全等三角形及其性质PPT教学课件

合集下载

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

全等三角形课件ppt

全等三角形课件ppt

与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等

04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。

三角形全等的判定ppt课件

三角形全等的判定ppt课件


作图区

例题解析
例1 已知:如图,在四边形ABCD中,AB=CD,AD=CB。
求证:∠A=∠C
D
要证明∠A=∠C,需先证明△ABD和△CDB
全等, 然后由全等三角形的性质定理得到结论.A
证明:
在△ABD和△CDB中, AB=CD (已知) AD=CB (已知) BD=DB (公共边)
∴△ABD≌△CDB (SSS)
B E CF
__AC_=DF ( 已知 )
BC=_E_F (已证 ) ∴△ABC≌△DEFS(SS )
新知探究
如图,在∠CAB中,AF=DE, DF=DE. 求证:AD是∠CAB的角平分线.
C
1 2
A
D B
例题解析
已知∠BAC,用直尺和圆规∠BAC的角平分线AD
C
C
作法:
A
D
B
A
B
1、以点A为圆心,适当的长为半径,与角的两边分别交于E、F两点;
注意几何语言规范
2.三角形具有稳定性。房屋的人字架、大桥的钢梁、 起重机的支架、自行车的车座等,采用三角形结构, 起到稳固的作用。
课堂小结
内容
有三边对应相等的 两个三角形全等
边 边边
应用
思路分析
结合图形找隐含条件和 现有条件,证准备条件
书写步骤 四个步骤
注意
1. 说明两三角形全等所需的条 件应按对应边的顺序书写. 2. 结论中所出现的边必须在所 证明的两个三角形中.
A
D
C
B
E
图1
图2
新知探究
如图 ,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转 动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如 果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形 状、大小就完全确定.

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

全等三角形ppt课件

全等三角形ppt课件

斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用

《全等三角形》数学教学PPT课件(6篇)

《全等三角形》数学教学PPT课件(6篇)
加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text

1全等三角形的概念与性质PPT课件

1全等三角形的概念与性质PPT课件

A E
两个全等的三角形经过图形运动 后一定重合,相互重合的顶点叫
C 做对应顶点,相互重合的边叫做 对应边,相互重合的角叫做对应 角.
D
两个三角形全等记作 F △ABC≌△DEF
其中: 对应顶点有 对应边有 对应角有
符号“≌”表示全等,读作 “全等于”
注意点:记两个全等三角形时,应该把表示 对应顶点的字母写在对应位置上.
巩固练习(1):下图中给出的每对三角形都是全等三角形,用符 号表示各对全等三角形,并指出其对应顶点、对应边和对应角
△ABC≌ △FDE 对应顶点有:
对应边有: 对应角有:
△GOH≌ △NOM 对应顶点有:
对应边有: 对应角有:
△SPQ≌ △SRT 对应顶点有:
对应边有: 对应角有:
全等三角形性质的发现:
A
E
BC
D
你收获了什么知识? 你做几何题的方法? 你认为哪些地方是特别要注意的?
作业
完成导学单
14.3(1)全等三角形的概念与性质
思考:下面的图形中,形状和大小完全相同 的图形有哪几对?
1
2
3
4
5
6
7
8
9
10
答:①和⑥,③和⑦,④和⑨
判断两个图形的形状和大小是否完全相同,可以通过运动 把两个图形叠合在一起,看它们是否重合 .
平移
旋转
翻折
能够重合的Leabharlann 个图形叫做全等形.B两个三角形是全等形,就说它们 是全等三角形.
A
60° 2cm
70°
B
C
D
? ?

F
E
x y z 巩固练习(2):如图,已知△ABC≌△DEF,求图中的 、 、

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

全等三角形的概念与性质PPT课件

全等三角形的概念与性质PPT课件

结合2,3两题,说说你是怎样寻找这些对应元素的。 ⑴写出图中相等的线段,相等的角;
相等
全等三角形的对应角有什么关系? 记作: ∆ABC≌∆A1B1C1
相等
全等三角形的性质
全等三角形的对应边相等,对应角相等。
∵△ABC≌ △DFE(已知) ∴ AB=DF, BC=FE, AC=DE ( 全等三角形的对应边相等 ) ∴ ∠ A= ∠ D, ∠ B= ∠ F , ∠ C= ∠ E
(1) △ ABE ≌ △ ACF
(2)△ BCE ≌ △ CBF (3)△ BOF ≌ △ COE
5. △ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗? 请与同伴交流并写出来.
A
D
B
C E
F
感谢观看
O B
③ D
结合2,3两题,说说你是怎样寻找这些对 应元素的。 (1)对应角所对的边是对应边;对应边 所对的角是对应角。
(2)有公共边的,公共边是对应边;有 公共角的,公共角是对应角。
(3)相等的边是
1、如图△ ABD ≌ △CDB,若AB=4,AD=5,BD=6,则BC=
全等三角形的对应边有什么关系? 图对指结即 A●(∴写对CA中应出合∠重出应=BAB三 角 下 2合 全 角=,EA3D角所列的等所D两F形对全顶三对=,题B∠的的等点角的C,C位边三叫形边=说AF置是角对的是EE说),是对形应符对A你怎应的顶号应C是=样边对点表边D怎变应示..E样化边,并寻的和指找?对出这应它些角们对的应对元应素顶的点。、对应边、对应角。
其它的对应边有:______ A
E
对应角有:__________
∠BAD=∠CAE吗?为什么?

全等三角形及其性质课件

全等三角形及其性质课件

边边边(SSS)证明方法
总结词
三边对应相等的两个三角形全 等
详细描述
如果两个三角形的三组对应边 相等,则这两个三角形全等。 这是全等三角形最直接的证明 方法。
适用情况
当已知三角形的三边长度,并 且需要证明另外两个三角形全 等时,可以考虑使用此方法。
注意事项
在应用此方法时,需要确保所 比较的边确实是对应边。
个三角形全等。
进阶练习题
01
02
03
04Leabharlann 总结词:提升解题技巧1. 利用全等三角形的性 质,证明两个三角形全 等。
2. 通过添加辅助线,证 明两个三角形全等。
3. 在给定条件下,寻找 两个三角形的相等元素 并证明其全等。
综合练习题
总结词:综合运用知识
2. 通过构建全等三角形解决实际问题,如测量、几何作 图等。
全等三角形的判定条件
总结词
SAS、ASA、SSS、AAS、HL是全等三角形的五种判定 条件。
详细描述
SAS(Side-Angle-Side)判定条件指的是两个三角形 如果两边和它们之间的夹角相等,则这两个三角形全等 ;ASA(Angle-Side-Angle)判定条件是指两个三角 形如果两角和它们之间的夹边相等,则这两个三角形全 等;SSS(Side-Side-Side)判定条件是指三个边分别 相等的两个三角形全等;AAS(Angle-Angle-Side) 判定条件是指两个角和其中一个角的对边分别相等的两 个三角形全等;HL(Hypotenuse-Leg)判定条件是 指直角三角形中斜边和一个直角边相等,则这两个直角 三角形全等。这些判定条件是证明两个三角形是否全等 的重要依据,也是解决几何问题的重要工具。
02 三角形的基本性质

全等三角形的判定PPT课件共34张

全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。

全等三角形及性质PPT课件

全等三角形及性质PPT课件
∠D 的度数为 100° ;
A
D
B
CE
F
第9页/共17页
全等三角形的性质的运用
例 已知:如图,△ABC ≌△DEF. (3)若∠A =100°,∠B =30°,求∠F 的度数.
解:∵ ∠A =100°,∠B =30°,
∴ ∠C =180°-∠A -∠B
=50°. ∵ △DEF ≌△ABC ,
B
∴ ∠F =∠C =50°
对应关系? 点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、B
C
边AC 与DF 重合,称为对应边; D
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角. E
F
第4页/共17页
全等形、全等三角形及其有关概念
追问2 你能用符号表示出这两个全等三角 形吗?
BC 与 DA 是对应边,则下列结论错误的是
( C ).
A
(A)∠ BAC =∠ DCA ;
(B)AB //DC ;
B
(C)∠ BCA =∠ DCA ;
D
(D)BC //DA .
C
第13页/共17页
课堂练习
练习4 如图,△EFG ≌△NMH,∠F 和∠M 是对 应角.
(1)FG 与MH 平行吗?为什么?
问题3 请同学用语言归纳出问题1 和问题2 中两个图形有何关系?
全等形的定义: 能够完全重合的两个图形叫做全等形. 全等三角形的定义: 能够完全重合的两个三角形叫做全等三角 形.
第3页/共17页
全等形、全等三角形及其有关概念
追问1 请同学们将问题2 中的两个三角形分别
标为△ABC、△DEF,观察这两个三角形有何

全等三角形及性质PPT课件

全等三角形及性质PPT课件

角角边定理
两角和一边对应相等的两个三角 形全等,简称AAS。
若两个三角形有两个角相等,且 其中一个角的对边也相等,则这
两个三角形全等。
举例:若△ABC和△DEF中, ∠A=∠D,∠B=∠E,BC=EF,则
△ABC≌△DEF。
04
全等三角形与相似三角形关系
相似三角形定义及性质
定义:两个三角形如果它们 的对应角相等,则称这两个
行推导。
全等三角形在几何证明中作用
01
02
03
04
证明线段相等
通过全等三角形的对应边相等 来证明两条线段相等。
证明角相等
通过全等三角形的对应角相等 来证明两个角相等。
证明垂直关系
通过全等三角形的性质来证明 两条直线垂直。
证明平行关系
通过全等三角形的性质来证明 两条直线平行。
典型例题解析
例题1
已知△ABC和△DEF全等,且AB=DE,BC=EF,∠B=∠E。 求证:AC=DF。
HL全等(直角三角形)
在直角三角形中,斜边和一条直 角边分别相等的两个三角形全等 。
典型例题解析
解析
根据SAS全等的判定方法,已知两边和夹角分别相等,因 此可以判定△ABC和△DEF全等。
例2
已知△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB = 6cm,求△DEB的周长。
边角边判定
如果两个多边形的一组对 应边和它们之间的对应角 都相等,则它们是全等的 。
角边角判定
如果两个多边形的一组对 应角和它们之间的夹边都 相等,则它们是全等的。
典型例题解析
1. 例题一
已知两个四边形ABCD和EFGH,其中AB=EF, BC=FG, CD=GH, DA=HE,且∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H。求证:四边形ABCD与四边形EFGH全等。

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)

13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.

14.2三角形全等的判定第6课时灵活运用全等三角形的性质和判定定理 课件(共21张PPT)

14.2三角形全等的判定第6课时灵活运用全等三角形的性质和判定定理  课件(共21张PPT)

在△ABD和△A′B′D′中 ∠B=∠B′(已证) ∠ADB=∠A′D′B′(已证) AB=A′B′(已证) ∴△ABD≌△A′B′D′(AAS) ∴AD=A′D′(全等三角形的对应边相等)
本题还有更简 便的证法吗?
思考
全等三角形对应边上的中线、对应角的平分线又有什么关系呢?你 能说明其中的道理吗?
∴AE=AF.
2. 如图,已知 CA = CB,AD = BD, M,N 分别是 CA,CB 的中点.
求证:DM = DN.
C
证明:连接 CD,如图所示.
在△CAD 与△CBD 中, CA = CB , AD = BD , CD = CD ,
M
N
D
A
B
∴△CAD≌△CBD (SSS).
∴∠A =∠B. 又 ∵ M,N 分别是 CA,CB 的中点, ∴ AM = BN. 在△AMD 与△BND 中,
2.我们学习了几种证明两个三角形全等的方法?
边角边(SAS)
角边角(ASA)
边边边(SSS)
角角边(AAS)
斜边、直角边(HL)(仅适用于直角三角形)
新知学习 全等三角形的性质和判定定理的综合运用
例1 已知:如图,AB=CD,BC=DA,E,F是AC上的两点,且AE=CF. 求证:BF=DE.
分析:本题需要两次证明三角形全等,首先证 明△ABC≌△CDA(SSS),得出∠1=∠2,再由 “边角边”定理证明△DAE≌△BCF,最后证 出BF=DE.
灵活运用全等 三角形的性质和判定定理
八年级上
沪科版
1 学习目标

2 新课引入

3 新知学习
4 课堂小结
学习目标
1.掌握全等三角形的性质和判定定理. 重点 2.灵活运用全等三角形的性质和判定定理解决相关问题.

三角形全等的判定ppt课件

三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)

全等三角形的定义与性质ppt课件

全等三角形的定义与性质ppt课件
B
C E
D A
15
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
• 小结提高
1、回忆这节课,学习了全等三角形的哪些知识? 全等三角形的概念、性质、表示方法、对应写法等. 2、找全等三角形对应边、对应角的方法.
注意:书写全等式时要求把对应顶点字母放在对应
的位置上。
A
E
B
CF
D
△ABC≌△DEF △ABC≌△EFD
5
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
想一想:能否根据下列全等式
说出两个三角形的对应边和对应角
A、大(小)边对应大(小)边, 大(小)角对应大(小)角.
B、公共边是对应边,公共角是对应角,记住哟!
对顶角也是对应角。 C、对应边所对的角是对应角,
对应角所对的边是对应边.
作业:P95 第2、3、4题
16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
9
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
C
A

C

A
BA
B B
如图△DABD≌△ABC
D
⑴AD的对应边是 AC ;AB的对应边是 AB
⑵∠DAB的对应角是 ∠CAB
小结:有公共边的,公共边也是对应边.

全等三角形ppt课件

全等三角形ppt课件

其他领域的应用在工程领源自中,全等三角形可用于解 决一些复杂的几何问题,例如机构设 计、零件配合等。
在物理学中,全等三角形可用于分析 光的反射、折射等现象,以及解决一 些与角度、长度相关的物理问题。
2024/1/25
在地理学和地质学中,全等三角形可 用于测量地形高度、计算地层厚度等 。
18
05
全等三角形拓展知识
误区二
忽视三角形的边长和角度的对应关系。
2024/1/25
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
6
02
全等三角形证明方法
2024/1/25
12
求解角度大小问题
利用全等三角形对应角相等的 性质,通过构造全等三角形来 求解角度大小。
2024/1/25
在复杂图形中,通过寻找或构 造全等三角形,将问题转化为 简单的角度计算。
利用全等三角形的性质进行角 度的平移、旋转等操作,以简 化问题并求解角度大小。
13
判定图形形状问题
利用全等三角形的性质来判断图 形的形状,例如通过证明两个三 角形全等来证明四边形是平行四
7
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
用于证明两个三角形全等。
2024/1/25
示例:在△ABC和△DEF中,如果AB=DE ,BC=EF,∠B=∠E,则△ABC≌△DEF。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)如果“两边及一角”条件中的角是两边的夹 角,比如三角形两边分别为2.5cm,3.5cm,它们 所夹的角为40° ,你能画出这个三角形吗?你画 的三角形与同伴画的一定全等吗?
FC
2.5cm
40°
AD
3.5cm
EB
(2)已知△ABC是任意一个三角形, 画△A ′B′C ′使∠A ′ = ∠A, A ′B ′ =AB, A ′ C ′ =AC.
∴△ABD≌△ACE(SAS)
∴∠B=∠C(全等三角形
对应角相等)
B
A
E
D
B
C
A
A
DE C
如图,∠B=∠E,AB=EF BD=EC,那么△ABC与 △FED全等吗?为什么?
AC∥FD吗?为什么?
解:全等。∵BD=EC(已知) ∴BD-CD=EC-CD。 即BC=ED
在△ABC与△FED中
AB=EF( 已 知 ) B=C( 已 知 ) BC=ED( 已 证 )
证明: 在△ACB 和 △ADB中
AC = A D
A
B
∠CAB=∠DAB
A B = A B (公共边)
D ∴△ACB≌△ADB (SAS)
证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。
(注意把表示对应顶点的字母写在对应的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起.
3.写出结论.每步要有推理的依据.
△ACB≌ △ADB
S
A
A
B AB=AB
∠CAB= ∠ DAB
S AC=AD
D
.如图,要证△ACB≌ △ADB ,至少选用哪些条件可以
证得△ACB≌ △ADB
△ACB≌ △ADB
C
S
A
A
B AB=AB
∠CBA= ∠ DBA
D
S BC=BD
课堂小结
1.边角边公理:有两边和它们的___夹___角对应相等的两个三角形全等(SAS)
5 cm
30º


30º


分别找出各题中的全等三角形
A 40°
B
A
B
DC
D
C
(2)
F
△ADC≌△CBA (SAS)
(1)
E
△ABC≌△EFD
根据“SAS”
如图,已知AB=AC,AD=AE。
求证:∠B=∠C 证明:在△ABD和△ACE中
AB=AC( 已 知 ) A=A( 公 共 角 ) AD=AE( 已 知 )
练习三
.若AB=AC,则添加什么条件可得△ABD≌
△ACD?
A
△ABD≌ △ACD
S
AALeabharlann =AD∠BAD= ∠CAD
B S AB=AC
D C
练习四
.已知如图,点D 在AB上,点E在AC上,BE与CD交于点O,
要证△ABE≌ △ACD需添加什么条件? △ABE≌ △ACD
S AB=AC
A ∠A= ∠ A
S AD=AE
A
D
E
O
B
C
.已知如图,点D 在AB上,点E在AC上,BE与CD交于点O,
要证△BOD≌ △COE需添加什么条件? △BOD≌ △COE
S
A
OB=OC
∠BOD= ∠ COE
S OD=OE
A
D
E
O
B
C
练习五
.如图,要证△ACB≌ △ADB ,至少选用哪些条件可以
证得△ACB≌ △ADB C
AC=DC
∠ACB=∠DCE
A
B
BC=EC
C
△ACB≌△DCE(SAS)
E
D
AB=DE
A
在下列推理中填写需要补充的条件,使结论成立: (1)如图,在△AOB和△DOC中
AO=DO(已知) ∠_A__O_B__=_∠__D__O_C__(对顶角相等)
BO=CO(已知)
B
∴ △AOB≌△DOC(SAS )
(2)如图,在△AEC和△ADB中,
_A_E__=A__D__(已知)
∠A= ∠A( 公共角)
_A_C___=_A__B_(已知)
A
∴ △AEC≌△ADB(SAS )
D E
D O
C
C
B
例题 解析
已知: 如图,AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB.
C
证明:
△ACB ≌ △ADB A
C
C′ N
画法:
A
B
A′
1. 画∠MA′ N = ∠A
B′ M
2. 在射线 A M ,A N 上分别取 A ′B ′ = AB , A ′C ′= AC .
3. 连接 B ′C ′ ,得 ∆A ′B ′C ′.
边角边定理
有两边和它们的夹角对应相等的 两个三角形全等.
可以简写成 “边角边” 或“ SAS ”
1.运动 物体在空间中所处的位置发生变化,这样的运动称为 机械运动,简称 运动 . 宇宙中的一切物体都在不停的运动,无论是巨大的天 体,还是微小的原子、分子,运动是 绝对 的,静止 是 相对 的.
B
这两个条件够吗?
D
例题 解析
已知: 如图,AC=AD ,∠CAB=∠DAB.
求证: △ACB ≌ △ADB.
它既是△ACB
C
看看线 段AB
的一条边,
A
B
△ACB 和△ADB的 公共边
又是△ADB D
的一条边
例题 已知: 如图,AC=AD ,∠CAB=∠DAB. 解析 求证: △ACB ≌ △ADB. C
S ——边 A——角
以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40° ,情况 又怎样?动手画一画,你发现了什么?
C
F
40°
A
B
40°
D
E
结论:两边及其一边所对的角相等,两个三角 形不一定全等
练习一 1.在下列图中找出全等三角形,
并把它们用符号写出来.
30º


ⅣⅣ ⅢⅢ
∴△ABC≌△FED(SAS)
F
B1
C 3
42
D
E
A
∴∠1=∠2( ) ∴∠3=∠4( ) ∴AC∥FD(内错角相等,两直线平行
如图线段AB是一个池塘的长度,
现在小想明测的量设这计个方池案塘:的先长在度池,塘在旁取一个能直接到达A和B处的点C,连结AC并 延水长 上至测D量点不,方使便A,C你=D有C什,么连好结的BC并延长至E点,使BC=EC,连结CD,用米尺 测方出 法D较E方的便长地,把这池个塘长的度长就度等测于量A,B两点的距离。请你说明理由。 出来吗?想想看。
2.边角边公理的发现过程所用到的数学方法(包括画 图、猜想、分析、归纳等.)
3.边角边公理的应用中所用到的数学方法: 证明线段(或角相等) 转化 证明线段(或角)所在的
两个三角形全等.
用公理证明两个三角形全等需注意
1. 证明两个三角形全等所需的条件应按对应边、对应角、对应边顺序书写. 2. 公理中所出现的边与角必须在所证明的两个三角形中. 3. 公理中涉及的角必须是两边的夹角.
A
F
B
C
D
E
思考题:有两边和其中一边的对角对 应相等的两个三角形是否全等。
第一章 运动的描述
第一节 认识运动
目标导读 1.理解质点的概念,知道物体在什么情况下 可以看成质点,知道它是一种科学抽象.2.知道参考系 的概念,知道对同一物体选择不同的参考系时,其运 动情况的观察结果是不同的.
预习梳理
相关文档
最新文档