高考物理二轮专题复习 模型讲解 电磁场中的单杆模型
高考物理复习 电磁感应杆模型

5.最大速度vm 电容器充电量: Q0 CE
放电结束时电量: Q CU CBlvm
电容器放电电量: Q Q0 Q CE CBlvm
对杆应用动量定理:mvm BIl t BlQ
vm
m
BlCE B2l2C
题型五 电容放电式:
6.达最大速度过程中 的两个关系
v1=0时:电流最大,
Im
Blv0 R1 R2
v2=v1时:电流 I=0
3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电 流变小,安培力变小.棒1做加 速度变小的加速运动,棒2做
加速度变小的减速运动,最 终两棒具有共同速度。
随着棒2的减速、棒1的加速,两棒 的相对速度v2-v1变小,回路中电流 也变小。
4.变化
(1)两棒都受外力作用
(2)外力提供方式变化
题型五 电容放电式:
4.最终特征:匀速运 动,但此时电容器带 电量不为零
1.电路特点 电容器放电,相当于电源;导体棒受安 培力而运动。
2.电流的特点 电容器放电时,导体棒在安培力作用下
开始运动,同时产生阻碍放电的反电动
势,导致电流减小,直至电流为零,此 时UC=Blv 3.运动特点 a渐小的加速运动,最终做匀速运动。
1.电路特点:导体棒相当于电源。
6、三个规律
2.安培力的特点:安培力为阻力, 并随速度减小而减小。
(1)能量关系:
1 2
mv02
0
Q,
QR Qr
F BIL B2l2v Rr
(2)动量关系:BIl t 0 mv0 q n Bl s
R r
高考物理二轮专题复习课件:题型专练四电磁感应中的单、双杆模型

磁感应强度为B、竖直向下的匀强磁场中,一质量为m、电阻为r的导体棒ab垂
直导轨放置在导轨上静止,导轨的电阻不计.某时刻给导体棒ab一个水平向右
的瞬时冲量I,导体棒将向右运动,最后停下来,则此过程中
A.导体棒做匀减速直线运动直至停止运动
B.电阻
R
上产生的焦耳热为 I2 2m
√C.通过导体棒
ab
横截面的电荷量为 I BL
设PQ中的电流为IPQ,有
Δt Δv 动力学观点:求导体棒的 已知:两金属棒接入电路的有效电阻均为R=0. CBLΔv,a= ,得I恒定, 间距为L,曲线轨道与水平轨道相切于b1b2, Δt 加速度a= F (多选)(2020·福建龙岩市检测)如图4所示,水平面上固定着两根相距L且足够长的光滑金属导轨,不计导轨电阻,导轨处于方向竖直向下、磁感应强度为B的匀强磁场中.
即-BLq+F其他·Δt=mv2-mv1 已知电荷量q,F其他为恒力,可求出变加速运动的时间.
-B2L2 v Δt (ii) R总 +F 其他·Δt=mv2-mv1, v Δt=x. 若已知位移x,F其他为恒力,也可求出变加速运动的时间.
考题示例 例1 (2019·天津卷·11)如图1所示,固定在水平面上间距为l的两条平行
时,v最大,vm=BF2RL2 ; a恒定时,F=B2L2at +
路中焦耳热之和 动量观点:分析导体棒
R
的位移、通过导体棒的
ma,F与t为一次函数 电荷量
关系
开关S闭合,ab棒受
含“源”电动式 (v0=0)
到的安培力F=BLE , 动力学观点:分析最大加速度、
此时a=BLE
r ,速度
最大速度
mr v↑⇒E感=BLv↑⇒I↓
答案 12mv2-23kq
第87讲 电磁感应中的单杆模型(解析版)

第87讲电磁感应中的单杆模型1.(2022•上海)宽L=0.75m的导轨固定,导轨间存在着垂直于纸面且磁感应强度B=0.4T的匀强磁场。
虚线框Ⅰ、Ⅱ中有定值电阻R0和最大阻值为20Ω的滑动变阻器R。
一根与导轨等宽的金属杆以恒定速率向右运动,图甲和图乙分别为变阻器全部接入和一半接入时沿abcda方向电势变化的图像。
求:(1)匀强磁场的方向;(2)分析并说明定值电阻R0在Ⅰ还是Ⅱ中,并且R0大小为多少:(3)金属杆运动时的速率;(4)滑动变阻器阻值为多少时变阻器的功率最大?并求出该最大功率P m。
【解答】解:(1)a点电势比d点电势高,说明导体棒上端为电源正极,导体棒切割磁感线产生感应电流向上,根据右手定则判断得出匀强磁场的方向垂直纸面向里(2)滑动变阻器从全部接入到一半接入电路,回路里电流变大,定值电阻R0上电压变大,图甲的U cd小于图乙的U cd,可以推理得定值电阻在Ⅰ内,滑动变阻器在Ⅱ根据欧姆定律得:甲图中回路电流I甲=1.2R=1.220A=0.06A,乙图中回路电流I乙=1.0R2=1.010A=0.1A甲图中定值电阻R0上电压φ0﹣1.2=0.06R乙图中定值电阻R0上电压φ0﹣1.0=0.1R联立解得:R=5Ω,φ0=1.5V(3)金属杆产生的感应电动势E=BLv,E=φ0联立解得v=φ0BL= 1.50.4×0.75m/s=5m/s(4)根据甲乙两图可知导体棒电阻不计,由闭合电路欧姆定律得I=E R0+R滑动变阻器上的功率p=I2R=E2R(R0+R)2= 2.2525R+R+10,当R=5Ω时,滑动变阻器有最大功率P m=0.1125W答:(1)匀强磁场的方向垂直纸面向里(2)定值电阻R0在Ⅰ中,定值电阻R0=5Ω(3)金属杆运动时的速率为5m/s(4)滑动变阻器阻值为5Ω时变阻器的功率最大,最大功率为0.1125W一.知识回顾1.力学对象和电学对象的相互关系2.能量转化及焦耳热的求法(1)能量转化其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量(2)求解焦耳热Q的三种方法(纯电阻电路)3.单杆模型质量为m、电阻不计的单杆ab 以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为l 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBl,最后以v m匀速运动当a=0时,v最大,v m=FRB2l2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBlΔv电流I=ΔqΔt=CBlΔvΔt=CBla安培力F安=IlB=CB2l2aF-F安=ma,a=Fm+B2l2C,所以杆以恒定的加速度匀加速运动电能转化为动能外力做功转化为外力做功转化为二.例题精析题型一:单杆+电阻模型之动态分析(多选)例1.如图所示,MN和PQ是两根互相平行、竖直放置的足够长的光滑金属导轨,电阻不计,匀强磁场垂直导轨平面向里。
电磁场中的单杆模型

二、单杆在磁场中匀变速运动
例2.如图甲所示,一个足够长的“U”形金属导 轨NMPQ固定在水平面内,MN、PQ两导轨间 的宽为L=0.50m。一根质量为m=0.50kg的 均匀金属导体棒ab静止在导轨上且接触良好, abMP恰好围成一个正方形。 该轨道平面处在磁感应强度 大小可以调节的竖直向上的 匀强磁场中。ab棒的电阻为 R=0.10Ω,其它各部分电阻 均不计。开始时,磁感应强 度B0=0.50T。
F<0 方向与x轴相同 ⑦ O
⑤
v0 B x
➢ (08全国卷2)24.(19分)如图,一直导体棒质 量为m、长为l、电阻为r,其两端放在位于水平面内 间距也为l的光滑平行导轨上,并与之密接;棒左侧 两导轨之间连接一可控制的负载电阻(图中未画 出);导轨置于匀强磁场中,磁场的磁感应强度大 小为B,方向垂直于导轨所在平面。开始时,给导 体棒一个平行于导轨的初速度v0。在棒的运动速度 由v0减小至v1的过程中,通过控制负载电阻的阻值 使棒中的电流强度I保持恒定。
(1)若保持磁感应强度B0的大小不变,从 t=0 时刻开始,给ab棒施加一个水平向右 的拉力,使它做匀加速直线运动。此拉力F 的大小随时间t变化关系如图乙所示。求ab 棒做匀加速运动的加速度及ab棒与导轨间 的滑动摩擦力。
➢(2)若从t=0开始,使磁感应强度的
大小从B0开始以
B t
=0.20T/s的变化
➢C.沿运动方向作用在导体棒ab上的外力
的功率之比为1:2
➢D.流过任一横截面的电量之比为1:2
a
a
AB R
v Bl
R
EI
b
b
x
一般方法
→判断产生电磁感应现象的那一部分 导体(电源)
→利用 E N 或E=BLv求感应电动 势的大小 t
2021届高考物理二轮复习核心素养微专题6电磁感应中的“杆+导轨”模型课件202103302375

此时回路中的感应电动势和感应电流分别为 E=(43v0-v′)Bl,I=2ER 此时棒 cd 所受的安培力 F=BIl=B42lR2v0 由牛顿第二定律可得棒 cd 的加速度大小为 a=mF=B42ml2Rv0,方向水平向右。 答案:(1)41mv02 (2)B42ml2Rv0
5.如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有 阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨 间的动摩擦因数μ=0.45。建立原点位于底端、方向沿导轨向上的坐标 轴x,在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场。从t=0时 刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面 向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1。当棒 ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2= 0.8 m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处。棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用Fx图像下的 “面积”代表力F做的功,sin 37°=0.6)
2.(多选)如图所示,平行导轨放在斜面上,匀强磁场垂直于斜面向上, 恒力F拉动金属杆ab从静止开始沿导轨向上滑动,接触良好,导轨光滑。 从静止开始到ab杆达到最大速度的过程中,恒力F做的功为W,ab杆克服 重力做的功为W1,ab杆克服安培力做的功为W2,ab杆动能的增加量为 ΔEk,电路中产生的焦耳热为Q,ab杆重力势能增加量为ΔEp,则( CD) A.W=Q+W1+W2+ΔEk+ΔEp B.W=Q+W1+W2+ΔEk C.W=Q+ΔEk+ΔEp D.W2=Q,W1=ΔEp
匀强磁场与导轨垂直,磁感应强度为 B,棒 ab 长为 L,质 量为 m,初速度为零,拉力恒为 F,水平导轨光滑,除电阻 物理模型 R 外,其他电阻不计
高三物理二轮复习常考模型微专题复习-电磁感应中的单杆与电阻连接模型专题

电磁感应中的单杆与电阻连接模型专题一、单选题1.如下图所示,两根平行长直光滑金属轨道,固定在同一水平面内,间距为d,其左端接有阻值为R的电阻,整个装置处在竖直向下、磁感应强度为B的匀强磁场中.一导体棒ab垂直于轨道放置,且与两轨道接触良好,导体棒在水平向右、垂直于棒的恒力F作用下,从静止开始沿轨道运动一段距离后达到最大速度v(运动过程中导体棒始终与轨道保持垂直).设导体棒接入电路的电阻为r,轨道电阻不计.在这一过程中()A. 导体棒中感应电流的方向从a→bB. 当速度达到最大速度v时导体棒ab两端的电压为BdvC. F做的功等于回路产生的电能D. F做的功与安培力做的功之和等于导体棒增加的动能2.如图,固定在同一水平面内的两根平行长直金属导轨间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的磁场中。
一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ,现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。
则此过程()A. 杆的速度最大值为(F−μmg)RB2d2B. 流过电阻R的电量为BdLRC. 恒力F做的功与安倍力做的功之和大于杆动能的变化量D. 恒力F做的功与摩擦力做的功之和等于杆动能的变化量3.如图所示,足够长平行金属导轨倾斜放置,倾角为37∘,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω.一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端于导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T.将导体棒MN由静止释放,运动一端时间后,小灯泡稳定发光,此后导体棒MN的运动速度及小灯泡消耗的电功率分别为(重力加速度g取10m/s2,sin37∘=0.6)()A. 2.5m/s1WB. 5m/s1WC. 7.5m/s9WD. 15m/s9W4.如图所示,平行金属导轨ab和cd与水平面成θ角,间距为L,导轨与固定电阻R1和R2相连,磁感应强度为B的匀强磁场垂直穿过导轨平面.有一导体棒MN,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均为R,与导轨之间的动摩擦因数为μ,导体棒以速度v沿导轨匀速下滑,忽略感应电流之间的相互作用.则()A. 导体棒两端电压为mgR(sinθ−μcosθ)BLmgv(sinθ−μcosθ)B. 电阻R1消耗的热功率为14C. 时间t内通过导体棒的电荷量为mgt(sinθ−μcosθ)BLD. 导体棒所受重力与安培力的合力方向与竖直方向的夹角等于θ5.如图所示,间距l=1m的光滑平行金属导轨电阻不计,水平放置于磁感应强度大小B=1T、方向竖直向下的匀强磁场中,导轨左端接一阻值R=2Ω的定值电阻,质量m=1kg、电阻不计的金属棒MN置于导轨上,始终垂直导轨且接触良好。
模型组合讲解——电磁场中的单杆模型

模型组合讲解--- 电磁场中的单杆模型秋飏[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨” “竖直导轨”等。
[模型讲解]一、单杆在磁场中匀速运动例1. (2005年河南省实验中学预测题)如图1所示,R 5 , R2,电压表与电流表的量程分别为0〜10V和0〜3A,电表均为理想电表。
导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。
(1 )当变阻器R接入电路的阻值调到30 ,且用片=40N的水平拉力向右拉ab棒并使之达到稳定速度v1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度v1是多少?(2)当变阻器R接入电路的阻值调到3 ,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?解析:(1)假设电流表指针满偏,即 1 = 3A,那么此时电压表的示数为U= IR并=15V , 电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U1= 10V,此时电流表示数为设a、b棒稳定时的速度为v1,产生的感应电动势为E1,则E1= BLv1,且E1= |1(R1 + R并)=20Va、b棒受到的安培力为F1= BIL = 40N解得v11m/ s(2)利用假设法可以判断,此时电流表恰好满偏,即U2I 2只并=6V可以安全使用,符合题意。
12= 3A,此时电压表的示数为图由F= BIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以12 3F2 -F l X 40N 60N。
I i 2二、单杠在磁场中匀变速运动例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为的均匀金属导体棒ab静止在导轨上且接触良好,abMP处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
2021高考物理二轮复习第二篇必考模型2杆轨模型课件ppt

注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用, 分析方法与表格中受外力F时的情况类似。
【多维猜押·制霸考场】 1.图甲、乙、丙中除导体棒ab可动外,其余部分均固定不动。甲图中的电容器C 原来不带电,所有导体棒、导轨电阻均可忽略,导体棒和导轨间的摩擦也不计, 导体棒ab的质量为m。图中装置均在水平面内,且都处于方向垂直水平面(即纸 面)向下的匀强磁场中,磁感应强度为B,导轨足够长,间距为L。今给导体棒ab一 个向右的初速度v0,则 ( )
对M有:Mg-T=Ma,
解得:a= 7mg
10m+2CB2L2
可知M做初速度为零的匀加速直线运动
v=at= 7mg ·t
10m+2CB2L2
答案:(1) 21mgr (2) 7mgrC
2B2L2
BL
(3)v=
7mg 10m+2CB2L2
·t
维度2:双杆模型 【研透真题·破题有方】 (2019·天津高考)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨, 垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接 触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向 下均匀增加的磁场,磁通量变化率为常量k。图中虚线右侧有垂直于导轨平面向 下的匀强磁场,磁感应强度大小为B。PQ的质量为m,金属导轨足够长,电阻忽略 不计。
安培力,向右做匀速运动。图乙中,导体棒向右运动切割磁感线产生感应电流,
通过电阻R转化为内能,ab棒速度减小,当ab棒的动能全部转化为内能时,ab棒静
止。图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后再
在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势
专题32+电磁感应中的“单杆”模型(精讲)-高考物理双基突破(二)+Word版含解析.doc

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。
1.此类题目的分析要抓住三点:(1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。
(2)整个电路产生的电能等于克服安培力所做的功。
(3)电磁感应现象遵从能量守恒定律。
如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。
2.单杆模型中常见的情况及处理方法: (1)单杆水平式开始时a =Fm ,杆ab 速度v ⇒感开始时a =Fm ,杆ab 速度v ⇒感应电动势E =BLv ,经过Δt势E =BLv ,电流I =ER =Blv R ,安培力F =BIL =B 2L 2vR,做减速运动:v ⇒F ⇒a ,当v =0时,F =0,a =0,杆保持静止此时a =BLEmr ,杆ab 速度v ⇒感应电动势BLv ⇒I ⇒安培力F =BIL ⇒加速度a ,当E感=E 时,v 最大,且v m =E BL应电动势E =BLv ⇒I ⇒安培力F 安=BIL ,由F -F安=ma 知a ,当a =0时,v 最大,v m =FRB 2L 2【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。
整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。
下列说法正确的是A .金属棒在导轨上做匀减速运动B .整个过程中电阻R 上产生的焦耳热为mv 202C .整个过程中金属棒在导轨上发生的位移为qRBLD .整个过程中金属棒克服安培力做功为mv 202【答案】D【题2】如图所示,足够长的平行金属导轨内有垂直纸面向里的匀强磁场,金属杆ab 与导轨垂直且接触良好,导轨右端与电路连接.已知导轨相距为L ,磁场的磁感应强度为B ,R 1、R 2和ab 杆的电阻值均为r ,其余电阻不计,板间距为d 、板长为4d ,重力加速度为g ,不计空气阻力.如果ab 杆以某一速度向左匀速运动时,沿两板中心线水平射入质量为m 、带电荷量为+q 的微粒恰能沿两板中心线射出,如果ab 杆以同样大小的速度向右匀速运动时,该微粒将射到B 板距其左端为d 的C 处。
高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
高考回归复习—电磁感应之单杆动力学与能量的综合模型 含解析

高考回归复习—电磁感应之单杆动力学与能量的综合模型1.如图所示,两个平行光滑金属导轨AB、CD固定在水平地面上,其间距L=0.5m,左端接有阻值R=3Ω的定值电阻。
一根长度与导轨间距相等的金属杆順置于导轨上,金属杆的质量m=0.2kg,电阻r=2Ω,整个装置处在方向竖直向下、磁感应强度大小B=4T的匀强磁场中,t=0肘刻,在MN上加一与金属杆垂直,方向水平向右的外力F,金属杆由静止开始以a=2m/s2的加速度向右做匀加速直线运动,2s末撤去外力F,运动过程中金属杆与导轨始终垂直且接触良好。
(不计导轨和连接导线的电阻,导轨足够长)求:(1)1s末外力F的大小;(2)撤去外力F后的过程中,电阻R上产生的焦耳热。
2.如图所示,水平放置的U形导轨足够长,置于方向竖直向上的匀强磁场中,磁感应强度大小为B=5T,导轨宽度L=0.4m,左侧与R=0.5Ω的定值电阻连接。
右侧有导体棒ab跨放在导轨上,导体棒ab质量m=2.0kg,电阻r=0.5Ω,与导轨的动摩擦因数μ=0.2,其余电阻可忽略不计。
导体棒ab在大小为10N的水平外力F 作用下,由静止开始运动了x=40cm后,速度达到最大,取g=10m/s2.求:(1)导体棒ab运动的最大速度是多少?(2)当导体棒ab的速度v=1ms时,导体棒ab的加速度是多少?(3)导体棒ab由静止达到最大速度的过程中,电阻R上产生的热量是多少?3.如图所示,水平光滑导轨足够长,导轨间距为L,导轨间分布有竖直方向的匀强磁场,磁感应强度为B,导轨左端接有阻值为R的电阻,电阻两端接一理想电压表。
一金属棒垂直放在导轨上,其在轨间部分的电阻也为R。
现用一物块通过跨过定滑轮的轻绳从静止开始水平牵引金属棒,开始时,物块距地面的高度为h,物块落地前的一小段时间内电压表的示数稳定为U。
已知物块与金属棒的质量相等,不计导轨电阻和滑轮质量与摩擦,导轨始终与金属棒垂直且紧密接触。
求:(1)金属棒的最大速度v ; (2)物块的质量m ;(3)棒从静止开始到物块刚要落地的过程中,电阻R 上产生的热量Q 。
专题24 电磁感现象中的单棒模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题24 电磁感现象中的单棒模型一、高考真题1.如图1所示,光滑的平行导电轨道水平固定在桌面上,轨道间连接一可变电阻,导体杆与轨道垂直并接触良好(不计杆和轨道的电阻),整个装置处在垂直于轨道平面向上的匀强磁场中。
杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,两次运动中拉力大小与速率的关系如图2所示。
其中,第一次对应直线①,初始拉力大小为F 0,改变电阻阻值和磁感应强度大小后,第二次对应直线②,初始拉力大小为2F 0,两直线交点的纵坐标为3F 0。
若第一次和第二次运动中的磁感应强度大小之比为k 、电阻的阻值之比为m 、杆从静止开始运动相同位移的时间之比为n ,则k 、m 、n 可能为( )A .k = 2、m = 2、n = 2B .2k m n ===、C .3k m n ===、D .62k m n ===、【答案】C【详解】由题知杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,则在v = 0时分别有 01F a m =,022F a m=则第一次和第二次运动中,杆从静止开始运动相同位移的时间分别为 21112x a t =,22212x a t =则n =22F B L v a m mR=−,整理有22B L v F ma R =+则可知两次运动中F —v 图像的斜率为22B L R ,则有222121212R B k R B m =⋅=⋅故选C 。
2.如图所示,水平放置的平行光滑导轨,间距为L ,左侧接有电阻R ,导体棒AB 质量为m ,电阻不计,向右运动的初速度为0v ,匀强磁场的磁感应强度为B ,方向垂直轨道平面向下,导轨足够长且电阻不计,导体棒从开始运动至停下来,下列说法正确的是( )A .导体棒AB 内有电流通过,方向是B A → B .磁场对导体棒AB 的作用力水平向右C .通过导体棒的电荷量为mv BLD .导体棒在导轨上运动的最大距离为022mv RB L 【答案】ACD【详解】A .由右手定则可知,感应电流方向为B A →,故A 正确; B .由左手定则可知,安培力的方向水平向左,故B 错误;CD .设导体棒在导轨上运动的最大距离为x ,则q It =对导体棒由动量定理可得00F t mv −⋅∆=−安 ;F BIL =安; EI R=;ΔΦΔΔBLx E t t == 解得022 mv R x B L =;0 mv q BL =故CD 正确。
高考回归复习—电磁感应之含动量定理的单杆综合题模型(word 含答案)

高考回归复习—电磁感应之含动量定理的单杆综合题模型1.如图所示,两光滑平行金属导轨置于水平面内,两导轨间距为L,左端连有阻值为R的电阻,一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B、方向竖直向下的有界匀强磁场区域。
已知金属杆质量为m,电阻也为R,以速度0v向右进入磁场区域,做减速运动,到达磁场区域右边界时速度恰好为零。
金属杆与导轨始终保持垂直且接触良好,导轨电阻忽略不计。
求:(1)金属杆运动全过程中,在电阻R上产生的热量RQ(2)金属杆运动全过程中,通过电阻R的电荷量q(3)磁场左右边界间的距离d2.如图所示,质量为m的跨接杆ab可以无摩擦地沿水平的导轨滑行,两轨间宽为L,导轨与电阻R连接,放在竖直向下的匀强磁场中,磁感强度为B。
杆从x轴原点O以大小为v0的水平初速度向右滑行,直到静止。
已知杆在整个运动过程中速度v和位移x的函数关系是:220xv v B LmR=-。
(杆及导轨的电阻均不计。
)(1)试求杆所受的安培力F随其位移x变化的函数式;(2)若杆在运动过程中水平方向只受安培力作用,请求出杆开始运动到停止运动过程中通过R的电量q;(3)若杆在运动过程中水平方向只受安培力作用,请求出杆开始运动到停止运动过程中R产生的热量Q。
3.如图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab的质量m=0.2kg,电阻r=1Ω,在导轨上距桌面h=0.2m的高处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2. 求:(1)金属杆进入磁场时,R上的电流大小;(2)整个过程中R上产生的热量.(3)整个过程中通过R的电荷量.4.如图所示,光滑的金属导轨固定在绝缘水平面上,导轨足够长,电阻不计,两轨间距为L,其左端连接一阻值为R的电阻.导轨处在竖直向下的匀强磁场中,磁感应强度大小为B,一质量为m的金属棒,放置在导轨上,其电阻为r,某时刻一水平力F垂直作用在金属棒中点,金属棒从静止开始做匀加速直线运动,已知加速度大小为a,金属棒始终与导轨接触良好.(1)从力F作用开始计时,请推导F与时间t关系式;(2)F作用时间0t后撤去,求金属棒能继续滑行的距离S.5.如图所示,在方向竖直向上、磁感应强度大小为B的匀强磁场中,有两条相互平行且相距为d的光滑固定金属导轨P1P2P3和Q1Q2Q3,两导轨间用阻值为R的电阻连接,导轨P1P2、Q1Q2的倾角均为θ,导轨P2P3、Q2Q3在同一水平面上,P2Q2⊥P2 P3,倾斜导轨和水平导轨用相切的小段光滑圆弧连接.质量为m的金属杆CD从与P2Q2处时的速度恰好达到最大,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,空气阻力、导轨和杆CD的电阻均不计,重力加速度大小为g,求:(1)杆CD到达P2Q2处的速度大小v m;(2)杆CD沿倾斜导轨下滑的过程通过电阻R的电荷量q1以及全过程中电阻R上产生的焦耳热Q;(3)杆CD沿倾斜导轨下滑的时间Δt1及其停止处到P2Q2的距离s.6.水平桌面上固定着两相距为L的平行金属导轨,导轨右端接电阻R,在导间存在宽度均为d的有界匀强磁场区域I和Ⅱ,磁感应强度为B,方向竖直向下。
2024高考物理单杆模型

高考专题:电磁感应中的单双杆模型1.常见单杆情景及解题思路单杆阻尼式单杆发电式(v0=0)含“源”电动式(v0=0)含“容”无外力充电式含“容”有外力充电式(v0=0)1.如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B。
电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。
现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD.为保持MN匀速运动,需对其施加的拉力大小为B 2L2v R2.如图所示,平行金属导轨与水平面成θ角,用导线与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面。
有一导体棒ab,质量为m,两导轨间距为L,导体棒的电阻与固定电阻R1和R2的阻值相等,都等于R,导体棒与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,有( )A.导体棒中感应电流的方向由a到bB.导体棒所受安培力的大小为B 2L2v 3RC.导体棒两端的电压为BLv3D.导体棒动能的减少量等于其重力势能的增加量与电路上产生的电热之和3.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。
一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。
在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。
将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10m/s2,sin37°=0.6)( )A.2.5 m/s,1 WB.5 m/s,1 WC.7.5 m/s,9 WD.15 m/s,9 W4.如图所示,足够长的两平行光滑水平直导轨的间距为L,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B、方向竖直向上的匀强磁场;导轨左端接有电容为C的电容器、开关S和定值电阻R;质量为m的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r。
2025高考物理总复习电磁感应中的“杆—轨道”模型

解析 设导轨间距为 L,释放后电容器充电,电路中有充电电 流 i,棒受到向上的安培力,设瞬时加速度为 a,根据牛顿第二 定律得 mg-iLB=ma,i=ΔΔQt =C·ΔΔtU=C·BΔLtΔv=CBLa,由此 得 mg-BL·CBLa=ma,解得 a=m+mBg2L2C,可见棒的加速度 不变,做匀加速直线运动,v=at,Uab=BLv=BLat,故 A、C 错误;Ek=21mv2=12m×2ax,故 B 正确;q=CUab=BCLat,与时间成正比,而 棒做匀加速运动,故与位移不是正比关系,故 D 错误。
加速运动,稳定时,两杆的加速 变加速运动,稳定时,两杆的
度均为零,以相等的速度做匀速 加速度均为零,两杆的速度之
运动
比为1∶2
2.初速度为零,一杆受到恒定水平外力 光滑的平行导轨
不光滑平行导轨
示 意 质量m1=m2 图 电阻r1=r2
长度L1=L2
摩擦力Ff1=Ff2 质量m1=m2 电阻r1=r2 长度L1=L2
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL
当 a=0 时,v 最大, F-F
vm=BF2RL2
安=ma,a=m+BF2L2C,所以杆
以恒定的加速度做匀加速运动
第十一章 电磁感应
增分微点10 电磁感应中的“杆—轨道”模型
一、“单杆+导轨”模型 “单杆+导轨”模型的四种典型情况(不计单杆的电阻)
v0≠0、 轨道水平光滑
示 意 图
v0=0、轨道水平光滑
运 动 分
导体杆以速度 v 切割磁
高考回归复习—电磁感应之特殊的单杆模型 含解析

高考回归复习—电磁感应之特殊的单杆模型1.如图所示,两个固定的光滑四分之一圆弧轨道PM QN 、所在的竖直平面平行,且PQ 连线与轨道所在平面垂直,轨道间距为L ,圆弧所在圆的半径为r ,轨道下端M N 、处切线水平,轨道上端P Q 、连接有阻值为R 的定值电阻,轨道处在辐向的磁场中,磁场方向垂直轨道所在圆弧面,圆弧面上磁感应强度大小处处为B ,一根导体棒放在轨道的上端P Q 、处并由静止释放,导体棒向下运动过程中与轨道接触良好,且始终与轨道垂直,导体棒的质量为m ,导体棒和轨道电阻均不计,重力加速度为g 。
若导体棒从PQ 运动到MN 过程中,定值电阻R 上产生的热量为E ,则导体棒从静止运动到MN 的过程中,下列说法正确的是( )A .电阻R 中的电流方向为从a 到bB .当导体棒的速度为v 时,电阻R 的瞬时功率为222B L vRC .通过电阻R 的电量为2BrLRπ D .在MN 位置时,对轨道的压力大小为3E mg r-2.如图所示,两根半径r 为1m 的14圆弧轨道间距为L =0.5m ,其顶端a 、b 与圆心处等高,轨道光滑且电阻不计,在其上端连有一阻值为R =4Ω的电阻,整个装置处于辐向磁场中,圆弧轨道所在处的磁感应强度大小均为B =1T 。
将一根长度稍大于L 、质量为m =0.2kg 、电阻为R 0=6Ω的金属棒从轨道顶端ab 处由静止释放.已知当金属棒到达如图所示的cd 位置(金属棒与轨道圆心连线和水平面夹角为60︒)时,金属棒的速度达到最大;当金属棒到达轨道底端ef 时,对轨道的压力为3N ,g 取210m/s 。
求:(1)当金属棒的速度最大时,流经电阻R的电流大小和方向;(2)金属棒滑到轨道底端的整个过程中流经电阻R的电量;(3)金属棒滑到轨道底端的整个过程中电阻R上产生的热量。
3.如图所示,在竖直向下的恒定匀强磁场B=2T中有一光滑绝缘的四分之一圆轨道,一质量m=3kg的金属导体MN长度为L=0.5m,垂直于轨道横截面水平放置,在导体中通入电流I,使导体在安培力的作用下以恒定的速率v=1m/s从A点运动到C点,g=10m/s2求:(1)电流方向;(2)当金属导体所在位置的轨道半径与竖直方向的夹角为θ=30︒时,求电流的大小;(3)当金属导体所在位置的轨道半径与竖直方向的夹角为θ=60︒时,求安培力的瞬时功率P。
单杆模型、双杆模型 高三物理二轮复习新高考版(含解析)

单杆模型、双杆模型-名校高中物理精品1.电磁炮是利用电磁力对弹体加速的新型武器,具有速度快,效率高等优点。
其原理结构可简化为如图所示的模型:两根无限长、光滑的平行金属轨道MN、PQ固定在水平面内,相当于电磁炮弹体的导体棒ab,垂直于MN、PQ放在轨道上,与轨道接触良好,整个装置处于竖直向下的匀强磁场中,电磁炮电源的电压能自行调节,用以保证电磁炮弹体在轨道上由静止开始做匀加速运动最终发射出去,电源内阻一定,不计空气阻力,轨道的电阻不计。
导体棒在轨道上运动过程中电源电动势()。
A.随时间均匀增大,但不成正比增大B.与时间成正比增大C.随时间均匀减小D.与时间成反比减小2.如图所示,两条电阻不计的平行光滑导轨竖直放置,整个空间存在水平向里的匀强磁场,磁场的磁感应强度大小B=0.5 T。
导体棒ab、cd紧贴导轨水平放置,两棒长度均为0.2 m,电阻均为0.1 Ω,重力分别为0.1 N和0.2 N。
现用力向上拉动导体棒ab,使之匀速上升,导体棒ab、cd与导轨接触良好,cd棒始终静止不动,在ab棒上升时()。
A.ab棒克服安培力做的功都转化为ab棒的焦耳热B.拉力对ab棒所做的功都转化为ab棒的重力势能和ab棒的焦耳热C.在2 s内,ab棒中产生的电能为0.8 JD.在2 s内,拉力做的功为1.6 J3.如图所示,间距为L的光滑平行金属导轨平面与水平面之间的夹角θ=37°,导轨电阻不计。
正方形区域abcd内匀强磁场的磁感应强度大小为B,方向垂直于导轨平面向上。
甲、乙两金属杆电阻相同,质量均为m,垂直于导轨放置。
起初甲金属杆位于磁场上边界ab处,乙位于甲的上方,与甲间距也为L。
现将两金属杆同时由静止释放,从此刻起,对甲金属杆施加沿导轨的拉力,使其始终以大小为a=35g的加速度向下做匀加速运动。
已知乙金属杆刚进入磁场时做匀速运动,sin 37°=0.6,cos 37°=0.8,重力加速度为g,从乙金属杆进入磁场直至其离开磁场的过程中()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考二轮专题复习之模型讲解电磁场中的单杆模型[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
[模型讲解]一、单杆在磁场中匀速运动例1.如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。
导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。
图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。
由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。
二、单杠在磁场中匀变速运动例2.如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。
一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。
该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
ab 棒的电阻为R =0.10Ω,其他各部分电阻均不计。
开始时,磁感应强度B T 0050=.。
图2(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右的拉力,使它做匀加速直线运动。
此拉力F 的大小随时间t 变化关系如图2乙所示。
求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。
(2)若从t =0开始,使磁感应强度的大小从B 0开始使其以∆∆B t=0.20T/s 的变化率均匀增加。
求经过多长时间ab 棒开始滑动?此时通过ab 棒的电流大小和方向如何?(ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等)解析:(1)当t =0时,F N F F ma f 113=-=,当t =2s 时,F 2=8NF F B B Lat R L ma f 200--= 联立以上式得:a F F R B L tm s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:B B t L RL F f ∆∆2= 则B T B B B tt t s ==+=41750,,∆∆.三、单杆在磁场中变速运动例3.如图3所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻。
匀速磁场方向与导轨平面垂直。
质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。
图3(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律mg mg ma sin cos θμθ-= ①由①式解得 a m s =42/ ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡: mg mg F sin cos θμθ--=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率Fv P = ④由③、④两式解得:v m s =10/ ⑤(3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为BI vBl R = ⑥ P I R =2 ⑦由⑥、⑦两式解得 B PR vl T ==04. ⑧ 磁场方向垂直导轨平面向上。
四、变杆问题例4.如图4所示,边长为L =2m 的正方形导线框ABCD 和一金属棒MN 由粗细相同的同种材料制成,每米长电阻为R 0=1Ω/m ,以导线框两条对角线交点O 为圆心,半径r =0.5m 的匀强磁场区域的磁感应强度为B =0.5T ,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN 与导线框接触良好且与对角线AC 平行放置于导线框上。
若棒以v =4m/s 的速度沿垂直于AC 方向向右匀速运动,当运动至AC 位置时,求(计算结果保留二位有效数字):图4(1)棒MN 上通过的电流强度大小和方向;(2)棒MN 所受安培力的大小和方向。
解析:(1)棒MN 运动至AC 位置时,棒上感应电动势为E B r v =2· 线路总电阻R L L R =+()20。
MN 棒上的电流I E R= 将数值代入上述式子可得:I =0.41A ,电流方向:N →M(2)棒MN 所受的安培力:F B rI N F A A ==2021.,方向垂直AC 向左。
说明:要特别注意公式E =BLv 中的L 为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。
[模型要点](1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t =∆Φ∆或E BLv =求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
[误区点拨]正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。
所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。
[模型演练]1.如图5所示,足够长金属导轨MN 和PQ 与R 相连,平行地放在水平桌面上。
质量为m 的金属杆ab 可以无摩擦地沿导轨运动。
导轨与ab 杆的电阻不计,导轨宽度为L ,磁感应强度为B 的匀强磁场垂直穿过整个导轨平面。
现给金属杆ab 一个瞬时冲量I 0,使ab 杆向右滑行。
图5(1)回路最大电流是多少?(2)当滑行过程中电阻上产生的热量为Q 时,杆ab 的加速度多大?(3)杆ab 从开始运动到停下共滑行了多少距离?答案:(1)由动量定理I mv 000=-得v I m00= 由题可知金属杆作减速运动,刚开始有最大速度时有最大E BLv m =0,所以回路最大电流: I BLv R BLI mRm ==00 (2)设此时杆的速度为v ,由动能定理有:W mv mv A =-1212202而Q =-W A 解之 v I m Q m =-0222 由牛顿第二定律F BIL ma A ==及闭合电路欧姆定律I BLv R=得 a B L v mR B L mRI m Q m ==-22220222 (3)对全过程应用动量定理有:-=-∑BI L t I i ·∆00而I t q i ·∆∑=所以有q I BL =0又q I t E R t R t t R BLx R=====·∆∆∆Φ∆∆∆Φ 其中x 为杆滑行的距离所以有x I R B L=022。
2.如图6所示,光滑平行的水平金属导轨MNPQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO O O 11''矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B 。
一质量为m ,电阻为r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。
现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。
求:图6(1)棒ab 在离开磁场右边界时的速度;(2)棒ab 通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab 棒在磁场中可能的运动情况。
解析:(1)ab 棒离开磁场右边界前做匀速运动,速度为v m ,则有:E Blv I E R rm ==+, 对ab 棒F BIl -=0,解得v F R r B l m =+()22 (2)由能量守恒可得:F d d W mv m ()0212+=+电 解得:W F d d mF R r B l电=+-+()()022442 (3)设棒刚进入磁场时速度为v 由:F d mv v Fd m·可得:020122== 棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论: ①若2022Fd m F R r B l=+()(或F d B l m R r =+20442()),则棒做匀速直线运动; ②若2022Fd m F R r B l<+()(或F d B l m R r >+20442()),则棒先加速后匀速; ③若2022Fd m F R r B l>+()(或F d B l m R r <+20442()),则棒先减速后匀速。