2 A
2
B
举一反三
1,有一块长方形草地,长20米,宽15米。在它的四周向外 筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米, 结果得到一个与原正方形面积相等的长方形。原正方形的面 积是多少平方厘米? 3,把一个长方形的长增加5分米,宽增加8分米后,得到一 个面积比原长方形多181平方分米的正方形。求这个正方形 的边长是多少分米?
18 30
面积=30×(a-18)
小学奥数第九讲-图形的面积(二)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第九讲图形的面积(二)阅读与思考上讲里我们学习了几何图形中一些面积计算的相关知识和方法。
本讲我们继续探讨平面几何图形面积的计算问题。
对于较为复杂的组合图形的面积问题,要注意观察图形的特点,寻找图形中的内在联系,灵活运用典型的数学思想方法、技巧解题。
1、利用弦图分割拼补求面积:如图1 弦图是由四个相同的长方形拼成一个大正方形,大正方形的边长等于长方形的长和宽的和,小正方形的边长等于长方形的长和宽的差。
根据大小正方形的边长和长方形的长与宽之间的关系可以巧妙地解决许多面积问题。
2、利用等量代换的思想计算有部分图形重叠的组合图形面积计算问题。
这类问题需要我们认真观察图形的特点,从组合图形中重叠的部分出发,寻找图形中的内在联系,巧妙地利用已知图形面积的和与差之间的关系建立等式,等量代换。
从而巧妙地求出组合图形的面积。
3、添加合适的辅助线构造成特殊图形如平行四边形、正方形、等腰直角三角形或等积形等。
添加辅助线的一般技巧有“见中点连中线,见中线延长一半”;“四十五度旁边想直角,分割拼补成等腰”等等。
典型例题|例①|如图2 从一个正方形木板上锯下宽0.5米的一个长方形木条后,剩下的长方形面积为5平方米。
问锯下的长方形木条面积是多少?分析与解这类题可以巧妙地运用弦图来求面积。
如图2 可以看出剩下的长方形的长是原正方形的边长,它的宽比长少0.5米。
根据弦图的启发,我们可以假设有四个与剩下的长方形一样的长方形,把它们拼成如图 3 的大正方形,这个大正方形的边长是长方形的长和宽的和,阴影小正方形的边长是长方形长和宽的差,正好等于0.5米,问题迎刃而解了。
大正方形的面积=0.5×0.5+4×5=20.25,大正方形的边长为4.5米,于是剩下的长方形中长+宽=4.5,长-宽=0.5,长=(4.5+0.5)÷2=2.5(米)。
四年级下册数学奥数拓展试题 第三讲 基本直线面积公式 人教版 无答案
第三讲基本直线面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形正方形长方形平行四边形三角形梯形在有关直线形的计算中,计算周长和计算面积是最常见的两类,我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如图1:宽边长长正方形的面积=边长×边长长方形的面积=长×宽试一试正方形的边长是6厘米,面积是平方厘米长方形的长为8厘米,宽为4厘米,面积是平方厘米正方形的面积是121平方厘米,它的边长是厘米长方形的面积是48平方厘米,宽为4厘米,长为厘米例题1、如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜,其中茄子地的面积是16平方米,黄瓜地的面积是28平方米,豆角地的面积是32平方米,莴笋地的面积是72平方米,而且左上角茄子地恰好是一个正方形.请问:剩下的苦瓜地的面积是多少?练习1、如图有一块长方形田地被分成了四小块,分别栽种了冬瓜24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的面积是多少?如图2,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来图2为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如图3这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段,在平行四边形中,这两条线段分别叫做底和高。
于是我们有: 平行四边形面积=底×高如图4所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离图4当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如图5所示。
同样得到相对于这条底的若干条高,如图6所示,这些高也是相等的,都等于左右两条平行线间的距离(两条平行线间的距离处处相等)要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高画一画下面有四个平行四边形,每个平行四边形都指定了一条边作为底,请画出与每条底相对应的高例题2如图是由两个边长分别为4和7的正方形拼成的,请求出图中阴影部分的面积如图,大正方形里有一个小正方形还有一个阴影平行四边形。
小学奥数 长方体与正方体(二)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形的体积计算常用公式:立体图形示例 体积公式 相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法【例 1】 一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于 立方厘米。
例题精讲长方体与正方体(二)【考点】长方体与正方体【难度】2星【题型】填空【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
四年级奥数第三讲:图形面积问题
第三讲:图形面积问题
姓名:
例1、一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来减少多少平方分米?
练习1、人民路小学操场长90米,宽45米,改造后,场合宽分别增加10米。
现在操场面积比原来增加了多少平方米?
练习2、一块长方形地,长80米,宽45米,如果把宽增加5米,要使面积不变,长应该减少多少米?
例2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积时多少平方米?
练习1、一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。
求这个长方形花圃原来的面积时多少平方米?
例3、右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?
练习1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
例4、街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?
练习1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长是多少米?
例5、一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图所示),这样面积就比原来的正方形减少了181平方分米。
原来正方形的边长是多少分米?
练习1、一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来正方形的边长是多少分米?。
(完整版)四年级奥数小学数学培优第1讲巧算面积
第1讲巧算面积方法和技巧:解答比较复杂的关于长方形,正方形的周长和面积的计算问题时,不能生搬硬套公式,需要运用移位,合并,分解,转化等解题技巧。
因此,敏锐的观察力和灵活的思维在解题中至关重要。
例1:下图①是一块长方形草地,长方形长255米,宽105米,中间有两条道路,一条是长方形的,一条是平行四边形的。
问有草部分的面积是多少?做一做1:如下图所示,一块长方形草地,长100米,宽80米,中间有条宽4米的道路,求草地(阴影部分)的面积。
例2:求右图的面积。
(单位:厘米)做一做2:计算下列图形的面积。
(单位:厘米)例3:如右图,一块菜地长18米,宽10米,菜地中间留了宽2米的路,把菜地平均分成四小块,每一小块的面积是多少?做一做3:如下图,一条白底的正方形手帕,它的边长是18厘米,手帕上横竖有两道红条(图中的阴影部分),红条的宽都是2厘米。
问这条手帕白色部分的面积是多少?例4:右图是用5个相同的小长方形拼成的一个大长方形,大长方形的周长是44厘米,求大长方形的面积。
做一做4:有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如下图)的周长是29厘米,求这个大长方形的面积。
例5:一个正方形的花坛,四周有1米宽的水泥路(如右图①),如果水泥路的总面积是12平方米,问中间花坛的面积是多少平方米?做一做5:如下图,有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米。
求水池的边长。
例6:小玲用边长10cm的正方形材料制作一副七巧板,并拼成了一只“小猫”。
这只“小猫”尾巴的面积是多少平方厘米?做一做6:求下图阴影部分的面积。
(单位:厘米)巩固练习:1、求下面图形的面积。
(单位:厘米)2、如下图,有一大一小的两个正方形,对应边之间的距离都是1厘米,如果夹在两个正方形之间部分的面积为12平方厘米。
问那么大正方形面积是多少平方厘米?3、如图,将四条长为16厘米,宽为2厘米的矩形纸条垂直相交平放桌上,桌面被盖住的面积是多少?4、如下图,用十个相同的小长方形拼成一个大长方形。
苏教版四年级奥数 第15周 图形面积问题
第15周图形面积问题专题简析:解答有关图形面积问题时,应注意以下几点:1、细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利解答。
2、从整体上来观察图形特征,掌握图形本质,结合必要的分析、推理和计算,使隐蔽的数量关系明朗化。
例1:一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习一:1、人民小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?2、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?练习二:1、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
求这个长方形原来的面积?例3:右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习三:1、右图是某个养鸡专业户用一段长13米的篱笆围成一个长方形的养鸡场,则养鸡场的占地面积有多大?2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用围墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习四:1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
小学奥数长方形正方形面积求解(二)
× 花圃的面积
需要知道
花圃里可以种的鲜花数:
已知 长 × 宽
200×6=1200(株)
花圃的面积:
上一张 下一张
每平方米种6株花
25×8=200(平方米)
4.数学课本长26厘米,宽18厘米,用下面这张纸包书皮合 适吗?
40厘米
30厘米
上一张
下一张
解析
包书皮的时候需要将书的封面封底都要包好
40厘米
上一张 下一张
思路二这种方法在实际生活中是不
可取的,面积相同的图形可以是各种形 状,这张纸的面积虽然大于课本封面封 底的面积和,可能实际是这张纸又细又 长无法包数学书。
60厘米
18厘米
26 厘 米
20 厘 米
上一张
பைடு நூலகம்下一张
5. 教室北面的墙壁长 7米,宽 3 米,其中有 2 扇窗户,每扇 窗户的面积是 4 平方米。现在要粉刷这面墙壁,要粉刷的
答:收割机半小时可以给4500平方米的麦田收割
上一张
下一张
3. 在一个长是 25 米、宽是 8 米的长方形花圃里种鲜花,如
果每平方米的地方正好适合种 6 株花,那么这个花圃里一
共可以种多少株鲜花?
25米
8米
上一张
下一张
解析
要求这个花圃里一共可以种多少株鲜花
需要知道
花圃里可种1200株的鲜花数
每平方米种6株花
1200米
压路机压路的宽度是2米
2米 上一张 下一张
有一辆收割机,每分钟行驶 75米,收割的宽度是 2米。收 割机半小时可以给多少平方米的麦田收割?
上一张 下一张
解析
方法一:
四年级长方形和正方形的面积(奥数)
长方形和正方形的面积知识点长方形的面积=长×宽正方形的面积=边长×边长不规则图形面积的计算方法与技巧合理平移、分析、转化等,即转化为标准的图形来进行面积计算。
例1 有一长方形草坪,长31米,宽26米,草坪中间留了1米的路,路把草坪分成4块(如图),求草坪的实有面积是多少?例2如下图,求出阴影部分的面积。
(四角是边长为10厘米的正方形)例3 如图,在一个正方形的水池周围,围绕着宽5米的小花园,小花园的面积为300平方米,水池的面积是多少平方米?例4 如图,求出阴影部分的面积。
(单位:厘米)例5如图,图中大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形的面积多96平方厘米,大正方形和小正方形的面积各是多少?例6如图,大正方形的面积比小正方形的面积大32平方厘米,求这两个正方形的面积。
(单位:厘米)例7 如图,正方形中套着一个长方形,正方形的边长是12分米,长方形的四个角的顶点恰好把正方形的四条边都分成两段,其中长的一段是短的一段的3倍,这个长方形的面积是多少?例8 用同样大小的长方形小纸片,摆成了如下图的形状,已知小纸片的宽度是12厘米,求阴影部分面积的和。
同步练习1、用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2、如图,有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是花圃,花圃的面积是多少平方米?(单位:米)3、下图是由6个相等的三角形拼成的图形,求这个图形的面积?4、有两个相同的长方形,长13厘米,宽5厘米,如果把它们按如下图叠放在一起,这个图形的面积是多少?5、有一块菜地长16米,宽8米,如下图菜地中间留了2条宽2米的路,把菜地平均分成四块,每一块地的面积是多少?6、一个正方形,如果边长增加2厘米,它的面积增加16平方厘米,求原正方形面积?7、一个周长为60分米的长方形,把它的长缩短6分米后,再把它的宽增加6分米,得到的新长方形面积比原来多24平方分米.求原来长方形的面积是多少平方米?8、如图,求阴影部分的面积是多少?(单位:厘米)9、四个一样的长方形和一个小正方形如图,拼成一个面积为36平方米的大正方形.小正方形的面积是4平方米,长方形的长和宽各是多少?面积是多少?10、如下图大小两个正方形部分重合,已知重合分面积是5平方厘米,求阴影部分面积。
高斯小学奥数四年级上册含答案第03讲_基本直线形面积公式
第三讲基本直线形面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形.在有关直线形的计算中,计算周长和计算面积是最常见的两类.我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积.№1. 正方形和长方形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如下图:例题1如下图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜.其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形.请问:剩下的栽种苦瓜的田地面积是多少?「分析」左上角是面积为16的正方形,那么它的边长是多少?你还能求出哪些线段的长度呢? 练习1如图,有一块长方形田地被分成了四小块,分别栽种了冬瓜、西瓜、南瓜、黄瓜,其中冬瓜地的面积是24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的宽面积是多少?№2. 平行四边形的面积如下图,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来.为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如下图.这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段.在平行四边形中,这两条线段分别叫做底和高.于是我们有:如图所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离.36 1824底当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如下面左图所示.同样得到相对于这条底的若干条高,如下面右图所示,这些高也是相等的,都等于左右两条平行线间的距离.要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高.例题2下图是由两个边长分别为4和7的正方形拼成的,请求出阴影平行四边形的面积.「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?练习2如图,大正方形里有一个小正方形还有一个阴影平行四边形.如果大正方形的边长是20厘米,小正方形的边长是8厘米.那么阴影平行四边形的面积是多少?BCF底高高高№3. 三角形的面积三角形中也有相对应的底和高.过三角形的一个顶点向所对的边做一条垂线,所得的垂线段叫做三角形的高,所对的边叫做三角形的底.每个三角形有三组对应的底和高.要计算三角形的面积,同样要利用底和高的长度.观察下图,我们把一个三角形倒过来和原图形拼在一起,可以得到一个平行四边形.平行四边形的底与三角形的底相等,高也与三角形的高相等.而平行四边形的面积等于“⨯底高”,正好是三角形面积的2倍,所以我们有三角形面积公式:从形状上讲,三角形有三类:锐角三角形、直角三角形、钝角三角形.由于三角形的形状多变,在初学阶段要找准三角形相对应的底和高很不容易.因此要想算出三角形的面积,最关键的还在于准确地找到底与相应的高............下面是一个简单的作图练习,大家不妨画一画.例题3如下图所示,两个正方形并排放在一起,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:阴影三角形的面积是多少?「分析」阴影部分是三角形,应该选哪条边作为底呢?相应的高是多少呢? 练习3右图是由两个边长分别为4和6的正方形拼成的,请求出阴影三角形的面积.№4. 梯形的面积三角形和平行四边形都有“底”和“高”的概念,梯形中也有.在梯形中,平行的一组对边分别叫做上底和下底,不平行的一组对边叫做腰,上底和下底之间的距离叫做梯形的高.如下图所示,把两个相同的梯形拼在一起,可以得到一个平行四边形.从图中可以看出,这个平行四边形的面积是梯形面积的2倍.同时平行四边形的底由梯形的上底和下底拼接而成,高与梯形的高相等.所以:86下底例题4一个正方形和一个长方形按下图的方式排放,已知正方形的面积是49平方厘米,长方形的长为11厘米,宽为8厘米,那么阴影部分的面积是多少?「分析」阴影部分是梯形,要求面积,关键是找清楚它的上底、下底、高分别是多少.练习4如下图,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:图中的阴影图形的面积是多少平方厘米?例题5如下图所示,两个边长10厘米的正方形相互错开3厘米,那么图中阴影平行四边形的面积是多少?「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?例题6如图,把两个正方形拼在一起,小正方形的边长是5厘米,大正方形的边长是7厘米.请问:阴影部分的面积是多少? 「分析」阴影部分由两个三角形组成,你能分别求出这两个三角形的面积吗?以哪条边作为底最容易计算呢?11课堂内外小欧拉与大羊圈欧拉是著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就.不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生.小欧拉因为问老师天上星星有多少颗,老师也答不上来,只知道天上的星星是上帝镶上去的.小欧拉感觉上帝真是太粗心了,竟然忘记了星星的数目!在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考.小欧拉没有与上帝“保持一致”,老师就让他离开学校回家.回家后无事,他就帮助爸爸放羊,成了一个牧童.他一面放羊,一面读书.他读的书中,有不少数学书.爸爸的羊渐渐增多了,达到了100只.原来的羊圈有点小了,爸爸决定建造一个新的羊圈.他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米.正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用.若要围成长40米,宽15米的羊圈,其周长将是110米.父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米.小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划.他有办法.父亲不相信小欧拉会有办法,听了没有理他.小欧拉急了,大声说,只要稍稍移动一下羊圈的桩子就行了.父亲听了直摇头,心想:“世界上哪有这样简单的事情?”但是,小欧拉却坚持说,他一定能两全齐美.父亲终于同意让儿子试试看.小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁.他以一个木桩为中心,将原来的40米边长截短,缩短到25米.父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了.”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米.经这样一改,原来计划中的羊圈变成了一个25米边长的正方形.然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了.”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光.面积也足够了,而且还稍稍大了一些.父亲心里感到非常高兴.孩子比自己聪明,真会动脑筋,将来一定大有出息.父亲感到让这么聪明的孩子放羊实在是太可惜了.后来,他想办法让小欧拉认识了一个大数学家伯努利.通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生.这一年,小欧拉13岁,是这所大学最年轻的大学生.作业1. 在下面的每个平行四边形与三角形中,作出以AB 为底的高.2. 如图,大正方形被分成三块区域.左上角的正方形面积为4,右上角的长方形面积为6,请问:大正方形的面积是多少?3.下图中,大正方形的面积是64,小正方形的面积是36.求平行四边形的面积.4. 下面两幅图都是边长为8和6的两个正方形拼成的,根据图中所示的线段长度,求两个阴影三角形的面积.5. 如图,两个正方形并排放在一起,小正方形的边长是9厘米,大正方形的边长是13厘米.请问阴影梯形的面积是多少平方厘米?66 846BD C第三讲基本直线形面积公式1.例题1答案:8平方米详解:方法一:正方形的面积是16平方米,所以正方形的边长是4米,黄瓜的面积是28平方米,黄瓜的宽是4米,长就是2847÷=米.豆角的面积是32平方米,豆角的宽是4米,所以长是3248÷=米.所以苦瓜的宽是÷=米,莴笋的宽是8米,面积是72平方米,所以长是7289⨯=平方米;方法二:豆角是茄子面积的2倍,972-=米,长是4米,所以苦瓜的面积是248所以莴笋是黄瓜和苦瓜面积和的2倍,黄瓜和苦瓜的面积是72236÷=平方米,所以苦瓜的面积是36288-=平方米.2.例题2答案:28详解:阴影平行四边形的底BC是4,高FG是7,所以平行四边形的面积是4728⨯=.3.例题3答案:42平方厘米详解:阴影三角形的底是6厘米,高是6814+=厘米,所以阴影三角形的面积是614242⨯÷=平方厘米.4.例题4答案:30平方厘米详解:阴影部分是一个梯形,这个梯形的上底是正方形上面的边,正方形的面积是49平方厘米,所以正方形的边长是7厘米,梯形的下底是长方形的宽即8厘米,梯形的高即长方形长与正方形边长之差,为1174-=厘米,所以梯形的面积是()+⨯÷=平方厘米.7842305.例题5答案:91平方厘米详解:由于两个大小一样的正方形错开了3厘米,可以知道图中两个小的直角三角形的直角边都是3厘米,所以阴影平行四边形的底就是1037+=厘米,所以其面积-=厘米,高就是10313是71391⨯=平方厘米.6.例题6答案:12平方厘米详解:小正方形的边长是5厘米,大正方形的边长是7厘米.阴影部分是由两个三角形组成的,这两个三角形的底都是752-=厘米,左面三角形的高是5厘米,右面三角形的高是7厘米,所以面积分别是2525⨯÷=平方厘米,2727+=平⨯÷=平方厘米,所以阴影部分的面积是5712方厘米.7.练习1答案:12平方米详解:西瓜地是正方形,面积为36平方米,所以边长为6米;冬瓜地面积为24平方米,长为6米,所以宽为2464÷=米;南瓜地面积为18平方米,长为6米,所以宽为1863÷=米;黄瓜地长为4米,宽为3米,所以面积为4312⨯=平方米.8. 练习2答案:96平方厘米详解:阴影平行四边形的底是小正方形边长即8厘米,高是两正方形边长之差,即20812-=厘米,所以平行四边形的面积是81296⨯=平方厘米.9. 练习3答案:30简答:阴影三角形的底是6,高是6410+=,所以阴影三角形的面积是610230⨯÷=.10. 练习4答案:14平方厘米简答:阴影部分是一个梯形,这个梯形的上底是小正方形的边长,即6厘米;梯形的下底是大正方形的边长即8厘米,梯形的高即两正方形边长之差,为862-=厘米,所以梯形的面积是()682214+⨯÷=平方厘米.11. 作业1答案:如图所示简答:12. 作业2答案:25简答:小正方形的边长为2,小长方形的长为3,那么大正方形的边长为5,面积为5525⨯=.13. 作业3答案:48简答:小正方形的边长为6,大正方形的边长为8,平行四边形的面积是6848⨯=.14. 作业4答案:24;18简答:左图阴影三角形的底选为6,高为8,面积是68224⨯÷=.右图阴影三角形的底选为6,高为6,面积是66218⨯÷=.15.作业5答案:242平方厘米简答:梯形的上底为小正方形的边长,即9厘米.梯形的下底为大正方形的边长,即13厘米.梯形的高为大、小正方形边长和为22厘米.梯形的面积为(913)222242+⨯÷=平方厘米.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方形和正方形的面积
知识点
长方形的面积=长×宽
正方形的面积=边长×边长
不规则图形面积的计算方法与技巧
合理平移、分析、转化等,即转化为标准的图形来进行面积计算。
例1 有一长方形草坪,长31米,宽26米,草坪中间留了1米的路,路把草坪分成4块(如图),求草坪的实有面积是多少?
例2如下图,求出阴影部分的面积。
(四角是边长为10厘米的正方形)
例3 如图,在一个正方形的水池周围,围绕着宽5米的小花园,小花园的面积为300平方米,水池的面积是多少平方米?
例4 如图,求出阴影部分的面积。
(单位:厘米)
例5如图,图中大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形的面积多96平方厘米,大正方形和小正方形的面积各是多少?
例6如图,大正方形的面积比小正方形的面积大32平方厘米,求这两个正方形的面积。
(单位:厘米)
例7 如图,正方形中套着一个长方形,正方形的边长是12分米,长方形的四个角的顶点恰好把正方形的四条边都分成两段,其中长的一段是短的一段的3倍,这个长方形的面积是多少?
例8 用同样大小的长方形小纸片,摆成了如下图的形状,已知小纸片的宽度是12厘米,求阴影部分面积的和。
同步练习
1、用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?
2、如图,有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是花圃,花圃的面积是多少平方米?(单位:米)
3、下图是由6个相等的三角形拼成的图形,求这个图形的面积?
4、有两个相同的长方形,长13厘米,宽5厘米,如果把它们按如下图叠放在一起,这个图形的面积是多少?
5、有一块菜地长16米,宽8米,如下图菜地中间留了2条宽2米的路,把菜地平均分成四块,每一块地的面积是多少?
6、一个正方形,如果边长增加2厘米,它的面积增加16平方厘米,求原正方形面积?
7、一个周长为60分米的长方形,把它的长缩短6分米后,再把它的宽增加6分米,得到的新长方形面积比原来多24平方分米。
求原来长方形的面积是多少平方米?
8、如图,求阴影部分的面积是多少?(单位:厘米)
9、四个一样的长方形和一个小正方形如图,拼成一个面积为36平方米的大正方形。
小正方形的面积是4平方米,长方形的长和宽各是多少?面积是多少?
10、如下图大小两个正方形部分重合,已知重合分面积是5平方厘米,求阴影部分面积。
11、大小两个正方形如图,对应边之间的距离是2厘米,阴影部分的面积是40平方厘米,大正方形的面积是多少?
12、已知正方形ABCD的边长为6分米,长方形BCEF的长方形AGHD 的面积分别 24平方分米和20平方分米,求阴影部分的面积。