第八章 假设检验.ppt
合集下载
第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。
第八讲 单总体假设检验
0
❖ 双边:
0 x
❖ 3)统计量
z
0
❖ 4)拒绝域
n
z z ❖ 单边: 右~ z 左~ z
z z ❖ 双边: z 或 z
2
2
(二)方差未知
❖
1)原假设
H 0 :
0
❖ 2)备择假设 H 1
❖ 单边: 或
0
0
❖ 双边:
❖
3)统计量
0
x
x
t
0
0 ~ tn 1
效 。 0.05
❖ 2、原有资料:某市居民彩电拥有率为60%, 现抽样100户,彩电拥有率为62%,问,能否
认为彩电拥有率有所增长? 0.05
第二节 小样本假设检验
❖ 一、单正态总体均值检验 ❖ (一)方差已知:
H ❖ 1)原假设 0 : 0
❖ 2)备择假设 H 1
❖ 单边:
或
0
水稻亩产标准差不超过去年数值75公斤?
x
s
❖ 4)拒绝域
n
❖ 单边: 右~ t t
❖ 双边: t t 或 2
左~ t t
t t 2
例:
❖ 1、某厂职工去年月收入服从正态分布,平均为570 元,标准差为8元,今年实行新的分配政策,抽样 10人,结果如下:575 560 565 580 585 586 575 582 570 570。问平均收入是否所有明显改变?
❖ 2、某产品重量服从正态0.0分5布,现随机抽取6件,测
得重量为(公斤):36.4 38.2 36.6 36.9 37.8 37.6。能否认为该产品的平均重量为37公斤?
0.05
二、单正态总体方差检验
❖ 检验步骤:
《假设检验》课件
方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。
《假设检验的概念》PPT课件
假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行
《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?
第八章 假设检验 (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?
第八章假设检验
于是可以选定一个适当的正数k,
若过分大,则有理由 怀疑H0的正确性
7/51
§8.1 假设检验
当观察值 x 满足 x 0
此即假定H0正确 时的小概率事件
/ n
k时, 拒绝假设 H0 ,
反之, 当观察值 x 满足
x 0
/ n
k时, 接受假设 H0 .
如何选取k呢,先看以下事实: 由于作出决策的依据是一个样本,当实际 上H0为真时,仍可能作出拒绝H0的决策,这种 可能性是无法消除的,这是一种错误。
24/51
第八章 假设检验
§8.1 假设检验 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验
§8.6 分布拟合检验
25/51
§8.2 正态总体均值的假设检验
假设检验是针对弃真这一可能犯的错误人为设定一个界限, 如果在这个界限内,认为原假设成立,否则的话,由于显 著性水平取得很小,表明小概率事件发生,根据实际推断 原理,原假设不成立。 尽管也可能犯第II类取伪的错误,这时尽管总体的性质发 生了改变但没有发现,往往影响较小。 正态总体均值的检验分为三种情况
/ n
若|z|= X 0 k,则称 x 与μ0的差异是显著的,以至
于小概率事件发生了,这时拒绝H0, 否则则称 x与μ0的差异是不显著的,这时接受H0, 选定的数α称为显著性水平,在α下对显著性判断
X 0 统计量Z= 称为检验统计量 / n
13/51
/ n
§8.1 假设检验
假设检验的相关定义: 像上例中的假设检验问题可叙述成: “在显著性水平α下,检验假设H0:μ=μ0,H1:μ≠μ0” 或“在显著性水平α下,针对H1检验H0”
例如:提出总体期望服从泊松分布的假设,然后进行判断 提出正态总体期望为μ0的假设,然后进行判断
若过分大,则有理由 怀疑H0的正确性
7/51
§8.1 假设检验
当观察值 x 满足 x 0
此即假定H0正确 时的小概率事件
/ n
k时, 拒绝假设 H0 ,
反之, 当观察值 x 满足
x 0
/ n
k时, 接受假设 H0 .
如何选取k呢,先看以下事实: 由于作出决策的依据是一个样本,当实际 上H0为真时,仍可能作出拒绝H0的决策,这种 可能性是无法消除的,这是一种错误。
24/51
第八章 假设检验
§8.1 假设检验 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验
§8.6 分布拟合检验
25/51
§8.2 正态总体均值的假设检验
假设检验是针对弃真这一可能犯的错误人为设定一个界限, 如果在这个界限内,认为原假设成立,否则的话,由于显 著性水平取得很小,表明小概率事件发生,根据实际推断 原理,原假设不成立。 尽管也可能犯第II类取伪的错误,这时尽管总体的性质发 生了改变但没有发现,往往影响较小。 正态总体均值的检验分为三种情况
/ n
若|z|= X 0 k,则称 x 与μ0的差异是显著的,以至
于小概率事件发生了,这时拒绝H0, 否则则称 x与μ0的差异是不显著的,这时接受H0, 选定的数α称为显著性水平,在α下对显著性判断
X 0 统计量Z= 称为检验统计量 / n
13/51
/ n
§8.1 假设检验
假设检验的相关定义: 像上例中的假设检验问题可叙述成: “在显著性水平α下,检验假设H0:μ=μ0,H1:μ≠μ0” 或“在显著性水平α下,针对H1检验H0”
例如:提出总体期望服从泊松分布的假设,然后进行判断 提出正态总体期望为μ0的假设,然后进行判断
假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验
假设检验的基本原理
怎样提出假设? 怎样做出决策? 怎样表述决策结果?
假设检验的基本原理
怎样提出假设?
什么是假设?
(hypothesis)
❖ ☺ 在参数检验中,对总体参数的具体数值 所作的陈述
就一个总体而言,总体参数包括总体均值、成 数、方差等
分析之前必需陈述
什么是假设检验?
(hypothesis test)
验统计量部分的面积
右侧检验时,P-值为曲线上方大于等于检
验统计量部分的面积
3. 被称为观察到的(或实测的)显著性水平
H0 能被拒绝的最小值
双侧检验的P 值
/ 2 拒绝
/ 2 拒绝
1/2 P 值
1/2 P 值
临界值
计算出的样本统计量
虑
是大样本还是小样本 总体方差已知还是未知
3. 检验统计量的基本形式为
Z X 0 n
规定显著性水平
(significant level) ❖ 什么是显著性水平? ❖ 1. 是一个概率值
❖ 2. 原假设为真时,拒绝原假设的概率
被称为抽样分布的拒绝域
❖ 3. 表示为 (alpha)
常用的 值有0.01, 0.05, 0.10
❖ 4. 由研究者事先确定
作出统计决策
1. 计算检验的统计量
2. 根据给定的显著性水平,查表得出相应
的临界值z或z/2, t或t/2
3. 将检验统Leabharlann 量的值与 水平的临界值进行比较
4. 得出拒绝或不拒绝原假设的结论
统计量决策规则
❖ 给定显著性水平,查表得出相应的临界值
z或z/2, t或t/2
❖ 将检验统计量的值与 水平的临界值进行比
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系
3. 备择假设通常用于表达研究者自己倾向于支持的 看法,然后就是想办法收集证据拒绝原假设,以 支持备择假设
较 ❖ 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
利用P值进行决策
什么是P 值?
(P-value)
1. 是一个概率值
2. 如果原假设为真,P-值是抽样分布中大于 或小于样本统计量的概率
左侧检验时,P-值为曲线上方小于等于检
1. 又称“0假设”,研究者想收集证据予以反对的假 设,用H0表示
2. 所表达的含义总是指参数没有变化或变量之间没 有关系
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
第八章 假设检验
假设检验的基本问题 一个总体参数的检验 两个总体参数的检验
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
➢ 当问起健康的 成年人体温是
➢ 根据样本数据计算的平均值是36.8oC ,标准差 为0.36oC
➢ 根据参数估计方法得到的健康成年人平均体温的 95%的置信区间为(36.7,36.9)。研究人员发现 这个区间内并没有包括37oC
➢ 因此提出“不应该再把37oC作为正常人体温的 一个有任何特定意义的概念”
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
37.0
37.1
一 个 研 究 人 员 36.6 37.2 36.4 36.6 37.3
测 量 的 50 个 健 36.1 37.1 37.0 36.6 36.9
康 成 年 人 的 体 36.7 37.2 36.3 37.1 36.7
温数据
36.8 37.0 37.0 36.1 37.0
正常人的平均体温是37oC吗?
36.9
36.6
36.2
36.7
36.9
多 少 时 , 多 数 37.6 36.7 37.3 36.9 36.4
人 的 回 答 是 36.1 37.1 36.6 36.5 36.7
37oC , 这 似 乎 37.1 36.2 36.3 37.5 36.9
已经成了一种 共识。下面是
37.0
36.7
36.9
原假设为假时接受原假设 第二类错误的概率为(Beta)
两类错误的控制
❖ 一般来说,对于一个给定的样本,如果犯第Ι 类错误的代价比犯第Ⅱ类错误的代价相对较 高,则将犯第Ⅰ类错误的概率定得低些较为 合理;反之,如果犯第Ι类错误的代价比犯第 Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错 误的概率定得高些
❖ 一般来说,发生哪一类错误的后果更为严重, 就应该首要控制哪类错误发生的概率。但由 于犯第Ι类错误的概率是可以由研究者控制的, 因此在假设检验中,人们往往先控制第Ι类错 误的发生概率
1. 先对总体的参数(或分布形式)提出某种假设, 然后利用样本信息判断假设是否成立的统计方 法
2. 有参数检验和非参数检验
3. 逻辑上运用反证法,统计上依据小概率原理
小概率是在一次试验中,一个几乎不可能发生的 事件发生的概率
在一次试验中小概率事件一旦发生,我们就有理 由拒绝原假设
原假设
(null hypothesis)
❖ 错误与错误的关系: 与的关系就像跷跷板, 小就大, 大就小,同时减小两类错误惟一 的办法就是增加样本容量。
假设检验的流程
▪ 提出假设 ▪ 确定适当的检验统计量 ▪ 规定显著性水平 ▪ 计算检验统计量的值 ▪ 作出统计决策
确定适当的检验统计量
❖ 什么是检验统计量? ❖ 1.用于假设检验决策的统计量 ❖ 2.选择统计量的方法与参数估计相同,需考
4. 总是有符号 ≠, >或 <
H1 : 某一数值 H1 : 某一数值 H1 : <某一数值
假设检验中的两类错误 (决策风险)
假设检验中的两类错误
❖ 1.第一类错误(弃真错误)
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
❖被称为显著性水平
❖ 2.第二类错误(取伪错误)