材料的力学性能1

合集下载

材料的力学性能包括

材料的力学性能包括

材料的力学性能包括材料的力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。

这些性能对于材料的选择、设计和应用具有重要的指导意义。

下面将分别介绍材料的力学性能。

首先,强度是材料抵抗外力破坏的能力。

材料的强度可以分为拉伸强度、压缩强度、剪切强度等。

拉伸强度是指材料在拉伸作用下抵抗破坏的能力,压缩强度是指材料在压缩作用下抵抗破坏的能力,剪切强度是指材料在剪切作用下抵抗破坏的能力。

强度的大小直接影响着材料的使用安全性和可靠性,因此在材料选择和设计中需要充分考虑材料的强度。

其次,韧性是材料在外力作用下抵抗破坏的能力。

韧性是材料抵抗断裂的能力,通常用断裂韧性来表示。

断裂韧性是指材料在受到外力作用下能够吸收能量并抵抗断裂的能力。

韧性越大,材料在外力作用下越不容易发生断裂,具有更好的抗破坏能力。

因此,韧性是衡量材料抗破坏能力的重要指标之一。

另外,硬度是材料抵抗划伤、压痕和穿透的能力。

硬度是材料抵抗外力作用而不易产生形变或破坏的能力。

硬度的大小直接影响着材料的耐磨性和耐久性,对于一些需要长期使用的材料来说,硬度是一个非常重要的性能指标。

最后,塑性是材料在外力作用下发生形变的能力。

塑性是指材料受到外力作用后能够发生持久性形变的能力,通常用屈服点和延伸率来表示。

塑性越大,材料在外力作用下发生形变的能力越强,具有更好的加工性能和变形能力。

总的来说,材料的力学性能是材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。

这些性能直接影响着材料的使用安全性、耐久性和加工性能,对于材料的选择、设计和应用具有重要的指导意义。

因此,在材料研究和工程应用中,需要充分考虑材料的力学性能,以确保材料的使用安全和可靠。

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
材料的力学性能是指材料在外力作用下所表现出的性能,包括材料的强度、韧性、硬度、塑性等。

这些性能对于材料的工程应用具有重要意义,下面将分别对材料的力学性能进行详细介绍。

首先,材料的强度是指材料抵抗外力破坏的能力。

强度高的材料能够承受更大
的外力而不会发生破坏,因此在工程结构中具有重要的应用价值。

材料的强度可以通过拉伸试验、压缩试验、弯曲试验等方法进行测试,常见的强度指标包括抗拉强度、抗压强度、屈服强度等。

其次,材料的韧性是指材料抵抗断裂的能力。

韧性高的材料能够在外力作用下
发生一定程度的变形而不会立即破坏,具有良好的抗冲击性和抗疲劳性。

材料的韧性可以通过冲击试验、断裂试验等方法进行测试,常见的韧性指标包括冲击韧性、断裂韧性等。

此外,材料的硬度是指材料抵抗局部变形的能力。

硬度高的材料能够抵抗划痕
和压痕,具有良好的耐磨性和耐腐蚀性。

材料的硬度可以通过洛氏硬度、巴氏硬度、维氏硬度等方法进行测试,常见的硬度指标包括洛氏硬度、巴氏硬度等。

最后,材料的塑性是指材料在外力作用下发生永久形变的能力。

具有良好塑性
的材料能够在加工过程中进行塑性变形,具有良好的可加工性和成形性。

材料的塑性可以通过拉伸试验、压缩试验等方法进行测试,常见的塑性指标包括延伸率、收缩率等。

综上所述,材料的力学性能包括强度、韧性、硬度、塑性等多个方面,这些性
能对于材料的工程应用具有重要的影响。

通过对材料的力学性能进行全面的测试和评价,可以为工程设计和材料选择提供重要的参考依据,保证工程结构的安全可靠性。

材料力学材料的力学性能优质课件

材料力学材料的力学性能优质课件
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论

材料的力学1

材料的力学1

应变硬化的意义: 1、使金属机件具有一定的抗偶然过载能力,保证 机件安全; 2、应变硬化与塑性变形适当配合可使金属进行均 匀塑变; 3、是强化金属的重要工艺手段之一。
应变硬化机理:塑变过程中位错的运动有关。
应变硬化指数
在金属材料拉伸真实应力应变曲线上的均匀塑变 n 阶段,应力与应变满足:
S Ke
d dt
A
O
0
金属、陶瓷的蠕变曲线 时间t
I阶段:AB段,减速蠕变阶段 II阶段:BC段,恒速蠕变阶段 III阶段:CD段,加速蠕变阶段
(2)影响蠕变曲线形状的因素 温度和应力都影响蠕变曲线的形状:
温度升高时,形变速率加快,恒定蠕变阶段缩短。
应力增加时,曲线形状的变化类似与温度。
应 变
Fp—比例极限对应的试验力 A0—原始截面积
弹性极限σe—由弹性变形过渡到塑性变形时的应力。
Fe—弹性极限对应的试验力 A0—原始截面积
1.3 塑性变形
一、塑变及塑性的定义 塑变——材料微观结构的相邻部分产生永久性位移, 但并不引起材料破裂的现象。 塑性——材料在外加应力去除后仍保持部分应变的 特性。
无机材料: 先是弹性形变(较小),然后不发生塑性形变 (或很小)而直接脆性断裂。
船身断裂,一分为二的油轮
性,形变或塑性形变很小。
脆性材料的应力-应变曲线
延性材料(金属材料) :有弹性形变和塑性形变。
延性材料的应力-应变曲线
弹性材料 (橡胶) :弹性变形很大,没有残余形 变(无塑性形变)。
弹性材料的应力-应变曲线
1.2 弹性形变
弹性形变——当外力去除后,能恢复到原来形状
和尺寸的形变。 特点:可逆性、变形量很小(<0.5~1%) 可逆性:受力作用后产生形变,卸除载荷后,形 变消失。

材料力学性能-第一章-弹性的不完整性

材料力学性能-第一章-弹性的不完整性
AB eO
在弹性范围内快速加载或卸 载后,随时间延长产生附加弹 性应变的现象称为滞弹性。
时间
应力
A
B
O
ea
c d
H
应变
b
图1-7. 滞弹性示意图
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
影响因素 材料成分;组织;实验条件;
材料的组织越不均匀,滞弹性越明显。如钢 淬火或塑性变形后,增加了组织的不均匀性,滞 弹性倾向增大。
如图1-9所示,设Tk和 Tk+1为自由振动相邻振幅 的大小,则循环韧性:
ln
Tk Tk 1
图1-9. 自由振动衰减曲线
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
循环韧性的意义:材料的循环韧性越高,则机 件依靠材料自身的消振能力越好。因此,高的 循环韧性对于降低机械噪声,抑制高速机械振 动,防止共振导致疲劳断裂是非常重要的。飞 机螺旋桨、气轮机叶片需要高δ;而追求音响效 果的元件如音叉、簧片等要低δ;灰铸铁的δ 大,常用来作机床的床身、发动机的缸体和支 架等。
p和t是在试样加载时直接从应力-应 变曲线上测量的,而r则要求卸载测量。由
于卸载法测定比较困难,而且效率低,而 加载中测试半径效率高,而且易于实现测 量的自动化,所以在材料屈服抗力评定中
更趋于采用p和t。而t在测试上比p方便, 所以,在大规模工业生产中,一般采用t的
测定方法提高效率。
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
2021年11月12日 第一章 单向静载下材料的力学性能 星期五
在仪表和精密机械中,选用重要传 感元件的材料时,需要考虑滞弹性问 题,如长期受载的测力弹簧、薄膜传感 件等,如选用的材料滞弹性比较明显, 会使仪表精度不足甚至无法使用。还有 经过较直的工件放置一段时间以后又会 弯曲,就是由于滞弹性造成的。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的常用力学性能指标有哪些材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等.(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD.(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度.(3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性.表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力.(4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标.力学性能主要包括哪些指标材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征.性能指标包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度.钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.金属材料的力学性能指标有哪些一:弹性指标1.正弹性模量2.切变弹性模量3.比例极限4.弹性极限二:强度性能指标1.强度极限2.抗拉强度3.抗弯强度4.抗压强度5.抗剪强度6.抗扭强度7.屈服极限(或者称屈服点)8.屈服强度9.持久强度10.蠕变强度三:硬度性能指标1.洛氏硬度2.维氏硬度3.肖氏硬度四:塑性指标1:伸长率(延伸率)2:断面收缩率五:韧性指标1.冲击韧性2.冲击吸收功3.小能量多次冲击力六:疲劳性能指标1.疲劳极限(或者称疲劳强度) 七:断裂韧度性能指标1.平面应变断裂韧度2.条件断裂韧度衡量钢材力学性能的常用指标有哪钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.1. 屈服强度钢材单向拉伸应力—应变曲线中屈服平台对应的强度称为屈服强度,也称屈服点,是建筑钢材的一个重要力学特征.屈服点是弹性变形的终点,而且在较大变形范围内应力不会增加,形成理想的弹塑性模型.低碳钢和低合金钢都具有明显的屈服平台,而热处理钢材和高碳钢则没有.2. 抗拉强度单向拉伸应力—应变曲线中最高点所对应的强度,称为抗拉强度,它是钢材所能承受的最大应力值.由于钢材屈服后具有较大的残余变形,已超出结构正常使用范畴,因此抗拉强度只能作为结构的安全储备.3. 伸长率伸长率是试件断裂时的永久变形与原标定长度的百分比.伸长率代表钢材断裂前具有的塑性变形能力,这种能力使得结构制造时,钢材即使经受剪切、冲压、弯曲及捶击作用产生局部屈服而无明显破坏.伸长率越大,钢材的塑性和延性越好.屈服强度、抗拉强度、伸长率是钢材的三个重要力学性能指标.钢结构中所有钢材都应满足规范对这三个指标的规定.4. 冷弯性能根据试样厚度,在常温条件下按照规定的弯心直径将试样弯曲180°,其表面无裂纹和分层即为冷弯合格.冷弯性能是一项综合指标,冷弯合格一方面表示钢材的塑性变形能力符合要求,另一方面也表示钢材的冶金质量(颗粒结晶及非金属夹杂等)符合要求.重要结构中需要钢材有良好的冷、热加工工艺性能时,应有冷弯试验合格保证.5. 冲击韧性冲击韧性是钢材抵抗冲击荷载的能力,它用钢材断裂时所吸收的总能量来衡量.单向拉伸试验所表现的钢材性能都是静力性能,韧性则是动力性能.韧性是钢材强度、塑性的综合指标,韧性越低则发生脆性破坏的可能性越大.韧性值受温度影响很大,当温度低于某一值时将急剧下降,因此应根据相应温度提出要求.力学性能指标符号是什么?任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用.如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等.这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力.这种能力就是材料的力学性能.金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标.1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力.强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa.工程中常用的强度指标有屈服强度和抗拉强度.屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示.抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示.对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据.1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力.工程中常用的塑性指标有伸长率和断面收缩率.伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示.断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示.伸长率和断面收缩率越大,其塑性越好;反之,塑性越差.良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件.1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力.硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种.(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值.布氏硬度指标有HBS和HBW,前者所用压头为淬火钢球,适用于布氏硬度值低于450的金属材料,如退火钢、正火钢、调质钢及铸铁、有色金属等;后者压头为硬质合金,适用于布氏硬度值为450~650的金属材料,如淬火钢等.布氏硬度测试法,因压痕较大,故不宜测试成品件或薄片金属的硬度.(二)洛氏硬度试验法洛氏硬度试验法是用一锥顶角为120°的金刚石圆锥体或直径为f1.558mm(1/16英寸)的淬火钢球为压头,以一不定的载荷压入被测试金属材料表面,根据压痕深度可直接在洛氏硬度计的指示盘上读出硬度值.常用的洛氏硬度指标有HRA、HRB和HRC三种.采用120°金刚石圆锥体为压头,施加压为600N时,用HRA表示.其测量范围为60~85,适于测量合金、表面硬化钢及较薄零件.采用f1.588mm淬火钢球为压头,施加压力为1000N时,用HRC表示,其测量硬度值范围为25~100,适于测量有色金属、退火和正火钢及锻铁等.采用120°金刚石圆锥体为压头,施加压力为1500N时,用HRC表示,其测量硬度值范围为20~67,适于测量淬火钢、调质钢等.洛氏硬度测试,操作迅速、简便,且压痕小不损伤工件表面,故适于成品检验.硬度是材料的重要力学性能指标.一般材料的硬度越高,其耐磨性越好.材料的强度越高,塑性变形抗力越大,硬度值也越高.1.1.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用ak表示,单位为J/cm2.冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功ak表示冲击韧性.ak值越大,则材料的韧性就越好.ak值低的材料叫做脆性材料,ak值高的材料叫韧性材料.很多零件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用ak值高的材料制造.铸铁的ak值很低,灰口铸铁ak值近于零,不能用来制造承受冲击载荷的零件.低碳钢的力学性能指标低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的,拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状.铸铁由于轫性差,拉伸开始时,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”.同样的道理:低碳钢抗压缩的能力比铸铁要低,当对低碳钢试块进行压缩实验时,受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线.铸铁则不然,开始时与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同.以上就是低碳钢和铸铁在拉伸和压缩时力学性质的异同点.简述常用力学性能指标在选材中的意义?钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性.简单的可这样解释:强度,是指材料抵抗变形或断裂的能力.有二种:屈服强度σb、抗拉强度σs.强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;硬度,是指材料表面抵抗硬物压人的能力.常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV.硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力.有两种表示方法:伸长率δ、断面收缩率ψ.塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk.冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强.一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝."钢材的主要力学性能指标有哪些(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率.屈服强度是结构设计中钢材强度的取值依据.抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数.强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料.钢材在受力破坏前可以经受永久变形的性能,称为塑性.在工程应用中,钢材的塑性指标通常用伸长率表示.伸长率是钢材发生断裂时所能承受永久变形的能力.伸长率越大,说明钢材的塑性越大.试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率.对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求.预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小.由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示.(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力.钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响.除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度.脆性临界温度的数值愈低,钢材的低温冲击性能愈好.所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材.(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏.疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故.钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高.硬度硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。

第一章工程材料的力学性能

第一章工程材料的力学性能
表示方式:600HBW1/30/20 350HBW5/750
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW

材料力学性能课后习题 (1)

材料力学性能课后习题 (1)

材料力学性能课后习题第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。

⑧解理断裂:解理断裂是在正应力达到一定的数值后沿一定的晶体学平面产生的晶体学断裂。

2.解释下列力学性能指标的意义(1)E( 弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(规定残余伸长率为0.2%的应力);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率)3.金属的弹性模量取决于什么?为什么说他是一个对结构不敏感的力学性能?取决于金属原子本性和晶格类型。

因为合金化、热处理、冷塑性变形对弹性模量的影响较小。

4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。

答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

金属材料的力学性能(一)

金属材料的力学性能(一)

(2)拉伸机
万能材料试验机
a) WE系列液压式 b) WDW系列电子式
(3)拉伸试验
拉伸试验视频1
(a)试样
(b)伸长
(c)产生缩颈
(d)断裂
拉 伸 试 样 的 颈 缩 现 象
拉伸试验视频1回顾
2、低碳钢拉伸曲线
OA' 弹性变形阶段 A'ABC 屈服阶段 CD 强化阶段 DE 缩颈阶段
脆性材料的拉伸曲线(与低碳钢试样相对比)
金属材料的力学性能又称为机械性能,是指金属
在外力作用下所反映出来的性能。 具体的说就是金属材料在受到拉伸、压缩、弯曲、 扭转、冲击、交变应力时,对变形与断裂的抵抗能力。

材料在外力的作用下将发生形状和尺寸变化,称为 变形。


外力去处后能够恢复的变形称为弹性变形。
外力去处后不能恢复的变形称为塑性变形。
Fs s ( MPa) Ao
式中Fs——试样产 生屈服时所承受的最大 载荷,N ; Ao——试样原始截 面积,mm2。

对于高碳淬火钢、铸铁等材料,在拉伸试验中没 有明显的屈服现象,无法确定其屈服强度。 国标GB228-2002规定,一般规定以试样产生 0.2%塑性变形时的应力作为该材料的屈服强度, 称为条件屈服强度,用σr0.2表示。
强度 塑性 硬度 韧性 疲劳强度
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么?
强度是金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。 强度指标主要有屈服极限和强度极限。
复习巩固
1、金属的力学性能包括哪些指标? 2、什么是强度?衡量材料强度的指标是什么? 3、设计零件主要依据哪种强度指标?
练一练:举几个日常生活中弹性变形和塑性变形的例子

1材料的力学性能(答案)

1材料的力学性能(答案)

第一章材料的力学性能一、选择题1、fsd表示( B )A、钢筋抗压强度设计值;B、钢筋抗拉强度设计值;C、钢筋抗拉强度标准值2、C30混凝土中的“ 30”表示(A )A、混凝土的立方体抗压强度标准值fcu,k 30MP a .?B、混凝土的轴心抗压强度标准值fck 30MP a .?C、混凝土的轴心抗拉强度标准值ftk 30MP a3、混凝土的强度等级以(A )表示A、混凝土的立方体抗压强度标准值fcu,k;B、混凝土的轴心抗压强度标准值fck;C、混凝土的轴心抗拉强度标准值ftk4、测定混凝土的立方体抗压强度标准值fcu ,k,采用的标准试件为( A )A、150mm 150mm 150mm ;B、450mm 150mm 150mm ;450mm 450mm 450mmC、5、测定混凝土的轴心抗压强度时,试件涂油和不涂油相比,( B ) 的测定值大。

A、涂油;B不涂油;C、一样大6、钢筋混凝土构件的混凝土的强度等级不应低于( A ) 。

A、C20;B、C25;C、C307、钢筋混凝土构件中的最大的粘结力出现在( A ) 。

A、离端头较近处;B、靠近钢筋尾部;C、钢筋的中间的部位8、预应力混凝土构件所采用的混凝土的强度等级不应低于( C) 。

A、C20;B、C30;C、C40二、问答题1、检验钢筋的质量主要有哪几项指标?答:对软钢有屈服强度、极限强度、伸长率、冷弯性能。

对硬钢有极限强度、伸长率、冷弯性能。

2、什么是钢筋的屈强比?它反映了什么问题?答:屈强比为钢筋的屈服强度与极限强度的比值。

它反映结构可靠性的潜力及材料的利用率。

3、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何?答:按标准方法制作、养护的边长为150mm勺立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。

试件尺寸越小,抗压强度值越高。

4、为什么要有混凝土棱柱体抗压强度这个力学指标?它与混凝土立方体抗压强度有什么关系?答:钢筋混凝土受压构件中棱柱体多于立方体,所以棱柱体抗压强度比立方体抗压强度能更好地反映受压构件中混凝土的实际强度。

一、力学性能 1、抗拉性能 抗拉性能是表示钢材性能的重要指标.

一、力学性能 1、抗拉性能 抗拉性能是表示钢材性能的重要指标.
韧性下降,这种现象称为时效。因时效而导致性能改变的 程度称为时效敏感性。

对于承受动荷载的结构应该选用时效敏感性小
的钢材。 因此,对于直接承受动荷载而且可能在负温下工 作的重要结构必须进行钢材的冲击韧性检验。
3、硬度 ⑴ 概念:钢材的硬度是指其表面抵抗重(硬)物压 入产生塑性变形的能力。 ⑵ 测定硬度的方法: ① 布氏法(常用),其硬度指标为布氏硬度值(HB)。
二、工艺性能
1、冷弯性能 冷弯性能是指钢材在常温下承受弯曲变形的能力,是钢 材的重要工艺性能。 冷弯性能指标通过试件被弯曲的角度a及弯心直径d对试 件厚度(或直径) a的比值(d/a)来表示。
试 件 安 装
弯曲90°
弯曲180°
弯曲至两面重合
2、焊接性能
焊接的质量取决于钢材与焊接材料的焊接性能及其焊
度和抗拉强度之比)却能反映钢材的利用率和结构的安全 可靠性,屈强比愈小,反映钢材受力超过屈服点工作时的
可靠性愈大,因而结构的安全性愈高。但屈强比太小,则
反映钢材不能有效地被利用,造成钢材浪费。建筑结构钢 合理的屈强比一般为0.60~~0. 75。 2.冲击韧性 冲击韧性:是指钢材抵抗冲击荷载而不被破坏的能力。
接工艺。 钢材的可焊性:是指焊接后在焊缝处的性质与母材性质
的一致程度。
钢材焊接应注意的问题是:冷拉钢筋的焊接应在冷拉 之前进行;钢筋焊接之前,焊接部位应清除铁锈、熔渣、 油污等;应尽量避免不同国家的进口钢筋之间或进口钢筋 与国产钢筋之间的焊接。
布氏法比较准确,但压痕较大,不适宜做成品检验。
② 洛氏法测定的原理与布氏法相似,但以压头压人 试件深度来表示洛氏硬度值。洛氏法压痕很小,常用于 判定工件的热处理效果。
Fp
布氏硬度测定示意图 P

材料力学性能1

材料力学性能1

②各晶粒塑性变形的相互制约与协调
原因:各晶粒之间变形具有非同时性。
要求:各晶粒之间变形相互协调。(独立变形会导 致晶体分裂) 条件:独立滑移系5个。(保证晶粒形状的自由变 化)
3 形变织构和各向异性
(1)形变织构:多晶体材料由塑性变形导致的各晶粒呈 择优取向的组织。 丝织构:某一晶向趋于与拔丝方向平行。(拉 拔时形成) (2)类型 板织构:某晶面趋于平行于轧制面,某晶向趋 于平行于主变形方向。(轧制时形成)
长时间回火处理: 钢: 300~450℃, 铜合金:150~200 ℃
2、弹性滞后
---- 非瞬间加载条件下的弹性后效。 加载和卸载时的应力应变曲线不重合 形成一封闭回线 ------ 弹性滞后 环

0
e
物理意义
• 加载时消耗的变形功大于卸载时释放的变形功。 或,回线面积为一个循环所消耗的不可逆功。 • • 这部分被金属吸收的功,称为内耗。 ⑵循环韧性 若交变载荷中的最大应力超过 金属的弹性极限,则可得到塑性滞后环。
b
均匀变形阶段
典型的应力-应变曲线
s= 0.2 淬火高碳钢、 玻璃、陶 瓷 正火、调质 退火的碳 素结构钢、 低合金结 构钢
有色金属、经 冷变形的钢、 经低中温回 火的结构钢
s
( a)

e
( b)
e
(c)
e
高锰钢、铝青铜、 锰青铜
冷拔钢丝、 受强烈硬 化的材料
b 纯铜、纯铝
( d)
2)屈服点 呈现屈服现象的金属材料拉伸时,试样 在外力不增加(保持恒定)仍能继续伸长 时的应力称为屈服点,记为σs; 3)上屈服点
试样发生屈服而力首次下降前的最大应 力称为上屈服点,记为 4)下屈服点 当不计初始瞬时效应(指在屈服过程中试验 力第一次发生下降)时屈服阶段中的最小应力 称为下屈服点,记为σsl

1金属材料的力学性能

1金属材料的力学性能

金属工艺学•什么叫金属工艺学?金属工艺学是一门研究有关制造金属机件的工艺方法的综合性技术学科。

它主要研究:各种工艺方法本身的规律性及其在机械制造中的应用和相互联系;金属机件的加工工艺过程和结构工艺性;常用金属材料性能对加工工艺的影响;工艺方法的综合比较等。

•机械制造的基本工程1、产品设计总体设计零部件设计决定功能选用材料决定尺寸及结构细节定出技术要求绘出图纸2、工艺准备决定生产方案制定工艺规程与工艺卡设计并制造工艺装备3、毛坯生产铸件、锻件、冲压件、焊接件、棒料、非金属材料、毛坯等。

4、切削加工粗加工、半精加工、精加工、外构件、外协件5、装配与调试组件装配、部件装配、总装、调试6、装箱出厂•机械制造的经济性原则材料成本、工时成本直接成本、间接成本生产成本、利润、税金•现代先进加工工艺1、采用物化知识的职能来代替人,使人从直接参加生产劳动变为主要负责控制生产。

2、采用先进工艺和高效专用设备,使工艺专业化。

3、机械加工技术柔性化,大量采用信息技术和计算机技术。

•材料是可以直接制成成品的东西,如木料、石料、金属材料等。

•工业生产中所使用的材料属于工程材料,主要包括金属材料、无机非金属材料、有机高分子材料和复合材料四大类。

•金属材料是现代制造机械的最主要材料。

•金属材料以合金为主,很少使用纯金属。

合金是以一种金属为基础,加入其它金属或非金属,经过熔炼、烧结或其它方法制成的具有金属特性的材料。

最常用的合金,有以铁为基础的铁碳合金;有以铜或铝为基础的铜合金和铝合金。

•用来制造机器零件的金属或合金应具有如下性能:1、优良的工艺性能,包括铸造性能、锻造性能、焊接性能、热处理性能、机加工性能等。

2、较好的使用性能,包括物理性能、化学性能、力学性能等。

§1-1 材料的性能材料的性能以金属材料为例包括力学性能、物理性能、化学性能和工艺性能等。

一、金属材料的力学性能力学性能是指金属材料在受外力作用时所反映出来的性能。

第一章 材料的力学性能

第一章  材料的力学性能

第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。

2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。

3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。

4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。

5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。

6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。

7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。

8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。

9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。

10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。

11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。

用于测定没有明显屈服现象的材料的屈服强度。

12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。

13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。

14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。

15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。

16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。

17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。

材料力学性能总思考题(1)

材料力学性能总思考题(1)

材料力学性能总思考题(1)第一章1什么是材料力学性能?有何意义?材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。

2金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能?三个阶段:弹性变形阶段;塑性变形阶段;断裂可测定的性能:屈服强度,抗拉强度,断后伸长率,断面收缩率3拉伸曲线有何作用?拉伸曲线各段图形分别意味着什么?拉伸曲线可测定材料的屈服强度,抗拉强度,断后伸长率,断面收缩率等力学性能指标;4不同材料的拉伸曲线相同吗?为什么?不同;材料的组织结构不同,成分不同,所处温度、应力状态不同,拉伸曲线也不同。

5材料的拉伸应力应变曲线发现了哪几个关键点?这几个关键点分别有何意义?真实应力应变曲线关键点是颈缩点工程应力应变是屈服强度7 弹性变形的实质是什么?金属晶格中原子自平衡位置产生可逆位移的反映。

8弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。

E=ζ/ε。

弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。

弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。

它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

特殊表现:金属材料的E是一个对组织不敏感的力学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子本性和晶格类型。

9比例极限、弹性极限、屈服极限有何异同?比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。

10你学习了哪几个弹性指标?弹性极限、比例极限、弹性模量、弹性比功11弹性不完整性包括哪些方面?金属在弹性变形阶段存在微小的塑性变形,即弹塑性变形之间无绝对的分界点,包括弹性滞弹性及内耗、包辛格效应等。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。

材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。

本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。

一、强度强度是指材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。

抗压强度是指材料在受压力作用下,抗压破坏的能力。

抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。

强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。

材料的强度往往与其成分、结构和加工工艺有关。

例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。

在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。

二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。

常见的刚度指标包括弹性模量、切变模量等。

弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。

刚度的测试方法主要包括拉伸试验、扭转试验等。

材料的刚度与其物理性质和结构密切相关。

高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。

在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。

三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。

常见的韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是指材料在断裂前所能吸收的能量。

冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。

韧性的测试方法主要包括冲击试验、拉伸试验等。

材料的韧性与其断裂机制和微观结构有关。

例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。

材料的力学性能1

材料的力学性能1

试题内容:直径为d的拉伸比例试样,其标距长度l只能为10d。

( ) 试题答案:答:非试题内容:直径为d的拉伸比例试样,其标距长度l只能为5d。

()试题答案:答:非试题内容:圆柱形拉伸试样直径为d,常用的比例试样其标距长度l是5d或10d。

()试题答案:答:是试题内容:直径为d的拉伸非比例试样,其标距长度l和d无关。

()试题答案:答:是试题内容:Q235钢进入屈服阶段以后,只发生弹性变形。

()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只有塑性变形。

()试题答案:答:非试题内容:低碳钢拉伸试验进入屈服阶段以后,只发生线弹性变形。

()试题答案:答:非试题内容:试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为1s σ。

( ) 试题答案: 答:非试题内容:低碳钢拉伸应力-应变曲线的上、下屈服极限分别为1s σ和2s σ,则其屈服极限s σ为2s σ。

( ) 试题答案: 答:是试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限s σ为22s 1s σσ+。

( ) 试题答案: 答:非试题内容:拉伸试验测得材料的上、下屈服极限分别为1s σ和2s σ,则材料的屈服极限S σ为22s 1s σσ-。

( ) 试题答案: 答:非试题内容:铸铁的强度指标是s σ。

( ) 试题答案: 答:非试题内容:铸铁的强度指标是b σ。

( )试题内容:铸铁的极限应力是s σ和b σ。

( ) 试题答案: 答:非试题内容:铸铁的强度指标是δ和s σ。

( ) 试题答案: 答:非试题内容:材料的塑性指标有s σ和b σ。

( ) 试题答案: 答:非试题内容:材料的塑性指标有s σ和ε。

( ) 试题答案: 答:非试题内容:材料的塑性指标有δ和ψ。

( ) 试题答案: 答:是试题内容:材料的塑性指标有s σ、ε和ψ。

( ) 试题答案: 答:是工程上通常把伸长率%5≥δ材料称为塑性材料。

结构设计原理 第一章 材料的力学性能 习题及答案

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________和。

2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。

3、碳素钢可分为、和。

随着含碳量的增加,钢筋的强度、塑性。

在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。

4、钢筋混凝土结构对钢筋性能的要求主要是、、、。

5、钢筋和混凝土是不同的材料,两者能够共同工作是因为、、6、光面钢筋的粘结力由、、三个部分组成。

7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。

8、混凝土的极限压应变包括和两部分。

部分越大,表明变形能力越,越好。

9、混凝土的延性随强度等级的提高而。

同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。

10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。

11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。

12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。

二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。

2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。

3、混凝土双向受压时强度比其单向受压时强度降低。

4、线性徐变是指徐变与荷载持续时间之间为线性关系。

5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。

6、强度与应力的概念完全一样。

7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。

8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。

9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。

10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。

11、钢筋的弹性模量与钢筋级别、品种无关。

12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。

1材料的性能

1材料的性能

材料在无数次数应力循环后仍不发生断裂时的 最大应力称为疲劳极限。用D表示。 一般结构钢规定次数为107,其他钢及有色金 属合金为108。
六、断裂韧性
桥梁、船舶、大型轧辊、转子等有时会发生低 应力脆断。 工作应力远低于材料的抗拉强度。 原因:构件或零件存在裂纹。裂纹在应力作用 下失稳扩展,导致机件破断。
二、锻造性能
锻造性 适应能力。 金属材料用锻压加工方法成形的
锻造
冷冲
金属材料的塑性越好,变形抗力越小, 金属的锻造性能越好。
三、可焊性 可焊性 材料易于被焊接到一起并获得优质 焊缝的能力。
电弧焊
气焊
钢材的碳含量是焊接性好坏的主要因素。 低碳钢和碳的质量分数低于0.18 %的合金钢 焊接性能较好。 碳含量和合金元素含量越高, 焊接性能越差。
• 58HRC 符号HR前面的数字为硬度值, 后面为使用的标尺。

洛氏硬度的优点:操作简便,压痕小,适用范围
广,可用于成品件的检验。
缺点:测量结果分散度大,重复性差
3、维氏硬度
将两相对面夹角136o的正四棱锥体的金刚石压 头,用选定的试验力压入试样表面,保持规定时间 后,卸除试验力,测量压痕对角线平均长度d。试 验力除以压痕表面积所得商即为维氏硬度。
韧脆转变温度 • 材料的冲击韧性随温度 下降而下降。 • 在某一温度范围内冲击 韧性值急剧下降的现象 称韧脆转变。
发生韧脆转变的温度范围称韧脆转变温度。 材料的使用温度应
? 韧脆转变温度。 高于
建造中的Titanic 号
TITANIC
TITANIC的沉没
与船体材料的质量
直接有关
Titanic 号钢板(左图)和近代船用钢板(右图) 的冲击试验结果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RAL 1 材料在静载荷下的力学性能
强度指标及其测定方法
(4)强度极限(抗拉强度)
b(Rm) Pb/A0 (MPa)
屈服阶段以后,有形变强化现象。
随着塑性变形的增大,变形抗力不断增加,当应 力达到最大值σb以后,材料的形变强化效应已经 不能补偿横截面积的减小而引起的承载能力的降 低,试样的某一部位截面开始急剧缩小,因而在 工程应力-应变曲线上,出现了应力随应变的增 大而降低的现象。
RAL
0、绪论 1、材料在静载荷下的力学性能 2、材料的变形 3、材料的强化和韧化 4、材料的断裂 5、材料的断裂韧性 6、材料的疲劳 7、高温及环境下材料的力学性能 8、材料的磨损和接触疲劳
RAL
0 绪论
什么是材料的力学性能? 材料力学性能课程的研究内容有哪些?
什么是材料的力学性能?
(金属)材料 —— 具有各种使用性能 —— 用途广泛
曲线上的最大应力σb为抗拉强度极限,它是由试 样拉断前最大载荷所决定的条件临界应力,即试 样所能承受的最大载荷除以原始截面积。
RAL 1 材料在静载荷下的力学性能
强度指标及其测定方法
(5)断裂强度
k Pk/Ak (MPa) 断裂强度σK是试样拉断时的真实应力,它 等于拉断时的载荷PK除以断裂后颈缩处截 面积AK。 断裂强度表征材料对断裂的抗力。但是, 对塑性材料来说,它在工程上意义不大, 因为产生颈缩后,试样所能承受的外力不 但不增加,反而减少,故国家标准中没有 规定断裂强度。
材料的失效(failure): 如果材料抵抗变形与断裂的能力与服役条件不适应,则机件失 去预定效能(过量弹性变形、过量塑性变形、断裂、磨损等), 材料的力学性能又可以称为失效抗力。
RAL
0 绪论
影响力学性能的因素
内在因素
外在因素
化显 学微 成组 分织
冶残 金余 质应 量力
载应 温环 荷力 性状 质态 度境
应力:单位截面上所受到的力称为应力 应变:单位长度上的变形量
P 工程应力:拉伸载荷除以原始截面积 A0
工程应变:试样断裂后量伸长量与原始长度的比值 l l 0
l0
l0
真应力:实际上,在拉伸过程中,试样的横截面积是逐渐减小的,外加载 荷除以试样某一变形瞬间的截面积称为真应力。
SP Ai
RAL 1 材料在静载荷下的力学性能
1.1 材料的拉伸性能
静拉伸试验:常温、单向静拉伸载荷,光滑试样。(应用最为广泛的方法) 通过拉伸试验,可以获得材料的弹性、塑性、强度等指标,还可以测量形变强化指数、 塑性应变比等反映板材成型性的指标,这些指标特性统称为材料的拉伸性能。
RAL 1 材料在静载荷下的力学性能
1.1.1 拉伸曲线和应力-应变曲线
目的:
1)合理使用材料-掌握不同服役条件下力学性能变化规律,有助于正确选择材料; 2)研究开发新材料-明确提高力学性能的方向和途径,是研发新材料的关键; 3)改进和开发冷热加工工艺。
RAL
1、材料在静载荷下的 力学性能
RAL 1 材料在静载荷下的力学性能
材料力学性能指标是结构设计、材料选择、工艺评价以及材料检验的主要依 据。测定材料力学性能最常用的方法是静载荷方法,即在温度、应力状态和 加载速率都固定不变的状态下测定力学性能指标的一种方法。
规定比例极限
一般规定曲线上某点切线和纵坐标夹角的正 切值tanθ′比直线部分和纵坐标夹角的正切 值tanθ增加50%时,则该点对应的应力即为 规定比例极限。
RAL 1 材料在静载荷下的力学性能
强度指标及其测定方法
(2)弹性极限
e Pe/A0 (MPa)
应力-应变曲线中,应力在σe时称为弹性强度 极限,该阶段为弹性变形阶段。当应力继续增 加,超过σe以后,试样在继续产生弹性变形的 同时,也伴随有微量的塑性变形,因此σe是材 料由弹性变形过渡到弹-塑性变形的应力。应 力超过弹性极限以后,便开始发生塑性变形。
规定弹性极限
规定以残余伸长为 0.01%的应力作为规定残余伸长应力,并 以σ0.01表示。
RAL 1 材料在静载荷下的力学性能
强度指标及其测定方法
(3)屈服极限(屈服强度)
s(Rel) Ps/A0 (MPa)
在拉伸过程中,当应力达到一定值时,拉伸曲线上出现了平台或锯齿形流变, 在应力不增加或减小的情况下,试样还继续伸长而进入屈服阶段。屈服阶段恒 定载荷Ps所对应的应力为材料的屈服点。 条件屈服极限 (0.2)
根据在塑性变形前后材料体积不变的近似假定,即
A0l0 Aili
则得到 S P P l i l 0 l (1 l )
Ai A0 l 0
l0
l0
所以 S (1 )
RAL 1 材料在静载荷下的力学性能
真应变:瞬时应变
n
l e d
lf dl ln
f ln(1 )
l f 1
使用性能
物理性能(导电、导热、电磁等) 化学性能(耐腐蚀、抗氧化等) 工艺性能(焊接、成形等) 力学性能(强度、硬度、塑性等)
RAL
0 绪论
材料的力学性能是指材料在外加载荷(外力或能量)作用下,或载 荷与环境因素(温度、介质和加载速率)联合作用下所表现出 的行为。这种行为又称为力学行为,通常表现为金属的变形和 断裂。—— 材料抵抗外加载荷引起的变形和断裂的能力。 mechanical properties; mechanical behavior
0l0 l
0
拉伸曲线:载荷-伸长曲线(P-l) 弹性变形 塑性变形 屈服 颈缩
RAL 1 材料在静载荷下的力学性能
应力-应变(stress-strain)曲线
比例极限 弹性极限 屈服极限 强度极限 断裂强度
RAL 1 材料在静载荷下的力学性能
强度指标及其测定方法
(1)比例极限
p Pp/A0 (MPa) 当应力比较小时,试样的伸长随应力成正比 地增加,保持直线关系。当应力超过σp时, 曲线开始偏离直线,因此称σp为比例极限, 是应力与应变成直线关系的最大应力值。
RAL
0 绪论
不同服役条件对材料的性能要求不同
RAL
0 绪论
材料力学性能课程主要内容?
- 材料在各种服役条件下的失效现象及微观机理; - 材料力学性能指标的本质、概念、实用意义,以及各种力学性能
指标之间的相互联系; - 影响材料力学性能的因素,提高力学性能的方向和途径; - 材料力学性能的测试技术。
相关文档
最新文档