2020年成考专升本《高数一》试题及答案
专升本考试:2020专升本《高等数学一》真题及答案(4)
专升本考试:2020专升本《高等数学一》真题及答案(4)1、第30题的答案是( )(单选题)A. createB. produceC. inspireD. encourage试题答案:B2、 Compared with Solex, Bergasol__(单选题)A. helps one go brown more quicklyB. better protects one's skinC. is more competitive in priceD. is a better sun tan oil试题答案:A3、请填写最佳答案()(单选题)A. sameB. specialC. commonD. traditional试题答案:B4、(单选题)A. -2sinx 2+CB.C. 2sinx 2+CD.试题答案:D5、中国相声的主要表现手法是()(单选题)A. 表情性、造型性B. 程式化、虚拟性C. 唱、念、做、打D. 说、学、逗、唱试题答案:D6、请填写最佳答案()(单选题)A. sameB. specialC. commonD. traditional试题答案:B7、 I´ll consider Ms.Smith tonight, but I am not sure if I have the time.(单选题)A. to seeB. seeingC. to have seenD. see试题答案:B8、《中国植被》(1980)中未采用的植物群落分类单位是()(单选题)A. 群丛B. 群系C. 植被型D. 生态型试题答案:D9、()(单选题)A. 0B.C. 1D. 2试题答案:B10、设函数y=2x+sin x,则y´=()(单选题)A. 1-cos xB. 1+cos xC. 2-cos xD. 2+cos x试题答案:D11、方程x 2+2y 2+3z 2=1表示的二次曲面是()(单选题)A. 圆锥面B. 旋转抛物面C. 球面D. 椭球面试题答案:D12、函数f(x)=x 3—12x+1的单调减区间为( )(单选题)A. (-∞,+∞)B. (-∞,-2)C. (-2,2)D. (2,+∞)试题答案:C13、 What is the reason for setting an official holiday for stepparents?(单选题)A. Because they love their role as stepparents.B. Because they are often treated as heroes in the family.C. Because they deserve respect and honor as family members.D. Because they are often seen as the most loving family members。
2020年成人高考高数一真题及答案
2020年成人高等学校专升本招生全国统一考试真题高等数学(一)第Ⅰ卷(选择题,共40分)一、选择题(1-10小题,每小题4分,共40分)1、∫3x 5dx =( ).A 、−35x 4+CB 、35x 4+C C 、−34x 4+CD 、34x 4+C2、设函数f (x )=2ln x ,则f′′(x )=( ).A 、−1x 2B 、1x 2C 、−2x 2 A 、2x 2 3、∫(1+x)dx 2−2=( ).A 、4B 、0C 、2D 、−44、设函数f (x )=3+x 5,则f′(x )=( ).A 、5x 4B 、15x 4C 、1+x 4D 、x 45、设函数z =x 3+xy 2+3,则ðZ ðy =( ).A 、2yB 、2xyC 、3x 2+y 2D 、3x 2+2xy6、设函数y =x +2sin x ,则dy =( ).A 、(1+cos x)dxB 、(1+2cos x)dxC 、(1−cos x)dxD 、(1−2cos x)dx7、设函数z =x 2−4y 2,则dz =( ).A 、xdx −4ydyB 、xdx −ydyC 、2xdx −4ydyD 、2xdx −8ydy8、方程x 2+y 2−z 2=0表示的二次曲面是( )A 、圆锥面B 、球面C 、旋转抛物面D 、柱面9、 lim x→0x 2+x+1x 2−x+2=( ). A 、2 B 、1 C 、32 D 、1210、微分方程y′+y =0的通解为y = ( ).A 、Cxe xB 、Cxe −xC 、Ce xD 、Ce −x第Ⅱ卷(非选择题,共110分)二、填空题(11-20小题,每小题4分,共40分) 11、∫e x dx 1−∞= .12、设函数y =e 2x ,则dy = 13、 lim x→0sin x 2x 2= .14、∫(3x +2sin x)dx = .15、曲线y =arc tan(3x +1)在点(0,π4)处切线的斜率为 .16、若函数f (x )= 在x =0处连续,则a = . 17、过点(−1,2,3)且与直线x−12=y+23=z−24 垂直的平面方程为 .18、函数f (x )=x 3−6x 的单调递减区间为 .19、区域D =*(x,y)|1≤x ≤2,1≤y ≤x 2+的面积为 .20、方程y 3+ln y −x 2=0在点(1,1)的某邻域确定隐函数y =y(x), 则dy dx |x=1= .三、解答题(21-28题,共70分)21、计算∫x sin x dx .22、已知函数f (x )=e x cos x ,求f′′(π2).23、计算 limx→01−cos x−x 22sin 2x .x 2−2 ,x ≤0 a +sin x ,x >024、计算∫√1+x 310dx25、求微分方程y′′−y′−2y =0的通解.26、求曲线y =x 3−3x 2+2x +1的凹凸区间与拐点。
成考专升本《高等数学一》章节试题及答案
成考专升本《高等数学一》章节试题及答案极限、连续[单选题]()。
Ay=-xBy=x2Cy=-x2Dy=cosx参考答案:A[单选题]曲线y=x3-6x+2的拐点坐标()。
A(0,4)B(0,2)C(0,3)D(0,-2)参考答案:B[单选题]()。
Acsc2xB-csc2xCsec2xD-sec2x参考答案:B[单选题]()。
A较高阶无穷小量B较低阶无穷小量C等价无穷小量D同阶但不等价无穷小量参考答案:C[单选题]()。
A2B1C0D-1参考答案:C[单选题]设f(x)在点x0的某邻域内有定义,()。
ABC-1D2参考答案:A[单选题]设f(x)有连续导函数,()。
ABCD参考答案:A[单选题]()。
A低阶无穷小B等价无穷小C同阶但不等价无穷小D高阶无穷小参考答案:D[单选题]()。
A2B1CD0参考答案:D[单选题]函数f(x)在点x=x0处连续是f(x)在x0处可导的()。
A充分非必要条件B必要非充分条件C充分必要条件D既非充分条件也非必要条件参考答案:B一元函数微分学[单选题]()。
ABCD参考答案:A[单选题]()。
ABCD参考答案:A[单选题]()。
A0B-1C-3D3参考答案:C[单选题]()。
ABCD参考答案:D[单选题]()。
A0BCD参考答案:A[单选题]()。
A高阶无穷小B低阶无穷小C同阶但不等价无穷小D等价无穷小参考答案:B[单选题]()。
A0BCD参考答案:C[单选题]()。
ABCD参考答案:D[单选题]()。
A1B2CD-1参考答案:C[单选题]()。
A2B1C0D-1参考答案:C空间解析几何[单选题]设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为()。
ABCD不能确定参考答案:B[单选题]方程x=z2表示的二次曲面是()。
A球面B椭圆抛物面C柱面D圆锥面参考答案:C[单选题]方程x2+2y2-z2=0表示的曲面是()。
2020年成人高考《高数一》真题及答案解析
1 / 8−22020 年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题)一、选择题(1-10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.∫ 3 dx =( ) 。
x 5A.− 35x 4 C.− 34x 4+ C B. 35x 4 + CD. 34x 4+ C + C2.设函数f (x ) = 2x ln x ,则f ′′(x ) =( )。
A.−1B. 1x 2 x 2 C. − 2 D. 2x 2 x 2 3.∫2(1 + x ) dx =( ) 。
A.4 B.0 C.2D.−44.设函数f (x ) = 3 + x 5,则f ′(x ) =( )。
A.5x 4B.1x 45 C.1 + x 4D.x 45.设函数z = x 3 + xy 2 + 3,则∂z =( )。
∂yA.2yB.2xyC.3x 2 + y 2D.3x 2 + 2xy6.设函数y = x + 2 sin x ,则dy =( )。
A.(1 + cos x ) dxB.(1 + 2cos x ) dx C. (1 − cos x ) dx D. (1 − 2cos x ) dx 7.设函数z = x 2 − 4y 2,则dz =( )。
A.x dx − 4y dy B.x dx − y dy C.2x dx − 4y dy D.2x dx − 8y d y 8.方程x 2 + y 2 − z 2 = 0表示的二次曲面是( )。
2 / 8∫ A.圆锥面 B.球面 C.旋转抛物面 D.柱面9.lim x 2+x+1 =( ) 。
x→1 x 2−x+2A.2B.1C.3D.12210.微分方程y ′ + y = 0的通解为y =( )。
A.Cxe xB. Cxe −xC.Ce xD. Ce −x第Ⅱ卷(非选择题)二、填空题(11-22 小题,每小题 4 分,共 40 分) 11. 1−∞ e x dx = 。
2023年成人高考专升本高等数学(一)试题及答案详解
2023年成人高等学校招生全国统一考试专升本高等数学(一)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第I卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→0时,5x-si n5x是x的【】A.高阶无穷小量B.等价无穷小量C.同阶无穷小量,但不是等价无穷小量D.低阶无穷小量2.设y=√2x+1,则y'=【】A.B.C.D.3.设y=e*,则d y=】【A.er d x B.-e^d x C.e'd x D.一e'd x~4.设函数在x =0处连续,则b=【】A.2C.0B.1D.—15.【】A.s i nx+CB.—s i n x+CC.c o s x+CD.—c o s x+C6.【】A.2B.1C.D.0【】7.设,则D.A.C.8.幂级数【】的收敛域是D.[-1,1]B.(-1,1)C.(-1,1)A.(-1,1)【】在平面3x-2y+z-7=0上,则k=9.已知直线A.0B.1C.2D.3【】10.微分方程y"+y=e²r的一个特解是A.B.C.D.第Ⅱ卷(非选择题,共110分)(t为参数),二、填空题(11~20小题,每小题4分,共40分)贝12.设13.设y=x+e²,则y”=14.设y=x+s i n x,则y'=15.16.17.设z=e²,则d z=18.过点(0,1,1)且与直线垂直的平面方程为19.设区域D=((x,y)|O≤x≤2,-l≤y≤1},则20.微分方程xy'+y=0满足初始条件y(1)=1的解为y=三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.(本题满分8分)计算22.(本题满分8分)计23.(本题满分8分)求微分方程的通解.25.(本题满分8分)求函数f(x)=x²e*的单调区间和极值.26.(本题满分10分)设D是由曲线y=1-x²(x≥0),x=0,y=0所围成的平面图形.(1)求D的面积S;(2)求D绕x轴旋转一周所得旋转体的体积V.,其中D是由曲线y=√1-x²,y=x,y=-x所围成的闭区域.计28.(本题满分10分)已知函数f(x)连续,且满参考答案及解析一、选择题1.【答案】A【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】,故5x-sin5x是x的高阶无穷小量.2.【答案】D【考情点拨】本题考查了复合函数求导的知识点.【应试指导】3.【答案】B【考情点拨】本题考查了微分的知识点.【应试指导】dy=(e*)'dx=-e*dx,4.【答案】B【考情点拨】本题考查了分段函数连续性的知识点.【应试指导】因f(x)在x=0处连续,则有b=1.5.【答案】D【考情点拨】本题考查了不定积分的知识点.【应试指导】6.【答案】C【考情点拨】本题考查了洛必达法则的知识点.【应试指导】7.【答案】B【考情点拨】本题考查了偏导数的知识点.【应试指导】8.【答案】D【考情点拨】本题考查了幂级数收敛域的知识点.【应试指导】收敛半径,所以幂级数的收敛区间为(-1,1).当x=-1时,级数为收敛的p级数.故该级数的收敛为收敛的交错级数;当x=1时,级数域为[-1,1].9.【答案】C【考情点拨】本题考查了直线与平面的位置关系的知识点.【应试指导】由题可知直线的方向向量s=(k,1,-4),平面的法向量n=(3,-2,1).由于s上n,因此有3k-2-4=0,故k=2.10.【答案】A【考情点拨】本题考查了二阶常系数线性非齐次微分方程特解的知识点.【应试指导】可验证,四个选项中只有A项满足微分方程,故其特解为.二、填空题11.【答案】e²【考情点拨】本题考查了两个重要极限的知识点.【应试指导】12.【答案】3【考情点拨】本题考查了参数方程求导的知识点.【应试指导】13.【答案】e'【考情点拨】本题考查了高阶导数的知识点.【应试指导】y'=1+e²,故y”=e².14.【答案】1+c o s x【考情点拨】本题考查了导数的运算的知识点.【应试指导】y'=(x+sinx)'=1+cosx.15.【答案】【考情点拨】本题考查了不定积分的计算的知识点.【应试指导】16.【答案】【考情点拨】本题考查了反常积分的计算的知识点.【应试指导】17.【答案】e²>(y d x+x d y)【考情点拨】本题考查了全微分的知识点.【应试指导】dz= de^>=e²d(x y)=e*(y dx+xdy).18.【答案】x+2y+z-3=0【考情点拨】本题考查了平面点法式方程的知识点.【应试指导】由题意,平面法向量为n=(1,2,1),又过点(0,1,1),故方程为x+2(y-1)+(z-1)=0,即x+2y+z-3=0.19.【答案】4【考情点拨】本题考查了二重积分的知识点.【应试指导】20.【答案】【考情点拨】本题考查了一阶线性齐次微分方程的知识点.【应试指导】由xy+y=0得,通解为,将y(1)=1代入通解,得C=1,故所求的解为三、解答题21.=1.22.23.由题可知24.25.f(x)的定义域为(-α,+o),f'(x)=2xe+-x2e+=e*(-x2+2x),令f'(x)=0,得xj=0,x2=2.列表如下:20(0,2)(2,+o)x(-α,0)y0+0极小值极大值y由表可知,函数的单调增区间为(0,2);单调减区间为(一~,0),(2,+o).极大值为f(2)=4e2,极小值为f(0)= 0.;27.积分区域用极坐标可表示为28.由两边同时求导得(1+x2)f(x)= sinx+xcosx,所以。
2020年河南专升本高等数学真题和解析
河南2020专升本高等数学真题和解析一、选择题1.在x →0时,3x 2−6x 是x 的 A.高阶无穷小 B.低阶无穷小 C.同阶无穷小D.等价2. f(x)在R 上的奇函数,则sin f(x)+ln(√1+x 2−1)在R 上是 A.奇函数 B.偶函数 C.非奇非偶 D.无法判断3.求极限lim x→∞(1−1x)4x=4.设f (x +1)=2x +1,求f −1(x −5)= A.2x −9 B.2x −11 C.x2−3D.x2−25.设函数f (x )={sin 2(x−1)x−1x <12 x =1x 2−1 x >1,则lim x→1f (x )=A.0B.1C.2D.不存在 8.设极限limx→a f (x )−f (a )(x−a )3=6,在x =a 处A. lim x→af (x )存在,f ′(a)≠0B.不可导C. f (x )有极大值D.无极值9. lim x→∞x−4x 2−4x+8A.-1B.0C.1D.∞13.y =3x ⋅3x 在x 0处取得极小值,则x 0= A.−1ln 3 B.−ln 3 C.1ln 3D.ln 314.设函数y =x ln x 在M 0的切线平行于2x +1,求M 0的坐标 A.(1,0) B.(ⅇ,0) C.(ⅇ,1) D.(ⅇ,ⅇ) 15.函数y 2−3xy +x 3=1,求y′ A.3x 2−3y2y−3x B. 3y−3x 22y−3x C. 2y−3x 3x 2−3y D. 2y−3x3y−3x 218.∫sin (1−2x )ⅆx = A.cos (1−2x )+C B. −cos (1−2x )+C C. 12cos (1−2x )+CD.−12cos (1−2x )+C19.已知f (x )=∫(ⅇ2t +1)ⅆt x0连续,求f (n )(x )A.ⅇ2xB.2n ⅇ2xC.2n−1ⅇ2xD.2n+1ⅇ2x20. 曲线y =2x ,y =x 以及x =1围成的平面图形绕x 轴旋转的旋转体体积 A.175π B.π C.1πD.517π21.下列广义积分收敛的是A.∫x 1+x 2ⅆx +∞B.∫sin x ⅆx +∞1C.∫√x+∞eD.∫14−x 2ⅆx +∞422. 两平面x −2y +3z +1=0和2x +y +2=0的位置关系是A.垂直B.斜交C.平行不重合D.重合 23.x 2+y 2+z =0曲面方程表示的是 A.椭圆面 B.圆锥面 C.旋转抛物面 D.柱面 24.已知z =sin (xy 2),求ð2zðx 2= A.y 4cos (xy 2) B.−y 4cos (xy 2) C. y 4sin (xy 2)D.−y 4sin (xy 2)25. 已知z =yⅇ−x 在点(0,−1)在方向l⃗上取得最大方向导数,则l ⃗= A.−i ⃗−j ⃗(箭头下为i,j ) B. i ⃗+j ⃗C.−i ⃗+j ⃗D. i ⃗−j ⃗28.L 为正向圆周x 2+y 2=6,∮(3x 2y −2y )ⅆx L+(x 3+4x )ⅆy = A.6π B.−6π C.36π D.−36π29.级数∑kx nn!∞n=0在k >0的收敛区间为A.(−1,1)B.(−1k ,1k ) C.(−k,k )D.(−∞,+∞)30.用待定系数法求y′′−6y ′+8y =ⅇ2x sin x 时,y′′应设为 A.Cⅇ2x B.ⅇ2x (C 1sin x +C 2cos x ) C.xⅇ2x (C 1sin x +C 2cos x ) D. x 2ⅇ2x (C 1sin x +C 2cos x )二、填空题33.f (x )=∫ln (t +3)ⅆt x 20的单调递增区间为________________.34.已知lim x→2f (x )极限存在且f (x )=x 3+3xlim x→2f (x ).则f ′(x )=_______________.35.∫x√4−x 2ⅆx 2−2=__________________.36.∫f (x )ⅆx =F (x )+C ,求∫f (sin x )cos x ⅆx =_________________. 38.z =ln (x 2+y ),ⅆz =__________________________.39.已知x >0,∑(−1)n x n(2n )!∞n=0,则S (x )=______________.40.y ′′+y ′+y =0的通解为___________________________.三、计算题 41.求极限lim n→∞(11×2+12×3+⋯+1n (n+1))3n−242.求函数y =x ln x 的导数 43.∫1x (2x+1)ⅆx44.求函数f (x )=3x 4−8x 3+6x 2+5的凹凸区间和拐点45.已知f(x)=x sin1x −1e x−1−1ln(1+x)的渐近线(不考虑斜渐近线)46.∫1cos2x+3ⅆxπ447.已知a⃗=(4,4,0),b⃗⃗=(3,2,8),C⃗=(1,0,6),求(a⃗×b⃗⃗)⋅c⃗48.函数z=z(x,y),x2+y3+3xyz2+2z=1求ðzðx ,ðzðy(其中6xyz+2≠0)49.计算二重积分∬yⅆxⅆyD,其中D为:x2+y2=1的第一象限部分50.F(x)=1x2+24x−25关于x的展开式52.y=1−x2与x轴的两个交点A,B为底的等腰梯形ABCD,C在曲线上.求C的纵坐标为多少时,梯形面积最大.53.f(x)在[0,1]上连续,在(0,1)内可导且f(0)=0,f(1)=1,证明:在(0,1)内存在不同的α+1两点ξ1,ξ2,使得f′(ξ1)+f′(ξ2)=ξ1α+ξ2α。
2020年成人高等学校招生全国统一考试专升本 高等数学(一)
6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。
成考高等数学(一)成人高考(专升本)试题及答案指导
成人高考成考高等数学(一)(专升本)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列关于多元函数极值的论述中,正确的是:A. 若函数f(x, y)在点(a, b)的某一邻域内单调增加,则f(x, y)在点(a, b)处取得极小值。
B. 若函数f(x, y)在点(a, b)的某一邻域内单调减少,则f(x, y)在点(a, b)处取得极大值。
C. 若函数f(x, y)在点(a, b)的某一邻域内先增后减,则f(x, y)在点(a, b)处无极值。
D. 若函数f(x, y)在点(a, b)的某一邻域内先减后增,则f(x, y)在点(a, b)处取得极小值。
2、若函数 f(x) = 3x^2 - 4x + 1 在 x = a 上的导数为 4,则 a 的值是()A. 1/3B. 1C. -1/3D. -13.以下哪个函数是偶函数?A.f(x) = x² - 3xB.f(x) = x³ + 2xC.f(x) = |x|D.f(x) = sin x4、函数y=In(1+x^2)的单调递增区间是:A.(0,+∞)B.(-∞,0)C.(-∞,-1)和(1,+∞)D.(-1,1)5、设向量 u = (3, 4),向量 v = (4, -3),则 u 和 v 的点积是A. 0B. 25C. -25D. 56、设函数f(x)=mx3+nx2+(m+2n)x−1,其中m,n为实数。
若f(x)在x=1处取得极大值,求m+n的值。
A.-1B.0C.1D.27、已知等腰三角形的一条边长为2,另一边长为3,则它的周长等于(C)A. 9B. 10C. 7D. 88、判断下列方程的解集,其中正确的是()A、x2 + x - 6 = 0的解集是 {-3, 2}B、x2 - 4x + 4 = 0的解集是 {1}C、2x2 - 5x + 2 = 0的解集是 {2, 1}9、函数f(x)={1xx≠02x=0的导数f′(0)为:A. 0B. 1C. -1D. 不存在10、下列关于函数的单调性和一致性的说法中,正确的是( )A、单调性与一致性是一回事B、所有幂函数都是一致可微的C、函数在某个开区间上单调,则该函数在闭区间上也是单调的D、连续函数不一定有单调区间11、函数 y=sinx 的零点是 _____ 。
2020年山东省专升本高数一真题及答案
2020年山东省专升本高数一真题及答案1、“租赁”的读音是“zūlìng”。
[判断题] *对错(正确答案)2、1《清塘荷韵》中,作者季羡林想说明的人生哲理是:天地萌生万物,对包括人在内的动、植物等有生命的东西,总是赋予一种极其惊人的求生存的力量和极其惊人的扩展蔓延的力量,这种力量大到无法抵御。
[判断题] *对错(正确答案)3、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、赘语(zhuì)熨帖(yù)淬火(cuì)B、浩瀚(hàn) 克隆(lóng)感慨(kǎi)C、玄虚(xuán)国粹(cuì) 鱼翅(chì)D、摩登(mó)神祗(qí)裨益(pì)(正确答案)4、“醴酪”的读音是“lǐluó”。
[判断题] *对错(正确答案)5、43. 下列句子没有语病的一项是()[单选题] *A.一家研究机构的调查结果显示,大约50%左右的人患有“手机依赖症”。
B.能否帮助孩子们树立正确的价值观,是他们形成良好人生观的关键。
C.近日,神舟十三号宇航员在中国空间站为广大青少年带来了一堂精彩的太空科普课。
(正确答案)D.通过“文明学校”创建活动,使每个同学的文明意识显著增强。
6、“微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声的似的”这句的修辞格是()[单选题] *比喻比拟通感(正确答案)错觉7、“无故寻愁觅恨,有时似傻如狂,纵然生得好皮囊,腹内原来草莽,潦倒不通世务,愚顽怕读文章,行为偏僻性乖张,哪管世人诽谤”描写的是( ) [单选题] *A.贾宝玉(正确答案)B.贾琏C.贾蓉D.贾环8、1介绍工艺流程一般按照工序的先后顺序逐一介绍,突出每个步骤的操作要领。
[判断题] *对错(正确答案)9、“梧桐一叶而天下知秋”的出处是()。
[单选题] *荀子淮南子(正确答案)晏子春秋史记10、《雨中登泰山》作者写到天街上的“小店”典型特点是()[单选题] *新颖别致险峻狭窄(正确答案)古朴别致贫穷简陋11、下列选项中加着重号字读音相同的一项是()[单选题] *A、遗憾浓酣B、色调协调C、娇柔骄傲(正确答案)D、意境景色12、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、崎岖(qí)隐瞒(mán)恬淡(tián)B、糜烂(mí)莅临(lì)粘贴(zhān)C、筵席(yán)潜伏(qiǎn)惶惑(huáng)(正确答案)D、矗立(chù)矜持(jīn)赎罪(shú)13、下列词语中,加着重号字的注音正确的一项是()[单选题] *A、将进酒(qiāng)岑夫子(chén)欢谑(xuè)馔玉(zhuàn)B、虾蟆陵(há)贾人(jiǎ)钿头(diàn)荻花(dí)C、樯橹(qiáng)酹(lèi) 凝噎(yè)兰舟催发(fà)D、郯子(tán)六艺经传(zhuàn)或不焉(fǒu)句读(dòu)(正确答案)14、下列对《红楼梦》中人物形象的解说,不正确的一项是( ) [单选题] *A.贾宝玉:性格叛逆,鄙视功名利禄,大胆质疑程朱理学。
2020成人高考专升本数学复习(高数一)复习题及答案
2020年成人高考专升本高等数学一复习试卷构成分析一、题型分布:试卷分选择、填空、解答三部分,分别占40分、40分、70分二、内容分布难点:隐函数求导、全微分、多元函数极值、常微分方程复习方法:1、结合自身情况定目标2、分章节重点突破,多做题,做真题第一部分 极限与连续题型一:求极限方法一:直接代入法(代入后分母不为0都可以用) 练习:1. 2limπ→x xx sin 12-=_______ 2. x x x sin lim 1→=______方法二:约去为零公因子法练习1. 12lim 221--+→x x x x =______ 练习2、lim x→1x 4−1x 3−1=练习3. lim x→1√5x−4−√xx−1 =方法三:分子分母同时除以最高次项(∞∞) 练习1. ∞→x lim1132-+x x =_______ 2. 112lim 55-+-∞→x x x x =______ 练习3.lim x→+∞(√x 2+2x −√x 2−1)方法四:等价代换法(x →0时,sinx~x tanx~x arcsinx~x arctanx~x ln(1+x)~x 1−cos x~12x 2)(等价代换只能用于乘除,不能用于加减)练习1. 1lim →x 1)1sin(2--x x =练习2. 0lim →x x x x sin cos 1-=___ ____ 3. 1)1arcsin(lim 31--→x x x =______方法五:洛必达法则(分子分母求导)(∞∞)型 或(00)型 或 其他变形形式练习1. ∞→x lim 353-+x x =_______ 2. 112lim 22-+-∞→n n n n =______练习:3. 1lim →x 1ln --+x e e x x =_______ 4. 12lim 221--+→x x x x =______两个重要极限(背2个重要极限)练习1.1lim→x 22)22sin(--x x =__ ____ 2. xxx 42sin lim 0→=____ __练习3.0lim →x x x 4sin 2sin =__ _ 4. xxx 2tan lim 0→=____ __(练习1-4也可以用等价无穷小法)练习5.∞→x lim x x 2)11(+=__ ____ 6.∞→x lim x x )211(+=__ ____练习7.∞→x lim x x )231(+=__ ____ 8. ∞→x lim x x3)211(-=__ ____练习9.0lim →x xx 1)21(+ =__ ____ 10. 0lim →x xx 21)1(-=__ ____无穷小量乘以有界函数 = 无穷小量 练习1. 0lim →x xsinx1=________ 2. ∞→x lim x 1sinx=________(什么是无穷小量?高阶无穷小,低阶无穷小,等阶无穷小,等价无穷小?)题型二:连续性问题(可导/练习1. 函数⎩⎨⎧<+≥+=1,1,1ln )(2x x ax x x x f 在x=1处连续,则a=______练习2. 函数⎪⎩⎪⎨⎧<+≥+=0,0,)1()(1x x a x x x f x 在x=0处有极限,则a=______练习3. 函数⎩⎨⎧<+≥+=2,2,1)(2x x b x ax x f 在x=2处可导,则a=______, b=______第二部分 一元函数微分学题型一:求导(背导数公式、导数的四则运算,复合函数求导公式)(y’=f’(x)=dxdy这三种是一个意思, 如果求微分dy ,就是dy= y’dx) 练习1. f(x)=sinx+2cosx , 则f’(2π)=__ ____练习2. y=xlnx , 则dy=___ ___练习3. y=x x cos 12+ , 则dxdy=___ ___练习4. y=x 4cosx +x1+ e x, 则y’=__ ____ 练习5. y=cos 4x, 则y’=___ 6. y=sin (x 3+1), 则dy=___ ___ 练习7. y=x x +2, 则y’=__ ____ 8. y=)ln(x x +, 则dy=___ ___题型三中,一定要注意运算率 (kv)’=______ (uv)’=______ )'(vu=_____ f(g)’=_____ 一定要背好导数公式,在考试中占40分左右题型二:高阶导数与隐函数的求导练习1. y=x 3+lnx, 则y”=______ 2. y=cos2x, 则y (4)=______ 练习3. y=ln (2x+1), 则y”=______ 4. y=xe 2x , 则y”(1)=______ 练习5. 2x 3+xy++y+y 2=0, 则dx dy =______ 6. e x +y=sinxy, 则dxdy =______题型三. 在某点处的切线或法线(斜率或方程)练习1.曲线y=2x 3在点(1,2)处的切线的斜率为_______, 切线方程为___________ 练习2. 曲线y=sin(x+1)在x=-1处的切线方程为___________ 练习3. 若y=ax 2+2x 在x=1处的切线与y=4x+3平行,则a=________ 练习4.双曲线y =1x 在点(12,2)处的法线方程为题型四:求驻点、极值点(极值)、拐点、单调区间、凹凸区间1.求驻点、拐点、极值点练习1. 曲线 y=x 3-3x 的驻点为___________ 极值点为__________ 拐点为_______2.求单调区间与极值(大题) 练习2.求1431)(3+-=x x x f 的单调区间、极值、凹凸区间和拐点(答案见11年高考)练习3. 若f(x)=ax 3+bx 2+x 在x=1处取得极大值5,求a,b第三部分 一元函数积分学题型一:求不定积分基础计算(背好公式:原函数、不定积分的性质、基本积分公式 ) 练习1:f(x)=3e 2x 则⎰dx x f)('=___ ___练习2:f(x) 的一个原函数是x 3,则f’(x)=_ __ 练习3:x 2是f(x)的一个原函数,则f(x)=__ ___ 练习4:⎰+)21(dx d x dx=__ 练习5:⎰+dx x x )(=______练习6:⎰dx x )1(2=______练习7:⎰++++dx e xx x x )11cos 2(=______题型二:凑微分法求积分 练习1:⎰2x xe dx=_ __ 练习2:⎰+12x e dx=_ __练习3:⎰+x 321dx=__ 练习4:⎰+22x xdx=__ 练习5:⎰+)2cos(2x x dx=___ 练习6:⎰xxln dx=___ 练习7:⎰xx )sin(ln dx=___ 练习8:⎰+12x x dx=__ _题型三:分部积分法求积分 公式:______________________ 练习1:⎰x ln dx=___ 练习2:⎰x x ln dx=___练习3:⎰x e x 2dx=___ 练习4:⎰x x sin dx=___练习5:⎰x x sin 2dx=___题型四: 求定积分基础计算练习1:⎰-22sin ππx dx=_ __ 练习2:⎰+121()x dx=__ _练习3:⎰+1021(dxd )x dx=__ _ 练习4:⎰e dx x11=_ __练习5:=则⎰⎩⎨⎧≤<≤≤=202f(x)dy ,21,210,)(x x x x x f _________ 练习6:⎰ex x 1ln dx=___题型五:广义积分 练习1:⎰+∞12x e dx=___ 练习2:⎰∞-+0211x dx=___题型六:平面图形的面积与旋转体的体积(有可能大题)练习1. 设D 为曲线y=1-x 2, 直线y=x+1及x 轴所围成的平面区域,如图 (1)求平面图形的面积(2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V x还有一道2013年26题见课本第四部分 空间解析几何题型一: 求直线方程或法向量练习1、一平面过点(1,-1,0)且与向量{2,1,3}垂直,则该平面方程应为= 练习2、一平面过点(1,0,2)且与平面2x −y +4z −1=0平行,则该平面方程为 练习3、已知两平面π1:kx −2y +3z −2=0与平面:π2:3x −2y −z +5=0垂直;则k= 练习4、过两点A (1,2,1),B (-1,3,0)的直线方程为 练习5、直线x−13=y+1−1=z−21与平面x+2y -z+3=0位置关系是( )A 、直线垂直于平面B 、直线平行于平面,但不在平面上C 、直线与平面斜交D 、直线在平面内题型二:二次曲面练习1、试确定球面x 2+y 2+z 2−2x +2y +4z +2=0的球心与半径。
2020山东专升本高等数学(一)真题和解析
-2-
15.已知函数
h
sin ,求 .
16.计算二重积分
ht h
所围成的第一象限的闭区域.
,其中 是由直线
,
与圆 h t h h
17.求微分方程 㤵 t
t 的通解.
-3-
18. 求幂级数 xn2 的收敛域及和函数. n0 n 1 19.求曲线 뭀 h t 与直线 뭀 h t 所围成图形的面积.
-4-
20.证明:当 t h 时, t ln t 뭀 .
21.设函数 ሺ ݔ在 h 上连续,且 ሺh ݔh,证明:对于任意 t ሺ hݔ,存在 t ሺ hݔ,使
得
h.
添加小学士微信(xueshi008) 查看高数答案详解
-5-
뭀 h的定义域为______________.
7.曲线 h t h ln 在点ሺh hݔ点处的切线方程为______________.
8.若
h, h t hሺ ݔ
Байду номын сангаас
,则 h
______________.
9.已知两点 ሺ 뭀 h h ݔ和 ሺh 뭀 hݔ,则与向量 同方向的单位向量为 ______________.
4.曲线 h t
A.
뭀
h h
뭀
h h
h 뭀 h 的拐点是
B.
뭀
h h
h h
5.以下级数收敛的为
A.
n 1
n2 1 n3 2n2
B.
sin
n
n 1
3
B.
h뭀 t
− h
D.
h
t
− h
C. 뭀 h
D. 뭀 h
2020年成人高考专升本《高等数学(一)》模拟考试及参考答案
【解题指导】 28.【解析】所给曲线围成的图形如图 8—1 所示.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
9. A.条件收敛 B.绝对收敛 C.收敛性与 k 有关 D.发散 10. A.Ax B. C. D.
第Ⅱ卷(非选择题,共 110 分)
评卷人 得分
二、填空题:11~20 小题,每小题 4 分,共 40 分.把答案填在题 中横线上.
11.
12.
13.设 sinx 为 f(x)的原函数,则 f(x)=
20.【参考答案】 【解析】本题考查的知识点为幂级数的收敛半径. 所给级数为缺项情形,
三、解答题 21.【解析】本题考查的知识点为极限运算. 解法 1
解法 2
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
专升本考试:2020专升本《高等数学一》真题及答案(5)
专升本考试:2020专升本《高等数学一》真题及答案(5)1、 Why is Solex suitable for everyone?(单选题)A. Its price is more attractive.B. It can be used to relieve sunburn.C. It can make the skin cells more active.D. It has a mild protection factor.试题答案:D2、第57题的答案是( ) (单选题)试题答案:F3、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A4、()(单选题)A. eB. 2C. 1D. 0试题答案:D5、请填写最佳答案()(单选题)A. timeB. additionC. detailD. summary试题答案:B6、()(单选题)A. 6yB. 6xyC. 3xD. 3x 2试题答案:D7、请填写最佳答案()(单选题)试题答案:G8、(单选题)A. -2B. -1C. 0D. 1试题答案:C9、根据下面材料回答{TSE}题: Passage one I talk to strangers for a living and love the challenge of getting their stories published in newspapers.I've been married for years,but until six months ago,I could be a typical absent—minded husband.Often l was just nodding when l was supposed to.When my wife asked,“ Did you even hear what I just said?”1 would defensively say,“of course I did!” In January,I began to lose my voice.Doctors told me I needed surgery,or my throat would be permanently damaged.Total silence would be required for the first few weeks of my recovery. Two hours after the surgery,my eyes filled with tears as mytwo-year-old son looked puzzled because l wouldn’t answer his questions.I wanted to talk but couldn’t.Luckily,I'd recorded myself reading some of his favorite books.That would come in handy the next couple of weeks. It had never left.I'd just stopped noticing.I found myself understanding her better on topics I'd previously dismissed as “things I just don’t get as a guy”.I also realized my son wasn’t just talking nonstop but that he often had thoughtful things to say.Even while walking my dog in the woods near our home,I began hearing pleasant patterns in birdsongs.Before my surgery,I'd have spent those walks on my phone. After several weeks,I was fully recovered. Conversation in our house is better now,not because I'm talking more.I’m just listening better and becoming less and less surprised that I like what I hear. {TS}According to the passage,the author is most likely a __________ .(单选题)A. driverB. teacherC. doctorD. Journalist试题答案:D10、根据以下材料,回答{TSE}题 Passage Three Whenyou stretch out in the sun you can do one of the three things: you can use no suntan oil, an ordinary sun tan oil; or Bergasol. If you don´t use any sun tan oil when you´re in the sun, you will burn surprisinglyquickly. If you use an ordinary sun tan oil, you will protectyour skin to a lesser or greater degree.How much protection depends onthe"protection-factor number" on the bottle. Some oils block out so manyof the sun ´s rays and you can stay in the sun all day without burning but youwon´t go very brown,either. Bergasol will protect your skin like an ordinary sun tan oil. It also has a tan acceleratorthat speeds up the rate at which the sun activates the skin cells that producemelanin(黑色素). It is melanin that gives the skin itsbrown colour. Bergasol enables you to go brown faster,am as the days pass thedifference will become more obvious.Unfortunately, this special formulation isn´tCheap to prepare.So Bergasol is rather more expensive than ordinary sun tanoil. However, the price looks more attractive as you do. Bergasoi It makes you go brown faster Protection Many people imagine that"cover-up" means you don´t get a tan. Nothing to show for yourholiday. Not so. With "cover-up", you can get brown if you want to. The point of"cover-up" is to protect your skin from the harmful rays of the sunwhich,according to the experts ,make your skinlook older. That´s what Solex Cover-up isallabout--protection for your skin. It has a Sun Protection Factor 8, which makesit suitable for anyone. Find out how it works for you by consulting the SolexSun Chart. On sale wherever Solex is. With Solex Cover-up, you can tan asslowly as you like. As gently as you like. And with much less chance of peeling. Your tan will lookbetter.Your skin will stay young longer. Solex Gentle tan.., full protection {TS} What can we learn from thesecond advertisement?(单选题)A. It is easy to get a suntan in summer.B. Suntan is regarded as a sign ofprotection.C. Sunlight could make one look older.D. Everyone wants to get a suntan fromholiday.试题答案:C11、(单选题)A. 2B. 1C. 1/2D. 0试题答案:C12、(单选题)A. -2sinx 2+CB.C. 2sinx 2+CD.试题答案:D13、设函数y=2x+sin x,则y´=()(单选题)A. 1-cos xB. 1+cos xC. 2-cos xD. 2+cos x试题答案:D14、()(单选题)A. eB. 2C. 1D. 0试题答案:D15、“三一律”是法国古典主义戏剧的创作原则,下列选项不属于“三一律”要素的是( )(单选题)A. 时间B. 地点C. 人物D. 情节试题答案:C16、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C17、 What does the underlined word“trilogy”in Paragraph 4 mean?(单选题)A. A work in three volumes.B. An imaginative work.C. A collection of stories.D. Memoirs of famous people.试题答案:A18、从电视节目形态看,《舌尖上的中国》属于()。
2020年成人高考高起点数学真题及答案
第I 卷(选择题,共85分)一、选择题(本大颗共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式|x -2|<1的解集是A.{x |-1<x<3}B.{x|-2<x<1}C.{x |-3<x<1}D.{x|1<x<3}2.下列函数中,在(0,π2)为减函数的是A.y = ln(3x +1)B. y=x+1C.y = 5sinxD.y=4-2x3.函数y= log 2(x +1)的定义域是A.(2,+ ∞)B.(-2,+ ∞)C.(- ∞,-1)D.(-1,+ ∞)4.直线x -y -3=0与x -y+3=0之间的距离为A.2√2B.6√2C.3√2D.65.设集合M={-2,-1,0,1,2},N={x l x≤2},则M ∩N=A.{-1,0,1}B.{-2,-1,0,1,2}C.{x |0<x≤2}D.{x|-1<x<2}6.已知点A(1,0),B(-1,1),若直线kx -y -1=0与直线 AB 平行,则k=A.- 12B. 12C.-1D.17.已知向量AB⃗⃗⃗⃗⃗ =(1,t ),BC ⃗⃗⃗⃗⃗ =(-1,1),AC ⃗⃗⃗⃗⃗ =(0.2),则t= A.-1B.2C.-2D.18.已知双曲线x 2m -y 24 =1的离心率为3,则m=A.4B.1C. 12D.29.函数y=sin(x +3)+sin(x -3)的最大值为A.-2sin3B.2sin3C.-2cos3D.2cos310.已知a>b>1,则A.log 2a > log 2bB. log 21a > log 21bC.1log 2a >1log 2bD.log 12a >log 12b 11.已知 cosx=35,且x 为第一象限角,则 sin2x=A.45B.2425C.1825D.122512.曲线y= sin(x +2)的一条对称轴的方程是A.x= π2B.x=πC.x= π2+2D.x= π2 -213.若p:x=1; q:x 2-1=0,则A.p 既不是q 的充分条件也不是q 的必要条件B.p 是q 的充要条件C.p 是q 的必要条件但不是充分条件D.p 是q 的充分条件但不是必要条件14.已知点A(1,-3),B(0,- 3),C(2,2).则∆ ABC 的面积为A.2B.3C.32D.5215.从红、黄、蓝、黑4个球中任取3个,则这3个球中有黑球的不同取法共有A.3种B. 4种C.2种D.6种16.下列函数中,最小正周期为π的函数是A.y =sinx +sinx2B.y=sin2xC.y =cosxD.y=sin x+1217.下列函数中,为偶函数的是A.y =e x+xB.y=x2C.y=x3+1D.y=In(2x+1)第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题.每小题4分,共16分)18.函数f(x)=x2+bx+c的图像经过点(-1.0),(3.0).则f(x)的最小值为_______.19.某同学每次投篮命中的概率都是0.6,各次是否投中相互独立,则该同学投篮3次恰有2次投中的概率是_______.,则a3=________.20.已知数列{a n}的前n项和为3n221.已知曲线y=lnx+a在点(1,a)处的切线过点(2,-1),则a=_______.三、解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)在∆ABC中,A =30°,AB =√3,BC =1.(I)求C;(Ⅱ)求ⅡABC的面积.23.(本小题满分12分)设函数f(x)=x3+x-1.(I)求f(x)的单调区间;(Ⅱ)求出一个区间(a,b),便得f(x)在区间(a,b)存在零点,且b-a<0.5。
高等数学1 2020 成人教育试题含答案
高等数学1试卷 复习题一、单项选择题(每小题3分,共15分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ) 0.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e,则f(x)=( ) 2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(每小题2分,共20分)6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________.7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y=则dz= _______. 15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰20.设方程2zx 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
2020成人高考专升本数学复习(高数一)复习题及答案
2020成人高考专升本数学复习(高数一)复习题及答案2020年成人高考专升本高等数学一复试卷构成分析一、题型分布:本试卷分为选择题、填空题和解答题三部分,分别占总分的40%、40%和70%。
二、内容分布本试卷内容包括极限函数、求导、微分、积分、空间几何、多元函数、无穷级数和常微分方程。
难点在于隐函数求导、全微分、多元函数极值和常微分方程。
复方法:1、结合自身情况制定研究目标;2、分章节重点突破,多做题,做真题。
第一部分极限与连续题型一:求极限方法一:直接代入法(当代入后分母不为零时可用)练1.lim (2x-1)/sinx = _______练2.lim sinx/x (x→π) = _______方法二:约去为零公因子法练1.lim (x²+x-2)/(x-1) (x→1) = _______练2.lim (x⁴-1)/(x³-1) (x→1) = _______方法三:分子分母同时除以最高次项(当极限为∞或-∞时)练1.lim (3x²+1)/(x-1) = _______练2.lim (2x⁵-x+1)/(x⁵-1) (x→∞) = _______练3.lim (√(5x-4)-√x)/(x-1) = _______方法四:等价代换法(当x→0时,sinx~x,tanx~x,arcsinx~x,arctanx~x,ln(1+x)~x,cosx~1-x²/2)等价代换只能用于乘除,不能用于加减)练1.lim sin(x-1)/(x²-1) (x→1) = _______练2.lim (1-cosx)/(xsinx) = _______练3.lim arcsin(x-1)/(x-1) = _______方法五:洛必达法则(分子分母求导)当极限为1-∞型或0/0型或其他变形形式时练1.lim (2n²-n+1)/(3x+5) (2n→∞) = _______练2.lim ln(x)+ex-eⁿx/(x-1) (x→1) = _______两个重要极限(背2个重要极限)lim (1+x)ⁿ/x = eⁿ (x→0)lim (aⁿ-1)/n = ln a (n→∞)练1.对函数f(x)=x^3-3x^2+2x求出其前三阶导数。